
Error-Tolerant Password Recovery

Niklas Frykholm
RSA Laboratories
P.O. Box 10704

Stockholm, SE-121 29 Sweden

nfrykholm@rsasecurity.com

Ari Juels
RSA Laboratories
20 Crosby Drive

Bedford, MA 01730 USA

ajuels@rsasecurity.com

ABSTRACT
Many encryption systems require the user to memorize high
entropy passwords or passphrases and reproduce them ex-
actly. This is often a difficult task. We propose a more
fault-tolerant scheme, where a high entropy key (or pass-
word) is derived from a sequence of low entropy passwords.
The user is able to recover the correct key if she remembers
a certain percentage of the passwords correctly. In contrast
to other systems that have been proposed for fault-tolerant
passwords, our basic design is provably secure against a com-
putationally unbounded attacker.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; E.4 [Data]: Coding and In-
formation Theory—Error control codes; H.1.2 [Models and
Principles]: User/Machine Systems—Human factors

General Terms
Human Factors, Security

Keywords
Error-correcting codes, fault-tolerance, fuzzy commitment,
Reed-Solomon codes, password ensembles, password recov-
ery

1. INTRODUCTION
Human memory is in a constant state of flux: Every day

we memorize new facts and forget old ones. This is normal
and unavoidable, but can sometimes have untoward con-
sequences. If we forget a password that has been used to
encrypt important data, the data may be lost. Forgotten
passwords are in fact one of the most common problems
confronting IT help-desks. This has prompted the creation
of a number of different systems for password recovery. The
aim of these systems is to provide reliable secondary means
for legitimate users to recover lost passwords, without sig-
nificantly increasing the vulnerability against attackers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CCS’01,November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

Traditional methods of password recovery rely on the use
of trusted third parties. Web sites typically let a site ad-
ministrator, a help-desk employee, or an automatic script
e-mail the forgotten password to the user upon request (of-
ten in the clear). Alternatively, a lost password might be
provided by telephone upon presentation of some identify-
ing information, such as the user’s Social Security Number.
A more sophisticated, but less common technique is to use
secret sharing [2, 11]. The password is divided into n shares
in such a way that for reconstruction of the password it is
necessary and sufficient to collect k of these shares. The n
shares are distributed among entities trusted by the user.

All of these methods carry the disadvantage of reliance
on third parties. In the case where passwords are furnished
on request, the password must be held in explicit form by
scripts or help-desk personnel. This heightens the potential
for abuse of the password by insiders, and also makes the
password vulnerable to outside attackers that can penetrate
the outer defenses of the server. Such attacks are not un-
common, as illustrated by recent reports of passwords and
credit card numbers being stolen from public Web sites [14].
Shamir’s secret sharing provides better security guarantees,
but has other shortcomings. The user must contact k trusted
parties to reconstruct her password. Collecting the neces-
sary shares thus requires getting in touch with a number of
people who may be out of town or for other reasons unavail-
able. Alternatively, the user may store the shares on online
servers, but this again heightens the potential for attack. All
of these caveats apply equally well to systems for recovering
strong cryptographic keys.

Ellison, Hall, Milbert, and Schneier [4] propose a recovery
system based on what they refer to as personal entropy. In
this system, the user is asked a number of questions about
her personal history. The sequence of answers, which we
denote by ~w, is used to encrypt a randomly generated cryp-
tographically strong key ~c. That is, the key ~c is encrypted

as a ciphertext ~δ = Enc~w[~c] under a collection ~w of what
may be thought of as ancillary passwords. If the user loses
the key ~c (or, say, an important password encrypted under
~c), she can recover it by furnishing the sequence ~w of ancil-
lary passwords and performing a decryption operation Dec

on ~δ. The critical property of the decryption scheme Dec
is that it has error-correcting capabilities. By use of secret
sharing techniques, the Ellison et al. system allows the user
to recover the password even if some questions are answered
incorrectly, i.e., even if ~w as furnished by the user is not
entirely correct. The main advantage of this system is that
it dispenses with the use of trusted third parties. The user

can in principle safely store ~δ on her laptop, or even in a
public directory. Of course, the key ~c can be used to en-
crypt important passwords for the user in case of loss, or to
encrypt other sensitive information or keys.

Since the questions in this system may be made to con-
cern personal facts that the user is not likely to forget —
e.g., the name of her first pet, her mother’s maiden name,
and so forth — the chance of a user recovering the password
~c is very good. Since no trusted third parties are involved,
management of the password is easier, and vulnerability of
the password to attack is diminished. If desired, traditional
Shamir’s secret sharing can be used in series with or parallel
to the encryption, either strengthening the protection fur-
ther or providing an alternative recovery mechanism of last
resort. Thus the Ellison et al. scheme strikes an attractive
balance between convenience and security.

