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Abstract. The EPCglobal Class-1 Generation-2 UHF tag standard is certain to become the de facto
worldwide specification for inexpensive RFID tags. Because of its sharp focus on simple “license plate”
tags, it supports only the most rudimentary of security and privacy features, and essentially none of the
cryptographic techniques that underpin authentication and privacy-protection in higher-powered com-
putational devices. To support more-sophisticated applications, the drafters of this standard envisioned
the re-use of the basic air interface and command set in higher-class standards.

We propose ways to incorporate mainstream cryptographic functionality into the Class-1 Gen-2 stan-
dard. Our techniques circumvene the intended modes of operation of the standard, but adhere closely
enough to preserve formal compliance. For this reason, we use the term shoehorning to describe our
layering of new security functionality on the standard.
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1 Introduction

Radio Frequency IDentification (RFID) tags promise in the near future to become the most numer-
ous computational devices in the world. Their impending pervasiveness owes much to the power
and flexibility that they achieve through starkly minimalist design. In their most basic form, RFID
tags are little more than wireless barcodes that facilitate the tracking of objects in supply chains –
at present, generally bulk containers like crates.

Many industries are embracing a recently ratified standard for RFID tags called the EPCglobal
Class-1 Generation-2 UHF tag standard [12]. EPC tags, as the tags compliant with this standard
are called, seem certain to become the de facto standard for low-cost RFID. It is projected that
Class-1 Gen-2 EPC tags will soon cost in the neighborhood of five cents apiece, and will number
in the billions. Their basic purpose is to improve supply-chain visibility, meaning that they will
furnish highly accurate real-time data on the whereabouts of objects. In contrast to barcodes, which
are difficult to scan without precise object positioning and thus human intermediation, RFID tags
transmit data automatically and wirelessly.

It seems natural to appeal to RFID to improve infrastructural security. Indeed, the United States
Food and Drug Administration is promoting the use of EPC tags to facilitate the compilation of
item pedigrees in the pharmaceutical supply chain in an effort to combat counterfeit and gray-
market products. It is to be expected that other industries will likewise explicitly or implicitly
draw on EPC tags as a security tool.

EPC tags per se, however, are poorly endowed as security devices. Apart from some rudimentary
protocols that reduce over-the-air information leakage, they have only two basic security features:



1. The “kill” command: The EPC standard envisions that tags will eventually track individual
consumer items in the supply chain. In order to protect consumer privacy, the standard provides
for tags to be disabled at the point of sale in retail environments. When a reader transmits a
special “kill” command to an EPC tag, along with a tag-specific, 32-bit PIN, the tag self-
destructs; that is, it never again responds to reader interrogation. (Dead tags, of course, offer
nearly impeccable RFID privacy.)

2. Read/write access: An optional feature in the EPC standard provides for access-controlled
memory in EPC tags. In order to read and write to certain memory locations, an EPC reader
must furnish a tag-specific PIN.

These two forms of PIN-based access control reduce the risk of certain types of attack, like
malicious killing of tags, and unauthorized access to the contents of tag memory. EPC tags, however,
are vulnerable to a range of other, elementary attacks. EPC tags emit static, unique identifiers,
as well as data like that traditionally found in a printed barcode, namely a manufacturer name
and product type. Thanks to their identifiers, EPC tags are subject to clandestine tracking; with
a network of readers, an entity can correlate sightings of an individual tag – and thus potentially
track its bearer. The product information on tags creates a risk of surreptitious inventorying; a
reader can in principle determine what items a person is carrying with her. Such risks have been a
flashpoint of concern for civil libertarians.1

The vulnerability of RFID tags to cloning has received somewhat less attention. EPC tags, in
particular, release their identifiers and product information – known as EPC codes – in a promis-
cuous manner. Any reader may scan any EPC tag; no access control exists on EPC codes. Conse-
quently, having scanned a target EPC tag once, a reader can harvest all of the information needed
to duplicate that tag in its essentials. It is unclear whether field-programmable, i.e., blank EPC
tags, will be a regular commercial offering, although it is not inconceivable. An attacker could eas-
ily imprint such a tag to create a counterfeit, i.e., duplicate EPC tag.2 Even without blank tags,
however, it is an elementary matter to create wireless devices that may not have the same physical
appearance as EPC tags, but perfectly simulate their output.

The drafters of the EPC standard were aware of these privacy and security concerns. They
rejected potential countermeasures, like cryptographic functionality, in favor of low cost. Rather
than incorporate security technologies into Class-1 tags, EPCglobal instead imagined a hierarchy
of tags [12], each successive level adding functionality while incorporating all the features of lower-
class tags. In this way, higher-class tags could build on the existing infrastructure without the
need to develop a new air interface for each. By way of analogy, consider the long sequence of
standards under the IEEE 802.11 banner. A common command set has been extended multiple times
and adapted to different air interfaces, all while leveraging past investment and (when possible)
maintaining backward compatibility and coexistence.

1. Class-1: Identity Tags Passive-backscatter tags offering only basic features like a fixed EPC
identifier, a tag identifier, kill function, and optional password-protected access control

2. Class-2: Higher-Functionality Tags Passive tags with all of Class-1’s features and extended
tag identifier and user memory, as well as authenticated access control

1 As noted above, EPC tags are unlikely to see widespread use on consumer products for some years. Consumers
regularly carry other types of RFID tags on their persons, however, such as payment devices and proximity cards,
i.e., RFID devices that unlock doors.

2 It is even possible that the pre-programmed data in an EPC tag could be directly modified.



3. Class-3: Semi-Passive Tags with all of Class-2’s features as well as sensors and on-tag power
sources like batteries

4. Class-4: Active Tags with all of Class-3’s features as well as tag-to-tag communications and
ad-hoc networking

In contrast to established HF RFID standards like ISO 14443 and ISO 15693, where security
protocols have already been deployed, the Class-1 Gen-2 UHF air interface is designed to offer
longer range, better handling of dense tag and reader environments, and lower cost. These factors
will draw security applications to this standard just as they have driven its success in supply chains
– as well as the tremendous expected economies of scale.

Our work In this paper, we consider various ways in which it is possible to create RFID tags
that perform cryptographic functionality while remaining compliant with both the Class-1 Gen-2
standard and conformance specification [13] and while extending the command set. Our techniques
could serve as an alternative to the creation of a Class-2 EPC standard – or as the basis for such
a standard.

Our key idea is to take an expansive view of EPC tag memory. Rather than treating this memory
merely as a form of storage, we consider its use as an input/output medium capable of interfacing
with a cryptographic module within the tag. Read and write commands to the tag, therefore, may
be commandeered to carry cryptographic values, such as messages in a challenge-response protocol.
We focus on protocols for tag authentication, rather than privacy-enhancing protocols.3

Organization

In section 2, we briefly review related work on RFID security. We outline desirable security-service
enhancements to the EPC standard in section 3. We explore the scope of the Class-1 Gen-2 EPC
standard in section 4, and in section 5, propose an example cryptographic command set that may
be fit into the standard. We conclude in section 6 with a brief summary.

2 Related work

Privacy has been perhaps the major security focus in the RFID literature and in press coverage as
well. A number of approaches have been proposed, including simple RF shielding (e.g., aluminum
foil), distance detection [8], interference with RFID singulation [22] (i.e., the standard process by
which readers establish one-to-one communication with tags), rotating pseudonyms [17], physical
disablement [25], proxying [30, 23], trusted computing [26], and cryptographic protocols, e.g., [2,
10, 27,28]. Cryptographic approaches to user privacy based on symmetric-key primitives tend to
be unsatisfactory from a practical standpoint. They rely on readers performing intensive searches
over databases of tag keys, or else sharing of secrets across tags that can weakens their security
guarantees. Public-key-based protocols are expensive. (See [20] for an overview.) For these reasons,
we focus here instead on the more technically tractable problem of authentication.

Several researchers have proposed new, lightweight cryptographic primitives aiming at RFID
authentication [18, 24,33]. A European project [6] aims to identify new stream ciphers; some of these
are potentially lightweight enough for inclusion in low-cost devices. It is as yet unclear whether any
3 As an example of a privacy-enhancing protocol consonant with the principles we enunciate here, see [17], which

proposes a system of cryptographically changing EPC codes.



of these recently proposed primitives are both strong enough and agile enough for use in low-cost
RFID tags, but they represent an important continuing area of inquiry. Feldhofer et al. [7] have
described an AES implementation designed specifically for RFID devices. This implementation
requires security resources exceeding those presently possible in EPC tags, but perhaps suitable for
some of the enhancements we describe here.

Some RFID tags do employ cryptographic primitives for authentication. These tags tend to
be more expensive than EPC tags, but demonstrate the need for strong authentication in niche
applications. They also demonstrate that design of good cryptographic protocols for RFID requires
careful attention [3, 21].

The Auto-ID Lab, the research arm of EPCglobal, operates a special interest group devoted
to use of RFID to combat counterfeiting. Researchers there have proposed uses of EPC to combat
counterfeiting of consumer items [31]. They suggest that track-and-trace technologies, i.e., supply-
chain monitoring based on current EPC tags, can yield good improvements over existing security.
They also discuss the benefits of challenge-response protocols for tag authentication, and review
extensions to existing EPC architecture for this purpose. They do not investigate incorporation of
cryptography into Class-1 Gen-2 EPC tags, however. They instead propose support in future EPC
standards, such as the Class-2 EPC standard.

Juels proposes ways to leverage the PIN-controls for killing and read/write access to achieve ad
hoc authentication in Class-1 Gen-2 EPC tags [19]. The resulting protocols are cryptographically
weak, e.g., they are vulnerable to eavesdropping attacks, but they permit authentication of EPC
tags that would otherwise not be possible. In spirit, that work is similar to our proposals here in
that it aims to leverage the existing EPC standard to achieve stronger security functionality.

Of course, it is common practice to repurpose or coopt communication-protocol standards as
we propose here. As seen in the past, the broad deployment of a communications standard yields
many uses beyond the imagination of its original designers. Perhaps the most notable example in
recent times is the TCP/IP suite of networking protocols. Originally designed for communication
among mainframe and minicomputers housed in government labs, it is now supporting transmission
of video clips to cell phones and replacing the traditional public switched telephone and cable-
television networks.

What is unusual about our work here is the very constrained nature of the protocol set that we
propose to coopt. The EPC standard specifies an artifact, i.e., a device with a fixed command set
specified down to the bit level, and virtually no margin for extensions and no underlying intention
to support them. Yet our goal is to achieve general, extensible security services within the EPC
standard. We require a large shoehorn indeed – but thankfully one of essentially simple design.

3 Security Services

There are of course many desirable security services for RFID authentication. Roughly speaking,
they fall into three categories: device authentication, device-binding authentication, and data-origin
authentication. In the appendix, we briefly describe these different types of authentication and
explain how they introduce needs for flexible cryptographic authentication services.