A serious shortcoming of the Ellison et al. scheme, though,
is its lack of rigorous security analysis. Normally, a ques-
tion/answer system is as secure as the entropy of the an-
swers. Ellison et al., however, employ an ad hoc secret shar-
ing scheme in their system that undermines conventional
security guarantees. Bleichenbacher and Nyugen [3] demon-
strated a serious weakness in the Ellison et al. system: With
the parameters recommended for a security level of 2112, the
system is in fact vulnerable to an attack that requires only
264 operations.

In this paper, we present a system similar in flavor to the
one proposed by Ellison et al. The main difference is that
we base our system on the fuzzy commitment technique de-
veloped by Juels and Wattenberg [9] rather than on more
traditional secret sharing methods. This allows us to achieve
a high degree of fault tolerance, but at the same time com-
pute a rigorous upper bound on the attacker’s chance of re-
covering the password, even in the presence of non-uniform
password distributions. In fact, as we show, our system of-
fers provable information-theoretic security, that is, security
against a computationally unbounded attacker. Moreover,
our system offers a higher level of error-tolerance than the
original Ellison et al. system (if desired by the designer),
while simultaneously providing stronger security. Our pro-
posed techniques are fairly simple both from a conceptual
standpoint and in terms of implementation requirements.
We refer to our proposal as an error-tolerant password re-
covery scheme, denoted by ETPAR.

The scheme can be used by a site administrator who wants
to make it possible for users to recover lost passwords, but
avoid the dangers of storing them in the clear. It can also
be employed by an individual user to create a secure backup
of her personal passwords.

1.1 Organization
We present our basic goals and working notation in sec-

tion 2. Details of our ETPAR scheme are given in section 3,
followed by a detailed security analysis in section 4. In
section 5, we enumerate and discuss the practical consid-
erations faced by the system designer by discussing a basic
prototype design. We offer some preliminary experimental
results in section 6.

2. GOALS AND NOTATION
Our aim is to enable the user to recover a cryptographi-

cally strong secret key ~c. We are most interested in scenarios
in which this key ~c is used to encrypt an important password

Π for recovery, but other uses are of course possible. In an
initialization phase, that is, to prepare her password for re-
covery, the user chooses a collection of ancillary passwords,
e.g., answers to personal questions. A secret which we de-
note by ~w is constructed from these ancillary passwords.

The user then constructs a ciphertext ~δ = Enc~w[~c], using
an appropriate cipher Enc to encrypt ~c under ~w. The user

may store the ciphertext ~δ in some easily accessible place or
places, e.g., on a laptop, on a PDA, or in a public directory.
To enable recovery of the password Π, the user also stores
an encryption of Π under ~c, i.e., E~c[Π] for some suitable
symmetric cipher E.

Error-tolerant recovery of ~c (and thus the password Π)

requires the user to decrypt ~δ. In particular, the user should

be able to extract ~c from ~δ given a collection of ancillary
passwords yielding ~w′ that is “close” to the secret ~w. Thus

we want a decryption scheme Dec such that Dec ~w′ [~δ] = ~c iff
~w′ is close to ~w in some appropriate metric. Another way
of viewing this is that the user should be able to recover the
key ~c if she can come up with enough of her original ancillary
passwords. At the same time, we do not want an attacker

with access to ~δ to be able to recover ~c. (In our system, the
encryption function Enc will be simple addition over a field,
i.e., we shall use ~w essentially like a random pad, while Dec
will involve subtraction and Reed-Solomon decoding. Other
cipher choices are possible, though.)

We consider scenarios in which the secret ~w is derived
from a sequence of N passwords [pi]

N
i=1 selected by the user.

The passwords may be answers to personal questions, as
explained above, or they may be obtained in some other
way, e.g., as graphical passwords [8] or biometric informa-
tion (see, e.g., [1]). We assume here that each password pi

is selected from a fixed distribution Pi over all bit strings,
and that the password distributions [Pi]

N
i=1 are independent.

We adopt this independence assumption for three reasons:
First, because it is very difficult to estimate correlations
among passwords in the real world; second, because we be-
lieve that passwords can and should be chosen so as to min-
imize such correlations; and third, because this assumption
considerably simplifies our security analysis.