4 Shoehorning

The huge economies of scale will drive down the cost of tags, readers, and their components. The
low cost of components will lead to their inclusion in many devices beyond the simple “license



plate” item-identification application. The extension of the Class-1 Gen-2 standard to meet these
needs, including anti-counterfeiting, requires a slightly different view of the specification. Instead
of implying the characteristics of an artifact that implements the protocol, we can view it simply
as a communication protocol. With this approach, Class-1 Gen-2 offers a logical and physical layer
protocol which can be used to carry bulk data, including that of higher-layer protocols.

To implement the security services needed especially in pharmaceutical applications, we could
develop new customized extensions to the logical layer, similar to the 802.11i [11] effort. But as
experience has shown, this is not a trivial task. Simply taking an otherwise secure cipher and using
it to encrypt data can lead to an insecure protocol [1]. Moreover, doing so presents a difficult choice:
either select a single set of algorithms all implementors must use, or provide a negotiation scheme.
Fortunately, several standard interfaces have been devised for secure communications with simple
devices. Given their broad deployment, they have been thoroughly implemented and analyzed, and
can be applied to our task at hand.

4.1 A Simple Protocol for Entity Authentication

The Class-1 Gen-2 protocol already has a limited protocol for entity authentication: in order to
access protected memory or privileged commands like kill, the reader must present a static password.
In principle, to authenticate itself to the reader, the tag could do the same: we could imagine a
new command that would request a password from a tag. But we observe that having the tag
present static data like a password provides no additional security services than providing the
EPC. Presumably, an attacker who is able to clone an EPC could just clone the password as well.

With this observation in hand, we provide a motivating example of the flexibility of our ap-
proach. Challenge-response protocols prevent an eavesdropping attacker from obtaining a static
password and simply reusing it. In such a protocol depicted below, the tag computes a 32- or 64-bit
response RT = H(KTS, CR) where H() is a cryptographic function like a block cipher, KTS is some
secret key known to the tag and the reader (or server), and CR, is a unique challenge. Of course,
RT could be chosen to have a length longer than 64 bits if conditions warrant. In an application
where an attacker could feasibly try such a large number of interactive queries with the reader, a
longer RT value would be a good choice, but 64 bits is appropriate for many applications given
the relatively short range of Class-1 Gen-2. To address off-line attacks, one can choose KTS to be
much longer – such as 128 bits – without increasing the number of bits sent over the air. We have
seen several implementation reports of block ciphers like AES adapted to the severe constraints of
passive RFID [7] which could serve as our function H().

An extraordinary number of challenge-response protocols have been developed to suit various
needs and resist various attackers. This one is presented as an example because of simplicity and a
particular quirk of the Class-1 Gen-2 standard: tags do not have a method to obtain the identity
of a reader. For its part, the Electronic Product Code carried by the tag is denoted IDT .

1. Reader → Tag : CR

2. Tag → Reader : IDT , RT

There are several types of challenge-response protocols classified by how the value CR is chosen.
Perhaps the most familiar method is for the value CR to be chosen by the reader and explicitly
sent to the tag, which we’ll explore in much more detail below. In a special case called a time-
synchronous one-time password, however, if the tag has a real-time clock, then it can use the time



of day as an implicit challenge. This approach eliminates the need for a special message from the
reader carrying CR. To ensure a password is not being replayed, one can choose a time interval
for CR short enough to preclude replay attacks and the reader can store the last correct password
value received from the tag.

Given this capability, our two-message protocol above can be collapsed into a single message:
when asked for its EPC in Read, ACK, or any other command, the tag responds with its EPC
concatenated with its one-time password.

1. Tag → Reader : IDT , RT

Since according to Section 6.3.2.10.2.4, the transmitted EPC data field may be up to 512 bits,
using 32 or 64 of these for a one-time password still leaves a tremendous number of available
identifiers. No modifications to the spec are required, save perhaps a general agreement on the
placement of the one-time password RT within a transmitted EPC field. In this way, the tag
provides additional evidence of its identity which the reader may check or not. For high throughput
applications, the reader can simply ignore the one-time password value, only checking the password
when it wants to gain assurance that the tag has not been cloned.

If our application requires more robust reader authentication, we could additionally require the
reader to respond to a challenge. The Class-1 Gen-2 standard already provides data fields for the
reader to transmit 16-bit passwords. Nothing prevents us from using a one-time password instead,
verifying the provided value on the tag. In practice, the tag needs either a real-time clock or a
way to deliver a challenge to the reader. In addition, given the fact that different applications need
different security services and/or algorithms, we need a way for the tag and reader to negotiate a
common set of features as in an SSL cipher suite [5]. Fixing a single algorithm for all applications
for all time seems short-sighted since we know algorithms - even those trusted by governments and
large financial institutions - get broken from time to time. We can of course define frame formats
for all these things, but we quickly find that we are creating a complete customized security layer,
when there are robust tools already in existence that can help.

4.2 Protocol Convergence

In contrast to typical communication protocols, Class-1 Gen-2 lacks a command to simply send
bulk data over the air. In fact, most data payload fields in the protocol are limited to sixteen bits
in length. This design choice is guided by the challenging environment faced by tags applied to
fast-moving consumer goods. Many use cases involve hundreds or thousands of tags arranged on
pallets and speeding toward a dock door. The uncertainties of antenna orientation together with
the sheer number of tags make the short data frames a wise choice for this application. But in other
settings, such as checking the authenticity of high-value goods like pharmaceuticals, we can have
the luxury of communicating with fewer tags at a time, for longer durations. This fact means we
can appeal to the commands in Class-1 Gen-2 with variable-length data payload. To implement a
security protocol, we will have to reuse commands designed for another purpose, or define custom
or new commands.

This task of defining the use of one protocol to carry the protocol data units of another is often
called protocol convergence. To refer to data units consumed by a protocol entity not contained in
the Class-1 Gen-2 spec, we will use the phrase application protocol data units, or APDUs.



Section 6.3.2.1 of the standard specifies four banks of memory which may be read or written by
a reader: reserved, EPC, TID, and User. The User bank offers the most flexibility, allowing user-
defined organization of arbitrary amounts of memory arranged in 16-bit words. Subject to some
conditions possibly involving the presentation of a fixed password, the tag is obliged to obey Read
or BlockWrite commands. But the contents of memory need not be fixed: neither the standard nor
the conformance document [13] prohibit the manipulation of memory by logic in the tag. In fact,
we could view the situation as interprocess communication implemented by shared memory. The
reader writes data to a particular memory location in the tag. Logic in the tag reads from this
location, processes the data frame, and writes its response to that (or a different but commonly
agreed-upon) memory location. The reader obtains its result by reading from this memory location.

As a concrete example, consider a tag that has been singulated by a reader by successfully
responding to a sequence of Query, ACK, and Req RN commands to arrive in the Access state [12].
Now the reader and tag can participate in a security protocol. We use a special block of shared
memory in the User memory bank, starting with word zero to transfer the security protocol’s
APDUs between the reader and logic in the tag. Since the Class-1 Gen-2 protocol follows a reader-
talks-first paradigm, the exchange begins with a BlockWrite command which writes the contents of
the APDU to the shared memory, as shown in Table 9, found in the appendix along with all other
frame formats referenced in this paper.

The tag’s Class-1 Gen-2 interface writes the data to the appropriate location, and then trans-
mits its normal reply to indicate success. We observe at this point that because protocol APDUs
are meant for immediate consumption, rather than long-term storage, the contents of the shared
memory can be stored in RAM instead of EEPROM. This allows the tag to use the time and power
ordinarily used for writing nonvolatile storage for interpretation of, and response to, the APDU. As
usual following command transmission, the reader broadcasts a continuous wave (CW) for up to 20
msec to power the tag and allow it to complete its operation. Additional logic in the tag uses this
power and time to interpret the APDU, compute a response if necessary, and write its response to
the same - or another previously agreed-upon - memory location. Once this is done, the tag sends
its usual reply frame, which in this case indicates the tag has interpreted the APDU and a response
is available. If processing a command takes longer than 20 msec, the response APDU prepared by
the tag can indicate that processing has not yet completed.

The reader can now obtain its response by issuing a Read command. As before, we will assume
that the special block of shared memory is located in the User memory bank and starts at word
zero. This command frame is illustrated in Table 10.

Using this message sequence in principle allows us to implement virtually any protocol. Rather
than overloading the Read and BlockWrite commands, we could define new commands with the
same intent: a WriteGenericAPDU and ReadGenericAPDU could be assigned their own command
identifiers without changing the basic approach. Of course, since the underlying logical layer follows
a reader-talks-first paradigm, some protocols will work better than others. In order to handle
APDUs originated by the tag, one could have the reader periodically use a read command to check
if the contents of shared memory have changed. But this polling-based approach is unwieldy, so we
instead look for existing protocols that fit nicely with the tools at hand.

5 A Natural Command Set: ISO 7816-4

This problem of authenticating a severely constrained device is not unique to supply chain ap-
plications: smart cards have long been used for authentication. Given the protocol convergence



ideas articulated above, our enhanced tag looks more like a contactless smartcard and less like a
traditional “license plate” RFID tag. So we aim to draw on the collective design and widespread
implementation experience available in the smartcard arena to address our need for authentica-
tion and security feature negotiation. An ideal protocol would allow for extreme optimization of
the most commonly used security features while also allowing other security operations possibly
involving long APDUs fragmented into several data frames, and feature negotiation among cards
and readers from different vendors.

We find such a protocol in part of ISO 7816 [16], a series of international standards that forms
the basis for millions of smart cards worldwide including pay-TV and GSM SIM cards. As with
many standards for communicating systems, the several documents in the ISO 7816 series are
each devoted to a particular layer in a stack of protocols. This layered approach allows particular
standards in the series to be applied to different environments. For instance, the ISO 14443 [15]
series of standards for contactless proximity cards explicitly allows for the use of ISO 7816-4 APDUs
to be carried over its logical and physical layers. From the perspective of a lower layer protocol, an
ISO 7816-4 APDU would simply be seen as a data payload.

ISO 7816-4 offers a set of APDUs arranged in command-response pairs to authenticate and
securely access data stored on a card. The specification declines to specify algorithms, physical
interface technology, or the internal implementation within the card. Fortunately, most of its fea-
tures are designed for systems where the reader talks first, nicely complementing the logical layer
features in Class-1 Gen-2.

ISO 7816-4 defines general command and response frames, depicted in Table 1 and Table 2,
respectively. It further specifies instantiations of these to perform tasks like entity authentication
of tag, reader, or both as well as transfer of encrypted or integrity-protected data. To make things
concrete, we’ll focus on one command called Internal Authenticate, while our techniques extend to
other commands as well.