To minimize the non-uniformity in the distribution of ~w,
we fix a different mapping fi for every password distribu-
tion Pi. This mapping fi : {0, 1}∗ → {0, . . . , q − 1}li takes
a password pi and converts it into a string wi with li sym-
bols from the alphabet F := {0, . . . , q − 1}. Tailoring fi

and li carefully to compensate for non-uniformities in Pi is
important to the security of our system, as we discuss in de-
tail later in the paper. In the meantime, it is convenient to
think of [wi] as a sequence of small, password-derived keys
w1, w2, . . . , wN . We refer to these keys wi as passkeys and
to the sequence [wi] as a passkey ensemble.

Let ~w := w1 ‖ w2 ‖ . . . ‖ wN denote the passkey ensemble

written as a symbol string. Let n :=
∑N

i=1 li be the length
of this symbol string. We write Wi to denote the (fixed) dis-
tribution induced over the passkey wi by the distribution Pi

and the mapping fi. Observe then that the probability dis-
tribution over ~w, denoted by W , is fixed. This distribution
W is equal to a joint distribution induced by independent
distributions [Wi]. We let pri(wi) denote the probability of
wi in the distribution Wi, i.e., the probability that the user
selects wi for the i’th part of her password ensemble. We
denote by pr(~w) the probability of a specific ensemble ~w in

W , i.e., the probability, over all possible ensembles, that a
user selects ~w as her own. Since we assume passwords in an
ensemble ~w are independent, pr(~w) =

∏N
i=1 pri(wi).

Our scheme requires the use of a (linear) q-ary error-
correcting code over n-symbol strings. We let C denote our
choice of such a code. The user’s secret data will in our
scheme be a codeword ~c drawn uniformly at random from
C. (Of course, in practice, ~c can be used to encrypt a weaker
password, data, or anything else desired by the user.)

The task of the attacker is to determine the secret value
~c. In our security analysis, we consider the strongest pos-
sible adversary, namely an attacker that is computationally
unbounded, i.e., has infinite computational resources at her
disposal. This adversary is further assumed to have com-
plete knowledge of the password distributions [Pi] and the
mappings [fi], and thus the distributions [Wi] and W . Addi-
tionally, we assume that the attacker has access to all public
data in the protocol, most notably the encryption and de-

cryption functions Enc and Dec and the ciphertext ~δ. We
aim to compute rigorous bounds on the probability of such
an attacker determining ~c.

3. OUR ETPAR SCHEME
We specify our ETPAR scheme in terms of two paired algo-

rithms, Enc and Dec. Additionally, the scheme includes a se-
quence of mappings [fi : {0, 1}∗ → {0, . . . , q−1}li]Ni=1, and a
(n, k)-error-correcting code over the field F := {0, . . . , q−1}.
We denote the set of codewords in this code by C ⊂ Fn, and
let decode : Fn → C denote a (polynomial-time) decoding
algorithm.

The algorithm Enc takes as input a sequence of ancillary
passwords [pi] selected by the user, generally in response to
a fixed series of questions; it also takes as input a secret key
(codeword) ~c ∈ C, selected uniformly at random. Using the
mapping sequence [fi], the algorithm Enc computes a string
~w representing the passkeys generated by the password se-
quence [pi]. Finally, Enc combines this with ~c to yield a

ciphertext ~δ.

To decrypt the ciphertext ~δ, the user furnishes her an-
cillary passwords again, possibly introducing some errors.
The algorithm Dec takes the passkey sequence ~w′ generated
by this newly furnished password sequence and combines it

with the ciphertext ~δ to compute what may be thought of as
a “perturbed” or corrupted codeword. The “perturbation”
in this codeword corresponds to errors in the sequence of
newly furnished passwords. In the final stage, the algorithm
Dec uses a decoding procedure for the underlying error cor-
recting code to remove these errors, yielding a codeword
(secret key) ~c′. The decryption succeeds, i.e., ~c′ = ~c, if the
number of errors is below the error correcting capability of
the code.

More precisely described, our algorithms Enc and Dec are
as follows:

Algorithm 1. Enc ([p1, p2, . . . , pN], ~c) → ~δ

1. Each password pi is mapped to a li-symbol representa-
tion wi = fi(pi).

2. The password ensemble is represented as

~w = w1|| . . . ||wN .

3. The ciphertext ~δ = ~w − ~c is computed.

4. The ciphertext ~δ is output.

Algorithm 2. Dec ([p′
1, p

′
2, . . . , p

′
N], ~δ) → ~c′

1. Each password p′
i is mapped to a li-symbol representa-

tion w′
i = fi(p

′
i).