Field Description Number of bytes

Command header Class byte denoted CLA 1

Command header Instruction byte denoted INS 1

Command header Parameter bytes denoted P1-P2 2

Command data-length Lc Absent if Nc = 0, otherwise equal to Nc 0, 1, or 3

Command data Absent if Nc = 0, otherwise a string of Nc bytes Nc

Maximum response length Absent if Ne = 0, otherwise equal to Ne 0, 1, or 3

Table 1. ISO 7816-4 Command

Field Description Number of bytes

Response data Absent if Nr = 0, otherwise a string of Nr bytes Nr

Response trailer Status bytes SW1 and SW2 2

Table 2. ISO 7816-4 Response



With this set of headers, data lengths, and trailers, the reader can unambiguously specify
precisely which command is desired along with details on algorithms, protocols, parameters, key
identifiers, and of course, command data. The tag can reply with status bytes indicating success,
reasons for failure, or the fact that processing has not yet completed.

5.1 Features of ISO 7816-4

As noted above, we envision the Class-1 Gen-2 standard coming to serve as a radio interface for
many applications beyond simple tagging. Fortunately, the ISO 7816-4 standard is highly developed
with regard to interfacing with almost any security-capable device. But this capability goes beyond
simple authentication to include important topics like supporting multiple algorithms, multiple
keys, and multiple file structures. Of course, we cannot exhaustively describe all of these features in
a paper such as this. Instead, in the appendix we enumerate some of the most important capabilities.

Given this rich feature set, one can address a great number of applications. But we observe that
in this environment, tags may specialize on one or two security services such as authentication of a
tag to a reader to prevent counterfeiting. In the rest of this paper, we focus on heavily optimizing
a tag’s most-used feature while still allowing the richness of the 7816-4 command set.

From the tables one can see there is some overhead associated with this command set: a typical
command would see six bytes overhead, while a response would see two. Since communication
bandwidth is precious in this environment, we must explore some examples to determine if the cost
is acceptable and consider ways to reduce this cost.

5.2 Tag Authentication

In Section 4.1, we outlined a simple tag authentication protocol using challenge-response and one-
time passwords. Using the techniques outlined in Section 4.2, we can go beyond this approach to
support virtually any entity authentication protocol from simple passwords to robust cryptography.
Let us consider the use of the ISO 7816 command set to achieve entity authentication of the tag.

Of course, we must choose some algorithm to achieve this goal. When it comes to cryptographic
functions, we face an embarrassment of riches. Such a broad set of protocols, algorithms, and
associated modes of operation has been devised that it seems shortsighted to attempt to fix one
choice for all secure applications. Like the various options offered in the Class-1 Gen-2 physical layer,
each of these cryptographic primitives conducts a careful trade off among attributes. In this case,
the attributes are computational complexity, communication complexity, security services offered,
and resistance to various types of attackers. We are forced then to choose one algorithm or devise
some sort of negotiation scheme for a tag and reader to agree on a protocol, algorithms, and modes.

This service is precisely what ISO 7816 provides: security protocol messages tagged to reference
an algorithm and any associated reference data such as a key identifier. By way of example, in
Table 3, let us consider the Internal Authenticate command to implement our protocol. The value
CR will be provided by the reader in the protocol. Values in the table postfixed by ”h” indicate
hexadecimal notation.

Table 3 shows the reader providing an eight-byte challenge value to the tag. Note that the class
and command parameter bytes are set to zero. Tables 2 and 3 in [16] define the semantics of the
class byte. A reader can indicate if this command frame is a fragment of a longer command and
if any encryption or integrity protection has been applied. In our case, neither of these conditions
is true and therefore these bytes are set to zero. The command parameter identifies the algorithm,



Field Description Number of bytes

Command Class Byte 0h 1

Command Instruction Byte 88h 1

Command Parameters 0h 2

Command data-length 8h 1

Command data CR 8

Maximum response length 8h 1

Table 3. Internal Authenticate Command from Reader

Field Description Number of bytes

Response data RT 8

Status bytes 6100h 2

Table 4. ISO 7816-4 Response

protocol, and modes, but ISO 7816 allows these bytes to be set to zero if their values are implicitly
known. For reasons of cost and efficiency, many tags may support only one set of these values.

When these APDUs are carried by Read or BlockWrite commands, we can calculate the total
number of bytes sent over the air before our compression techniques in Section 5.3. By way of
comparison, we also consider the case when the challenge, CR, is implicitly known by the tag such
as in time-synchronous onetime passwords.

Frame Type Bytes Bits

BlockWrite Carrying Internal Authenticate with Challenge 22 169

BlockWrite Carrying Internal Authenticate with Implicit Challenge 13 97

Read Carrying Response 18 137

Table 5. Frame sizes for shoehorned Internal Authenticate

5.3 Compressing ISO 7816-4

Clearly, these commands are larger than we would like. Our goal is to optimize the most common
usage while allowing flexibility. Our working assumption is that most tags will support a small
number of security methods and generally their usage will be implicit. This means in general that
the class and parameter bytes - and sometimes the instruction byte - will be redundant. So we can
eliminate these, but we need some way to signal to the tag which fields are present in a received
data frame.

As above, we have two options: we can carry on using the Read and BlockWrite commands and
specify a wrapper with a bit field to indicate which ISO 7816 fields are present. In essence, this
wrapper becomes our security sublayer and allows the tag unambiguously reconstruct the original
ISO 7816 APDU, if desired. As an alternative to Read and BlockWrite,we can define custom
commands for this purpose. Both new and custom commands are considered below.



Security Sublayer Continuing our use of the Read and BlockWrite commands, we can prepend
all ISO 7816-4 APDUs with a header to indicate which fields are present as shown in Table 6.

Command Class Byte Command Instruction Byte Command Parameters

Number of bits 1 1 1

Table 6. Security Sublayer Header

Then a complete BlockWrite data frame to send an ISO 7816-4 APDU for an entity authen-
tication protocol as above to compute the 64-bit value RT given the 64-bit value CR provided by
the reader appears in Table 11, showing a savings of 29 bits compared with Table 5. As noted
above, these parameters are provided as an example and many other combinations are possible,
including an implied CR value and a 32-bit password returned as in Table 12. Observe that ISO
7816-4 already allows the DataLen and Data fields to be omitted entirely if their values are implied,
relieving us of the need to explicitly signal their presence. This result leaves us with a data frame
of only 68 bits, 32 of which are the handle and CRC. Response frames are unchanged and remain
as above. A summary of over-the-air complexity is in Table 7. But further reductions are possible
if we turn to specialized commands.

Frame Type Bytes Bits

Compressed BlockWrite Carrying Internal Authenticate with Challenge 18 140

Compressed BlockWrite Carrying Internal Authenticate with Implicit Challenge 9 68

Read Carrying Response 18 137

Table 7. Frame sizes for Compressed Internal Authenticate using BlockWrite

New Commands To save even more bits over the air, we can turn to new commands. The
standard defines command identifiers using up to 8 bits each for base commands, and 16 bits each
for custom or proprietary commands. We observe that in our use of the Read and BlockWrite
commands, quite a few bits are devoted to specifying a memory location and data length. A new
or custom command’s identifier would directly imply the memory location, saving some bits. In
addition, the ISO 7816 APDU either specifies its own length explicitly in the DataLen field, or –
like other parameters – it is previously known by both parties, allowing us to optionally dispense
with the WordCount field. By defining a new command we can save a total of 17 bits by using an
unreserved 8-bit identifier, of which there are 22 currently available. Of course, we could define a
custom command instead, but then we would only save 9 bits since an additional 8 bits are required
to specify a custom command. The command and response versions are illustrated in Tables 13-16.

Using this approach, we can compare the size of the data frames in each of these scenarios when
used with our example cryptographic protocol in Table 8.

Authentication of a Group of Tags So far, we have focused on commands that require a tag to
be fully singulated before a cryptographic protocol can take place. Recalling our example security



Frame Type Bytes Bits

New EPC-layer Command for ISO 7816 APDU Command with Challenge 15 123

New EPC-layer Command for ISO 7816 APDU Command with Implicit Challenge 6 51

Custom EPC-layer Command for ISO 7816 APDU Command with Challenge 16 131

Custom EPC-layer Command for ISO 7816 APDU Command with Implicit Challenge 8 59

EPC-layer Tag Reply to Response APDU 15 113

Table 8. Sizes of New or Custom Commands

function RT = H(KTS, CR), we observe that if each tag has a unique key KTS, then the value
CR need not be unique to each tag. In fact, this is common practice in the application of one-
time passwords for user login as CR will often be either the time of day or a counter. Performing
entity authentication of a group of tags can be greatly optimized by delivering CR to all tags and
allowing them to respond individually. Toward this end, we propose QuerySecure and ACKSecure
commands which perform these functions using the protocol convergence ideas outlined above.
Essentially, QuerySecure extends Query by appending the Header, DataLen, Data, RespLen, and
7816 APDU fields and replacing the CRC-5 with a CRC-16. The resulting data frame weighs in at
101 bits, but in contrast to the commands listed above, it only needs to be sent once to a population
of tags. The ACKSecure command likewise simply appends the Response Data and Status Bytes
fields to the existing ACK command which then scrolls back its EPC followed by the RT value it
computed.

6 Conclusion

The optimizations we have presented here are driven by the desire to optimize one commonly used
cryptographic operation for each tag, while allowing the flexibility of a fully extensible, broadly
supported, and internationally recognized protocol to handle issues of feature negotiation.

This is the motivation behind our fusing the EPC standard with ISO 7816-4. In the case of
tag authentication using a block cipher, the resulting optimized data frames are shorter than many
Electronic Product Codes. An implementor is not restricted to our example cryptographic protocol,
or even to the ISO 7816-4 Internal Authenticate command. By either inspecting or knowing the
tag’s TID, the reader can use whichever 7816-4 command and associated parameters for which
the tag is optimized. To access other commands, the reader can explicitly specify the desired
command and parameters. We have shown three different ways to add this functionality to the
Class-1 Gen-2 standard while maintaining backward compatibility: by using the BlockWrite and
Read commands, by defining custom commands, and by defining new commands. An implementor
could choose whichever of these methods is most suited to a particular deployment.