2. The password ensemble is represented as

~w′ = w′
1|| . . . ||w′

N .

3. A perturbed codeword ~γ is computed as ~γ = ~w′ − ~δ.

4. A key ~c′ = decode(~γ) is computed.

5. The key ~c′ is output.

3.1 Example Deployment
Let us consider a simple example of how an ETPAR scheme

might be deployed. Alice wishes to encrypt her password
Π to allow for recovery in case of loss. She buys a piece
of password-recovery software for her laptop that includes
an ETPAR scheme. This software prompts Alice for her
password Π, and then asks a series of N questions, such as
“What was the name of your first pet?” or “What did you
give your mother for her 50th birthday?”. Alice replies with
answers p1, p2, . . . pN .

Given Alice’s answers, the password-recovery software se-
lects a secret key ~c ∈ C uniformly at random (|C| should be
large enough to prevent brute force attacks). The software
computes ciphertext

~δ ← Enc([p1, p2, . . . , pN],~c)

and a second ciphertext e = EK(~c)[Π], where E is some
suitable symmetric cipher, such as AES and K is a key gen-

eration function seeded with ~c. The pair of ciphertexts (~δ, e)
are placed in a file on Alice’s laptop.

Suppose now that Alice loses her password Π. She invokes
the password-recovery software on the file containing the

pair (~δ, e). The software now poses the original set of ques-
tions, to which Alice responds with answers p′

1, p
′
2, . . . , p

′
N .

The software computes

~c′ ← Dec([p′
1, p

′
2, . . . , p

′
N], ~δ)

and then Π′ = D ~K(c′)[e], where D is the decryption algo-

rithm corresponding to E. Provided that the answers Alice
provides for the decryption are similar to the answers she
provided for encryption, she will obtain her original pass-
word Π′ = Π. Otherwise, the recovery will fail, i.e., we will
(with overwhelming probability) have Π′ 6= Π.

4. SECURITY ANALYSIS
We wish to prove that a computationally unbounded at-

tacker with access to the encrypted value ~δ and knowledge of
the password distribution has only a small chance of guessing
the secret ~c. Note that guessing ~c is equivalent to guessing

~w, since ~c = ~w − ~δ.

We let pA(~δ) denote the probability that the best possible

attacker is able to guess ~w when the encrypted value is ~δ.

Two measures of interest are then pavg
A , the average of pA(~δ)

over all values of ~δ and pworst
A , the maximum value for a

particular ~δ.

The quantity pavg
A is the attacker’s chance of breaking into

a particular account where the user has picked ~w according
to the distribution W . The quantity pworst

A is the attacker’s
chance of breaking into an account when she gets to pick the

value of ~δ. In practice, this can happen if a large number of

users have their ~δ stored in public directories. The attacker
can then target the user with the most vulnerable value

of ~δ. If the attacker only knows ~δ for a small number of
accounts, her probability of success will be closer to pavg

A

than to pworst
A .

A system is secure against both these attacks if we can
prove that both pavg

A and pworst
A are small (of course pworst

A ≥
pavg

A).

4.1 Boundingpavg
A

Since C is a linear code and ~c is picked uniformly at ran-

dom, ~δ = ~c − ~w will be a random vector from the coset of

C that contains ~w.1 The only information that ~δ gives the
attacker is thus which coset ~w belongs to.

Let S∗ denote the cosets of C and Sx ∈ S∗ the coset that
x belongs to. Given a particular value of ~δ, the best possible
attacker guesses the password ~w which is most probable in
the coset S~δ. This attacker’s probability of success is

pA(~δ) = max
~w∈S~δ

pr(~w)

prS∗(S~δ)
. (1)

Here, prS∗(S~δ) denotes the total weight on the coset S~δ.
That is, prS∗(S~δ) may be viewed as the probability that a
passkey ensemble drawn from the distribution W belongs to
the coset S~δ, i.e., prS∗(S~δ) :=

∑
~w∈S~δ

pr(~w).

We write pA(S~δ) := pA(~δ), since the probability is the
same for all elements of the coset.

Averaging (1) over S∗ we get:

pavg
A =

∑
S∈S∗

prS∗(S)pA(S) =
∑

S∈S∗
max
~w∈S

pr(~w). (2)

So pavg
A is the sum of the probabilities of the most probable

item in each coset of C.
A linear (n, k)-code has qn−k cosets. This means we can

bound (2) as

pavg
A ≤ qn−k max

~w∈Fn
pr(~w).