In summary, our proposed techniques permit the creation of RFID tags that are compliant
with the Class-1 Gen-2 EPC standard, but offer the broad and widely supported cryptographic
functionality of standards like ISO 7816-4. We hope that the simplicity and ready extensibility
of our techniques will pave the way for the penetration of EPC into a broader array of security
applications. EPCglobal has expressed the intention to create a Class-2 standard that specifies
higher-functionality, higher-security, next generation EPC tags. Our approach could make this a
much easier job, and allow also a broad spectrum of new devices to benefit from the infrastructure
of today’s EPC standard.
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A Security Services

A.1 Device authentication

EPC tags and other low-cost RFID devices are often referred to as “license plates:” They carry
and broadcast fixed identifiers. In consequence, such devices are easy to clone. An attacker can
read an identifier and write it to a new, programmable RFID tag or simulate it in a different type
of RF device. Mitigating the risk of tag cloning is an essential security goal in an RFID system.
Cryptographic authentication can help achieve this goal. Tags that possess secret keys and execute
well-designed cryptographic protocols to authenticate themselves to readers can resist cloning in
the face of over-the-air attack.

Conversely, it may also be desirable for tags to be able to authenticate readers. Such authenti-
cation can help restrict the availability of sensitive tag data to unauthorized readers.

Of course, cryptographic protocols are effective only in logical-layer defense. Keys are also
subject to physical compromise. An attacker that physically probes an RFID tag and extracts its
secret keys can readily clone it. While the cryptographic services that we propose here cannot
directly forestall such attacks, they can support tamper-resistance mechanisms, like PUFs and
POWFs [32, 29], that rely on a blend of logical and physical countermeasures.



A.2 Device-binding authentication

RFID tags serve to identify the objects or people that bear them. Thus, even if a tag is valid,
i.e., has not been cloned, it may still furnish erroneous information if inappropriately placed. It is
important, therefore, to establish the correctness of the physical context for an RFID tag. Toward
this end, a range of physical mechanisms has been proposed. For example, shipping containers have
been designed that contain internal RFID devices whose state changes in response to the opening
of the container [4]. PUFs [32] and POWFs [29] are physical objects – silicon and glass-and-plastic
respectively – whose state changes in response to physical stresses, and can help in the detection of
RFID-tag removal. (Of course, good adhesives can also help.) Various chemical fingerprinting and
watermarking techniques already help combat counterfeiting, and can work in harmony with RFID
devices.

A.3 Data-origin authentication

An RFID tag can, of course, serve not just as an identifier, but also as a carrier of ancillary
data, e.g., information about goods in a pallet to which it is attached. For this reason, data-origin
authentication also plays a role in RFID security. Indeed, data-origin authentication can support
the physical integrity of the tag itself, as when an RFID tag stores information about the state of
physical tamper-detection objects like PUFs or POWFs or chemical markers.

As a cryptographic service, data-origin authentication binds the production of a block of data
to a particular entity by means a digital signature (or message-authentication code (MAC)). In
addition, this service attests that the data have not been modified since their original encoding. An
RFID tag can carry data digitally signed by an external entity. In this case, the tag serves merely as
a data carrier, and need not itself perform the cryptographic operation of signing. A high-powered
RFID tag can alternatively compute a digital signature on data it produces dynamically.

A.4 Example: Pharmaceutical tagging

To illustrate the roles that various types of authentication play in RFID security, let us consider the
use of RFID in the pharmaceutical supply chain. The United States Food and Drug Administration
has advocated such use of RFID as an anti-counterfeiting tool [9]. Its deployment over the next
couple of years seems all but certain, and EPC tags, given their cheapness and ubiquity, are likely
to be the RFID device of choice.

Texas Instruments (TI) and VeriSign [14] have proposed an architecture for pharmaceutical
applications in which tags serve as carriers of digitally signed “event” data, timestamped records
whose contents are unspecified (but “do not contain any product or location information”). In other
words, the system provides data-origin authentication. In principle, the system provides assurance
that the information a reader obtains from a tag has been created by authorized readers within the
system and not fabricated by an attacker.

The system (as specified in [14]) does not provide full device authentication. In particular, it
offers only weak assurance against the cloning of a tag. (Tags contain “locked” but static identifiers.)
Consider, for example, a system in which pallets of medications of type A or type B are shipped
from either site X or site Y to site Z. A pallet might bear a tag containing a statement S digitally
signed by site Y that, “This is pallet #12345, carrying a medication of type A shipped from site Y
to site Z.” If the tag has been displaced or cloned, however, a reader cannot be assured that the tag



in question is attached to the correct pallet. The pallet might in fact contain medication of type B
shipped from site X, and the tag might have been cloned from a different pallet!

Device authentication, and authentication of RFID tags, can help mitigate this problem. If tags
in the system do not merely bear digitally signed data, but perform cryptographic authentication,
then a reader can achieve assurance that the tag with which it is communicating not been cloned.
For example, the RFID tag on pallet #12345 might use a challenge-response protocol to prove the
correctness of its digital identifier, say, “ID67890123”.

Such authentication is still not sufficient, however, to ensure the correctness of data received by
the reader. How, for instance, does the reader know that the statement S carried by tag ID67890123
was written to the tag by an authorized reader, and not simply copied from some other tag? (The
TI/VeriSign architecture specifies that S carry the tag ID, in order to establish such a binding.) A
problem still remains, however. How can a reader achieve assurance that a tag has not simply been
peeled off one pallet and attached to another one?

To address this problem, device-binding authentication is required. Suppose that pallet #12345
bears the number “12345” in a form that is difficult to duplicate or alter, such as a hologram.
Then the digital signature S, which contains both the pallet number and transaction data, helps
ensure a correct association between the transaction data and the pallet with which the data are
associated. (The TI/Verisign paper refers to a forthcoming paper that will describe device-binding
authentication.)

At first glance, device-binding authentication and data-origin authentication alone might seem
to obviate the need for device authentication. This is not necessarily the case. For example, device-
binding authentication as we have described it might require optical scanning of a pallet. If a
pallet must be optically scanned, then the benefits of RFID, namely readability without line-
of-sight contact, are eliminated. An RFID tag that performs cryptographic authentication offers
a heightened degree of system integrity – if not full integrity – without burdensome scanning
procedures. Similarly, it may be that the information contained in S is sensitive, and should only be
accessible to authorized readers. To achieve strong access control on S, a tag would need to perform
cryptographic authentication of interrogating readers. Finally, the problem of key management
must be taken into account. If tags do not authenticate themselves, then the system relies for data
integrity on reader keys alone. This situation necessitates the presence of multiple signing keys (with
the associated management and storage overhead), or a single, monolithic signing key representing
a single point of compromise.

The interplay among cryptographic (and other) authentication services is complex. We do not
purport to offer a comprehensive solution here to the problem of counterfeiting. Our example here
simply illustrates the need for a flexible range of cryptographic services for pharmaceutical supply
chains, as for the many other emerging applications of EPC tags.

B Features of ISO 7816-4

B.1 File-Oriented Commands

ISO 7816 offers a rich set of commands to handle various filesystems beyond the bitmapped flat-
file system offered in the Class-1 Gen-2 standard. In particular, a tag can support multiple files
arranged in linear or cyclic structure as a mechanism to support multiple applications in the supply
chain. For instance, the various entities handling an article in a supply chain could have their own
data file to use as they see fit. This approach can enable granular access control. In principle, each



file could be encrypted using a key known only to one or a small subset of supply chain participants.
Or an item’s entire pedigree could be stored on the tag in a series of files each digitally signed by
the supply chain participant responsible for that file.

B.2 Multiple Applications

This ability to support multiple applications extends not only to the filesystem but also to the
communicating entity. Imagine a tag affixed to military materiel offering multilevel security. In this
scenario, one may want a restricted tag application which makes some logistics information and
authentication capability available while a tag is in transit. By necessity, this feature may have
to use unclassified algorithms and symmetric keys which are widely shared among supply chain
participants. The tag’s full functionality including its pedigree could be available to a full-featured
tag application only available to authenticated readers using classified algorithms and keys closely
held in hardware security modules.

B.3 Multiple Keys and Ciphersuites

Should a reader authenticate a tag? Should a tag authenticate a reader? Should they both au-
thenticate each other? Which algorithm(s) should they use? It all depends on the application with
some uses more concerned about anti-counterfeiting and others confidentiality. In ISO 7816, each
application includes “one or more cryptographic mechanism identifier templates” to unambiguously
specify the algorithm a reader should use for that application. This level of algorithm agility allows
different entities to choose their own keys and security methods as suggested above in the multilevel
security tag.

B.4 Authenticated Access Control

Beyond authentication, ISO 7816 includes features to restrict access to particular commands such
as “Read Binary,” “Delete File,” and “Create File” For instance, reader authentication can be
required before a command. In addition, an access control rule can specify that these commands
and their responses must be encrypted and/or authenticated.

B.5 Security-Descriptive Data Exchange

How does a reader know it is receiving encrypted information? How does the reader know which
algorithm, mode, and key were used? ISO 7816 includes tags to describe cryptograms.

B.6 Command Fragmentation

If the length of an ISO 7816-4 APDU stretches beyond the limits of the underlying data transport,
it includes a facility to allow the APDU to be sent in pieces and reconstructed unambiguously.

B.7 Broad Existing Infrastructure

Perhaps most important, ISO 7816 is already implemented in millions of smart cards and readers
including GSM phones. This wide availability of devices implies existing software tools which can
be applied to this area.

C Frame Formats



Command MemBank WordPtr WordCount Data Handle CRC-16

Number of bits 8 2 EBV 8 Variable 16 16

Description 11000111 11 0000000 Number of APDU handle
words to write

Table 9. Using BlockWrite command to carry an APDU

Command MemBank WordPtr WordCount Handle CRC-16

Number of bits 8 2 EBV 8 16 16

Description 11000010 11 0000000 Number of handle
words to read

Table 10. Using Read command to carry an APDU

EPC Layer Cmd Bank Ptr Count Data Handle CRC

Security Layer Header DataLen Data RespLen

Number of bits 8 2 EBV 8 3 8 64 8 16 16

Description 11000111 11 0000000 00000110 000 00001000 CR 00001000 handle
Table 11. Using BlockWrite command with explicit challenge value

EPC Layer Cmd Bank Ptr Count Data Handle CRC

Security Layer Header DataLen Data RespLen

Number of bits 8 2 EBV 8 3 0 0 8 16 16

Description 11000111 11 0000000 00000110 000 00000100 handle
Table 12. Using BlockWrite command with implicit challenge value

Command Header Compressed 7816 APDU Handle CRC-16

Number of bits 8 3 Variable 16 16

Description 11001001 CR handle

Table 13. New EPC-layer Command for ISO 7816 Command APDU

Header Handle CRC-16

Number of bits 1 16 16

Description 0 handle

Table 14. EPC-layer Tag Reply to ISO 7816 Command APDU

Command Handle CRC-16

Number of bits 8 16 16

Description 11001010 handle

Table 15. New EPC-layer Command for ISO 7816 Response APDU



Header Response Data Status Bytes Handle CRC-16

Number of bits 1 Variable 16 16 16

Description 0 RT

Table 16. EPC-layer Tag Reply for ISO 7816 Response APDU