It is more convenient to work with logarithmic expressions,
so we define Φavg := − log pavg

A . The quantity Φavg is a loga-
rithmic measure of the attacker’s average chance of guessing
a password. It thus corresponds to the entropy of a conven-
tional password system. An ETPAR system with Φavg = 60
will be as secure as an ordinary password system with 60
bits of entropy. We get:

Φavg ≥ (k − n) log q + Hmin(~w), (3)

where Hmin(~w) is the minimum entropy or minentropy of
~w, defined in the standard way as

Hmin(~w) := − log max
~w

pr(~w).

1Two vectors ~a and ~b belong to the same coset of C iff

~a −~b ∈ C. Note that each vector in Fn belongs to exactly
one coset of C.

Recalling that ~w is a symbol string of length n, we see that
the security of the system is thus determined by the entropy
of the codewords k log q and the non-uniformity/redundancy
in ~w, expressed as n log q − Hmin(~w). In [6], a similar ex-
pression is derived using a different argument.

The purpose of the fi : pi 7→ wi mapping used in the
protocol is to reduce this redundancy as much as possible.

We can break (3) into N parts to see the effect that each
password in the ensemble has on the security. It seems rea-
sonable to attribute to each passkey its entropy Hmin(wi)
and a share of (k − n) log q proportional to li. To this end
we define:

Φavg,(i) := li

(
k

n
− 1

)
log q + Hmin(wi).

Summing this gives the RHS of (3), so:

Φavg ≥
N∑

i=1

Φavg,(i).

Recall that the mappings [fi] shape the passkey distributions
[Wi]. Thus, it is important to select these mappings so as
to maximize Φavg. We discuss ways of achieving this in
section 4.3.

4.2 Boundingpworst
A

Restating (1) as

pA(~δ) = max
~w∈S~δ

pr(~w)∑
~w′∈S~δ

pr(~w′)
, (4)

it is easy to see that when ~w is distributed uniformly over all

n-symbol strings, we have pA(~δ) = 1/|S~δ| = 1/|C|. In other
words, the attack probability is exactly the probability of
guessing a random codeword ~c.

In general, however, we cannot assume that the passkey
distributions [Wi] will be uniform. We characterize the
user’s choice of passkey wi in terms of two measures:

mini := min
wi∈Fli

pri(wi)

maxi := max
wi∈Fli

pri(wi).

By our independence assumption on passwords and thus
passkeys, the numerator in (4) is bounded above by

N∏
i=1

maxi.

As for the denominator, we have

∑
~w∈S~δ

pr(~w) ≥ |S~δ|
(

min
~w∈Fn

pr(~w)

)
= |C|

N∏
i=1

mini.

Thus we have2

2We can also obtain the stricter but more complex expres-
sion

pworst
A ≤ 1

1 + |C − 1|∏N
i=1

mini
maxi

.

pworst
A ≤ |C|−1

N∏
i=1

maxi

mini
.

This result is not completely satisfactory. Note most im-
portantly that we cannot bound the probability if mini = 0
for some i. Thus, if the attacker knows a single password
in the sequence [pi], she might be able to guess the entire
codeword.

The reason why we cannot bound pworst
A in this situation

is that the distribution of the codewords might coincide with
the distribution of the passwords in such a way that a par-
ticular coset S~δ only contains a single possible password.

For example, suppose that the first passkey w1 is three
symbols long and that the attacker knows that w1 = ‘000’.
Suppose also that only one codeword starts with the pattern

‘111’ and that ~δ also starts with ‘111’. Then, the attacker
will know with certainty that the secret is the one codeword
that starts with ‘111’.

To get a better bound for pworst
A we must place some re-

strictions on the code C.

Definition 1. A q-ary code C is m-wise uniform if for
any sequence of m distinct indices [i1, i2, . . . , im] and any
sequence of values [x1, x2, . . . , xm] picked from the q code
symbols:

|{c | c ∈ C, ci1 = x1, ci2 = x2, ..., cim = xm}| =
|C|
qm

.

In other words, the code is m-wise uniform if every pattern
of m symbols occurs with equal frequency in the code. It is
easy to see that if C is m-wise uniform, its cosets S~δ are also
m-wise uniform. Two classes of codes with good uniformity
are the (n, k)-MDS codes, which have uniformity k, and the
self-dual codes with distance d, which have uniformity d−1.
This is proved in appendix A.

The notion of m-wise uniformity can be used to compute
a better security bound. We partition the full set of passkey
indices I = {1, 2, ..., N} into two sets I1 and I2, where lI2 :=∑

i∈I2
li ≤ m. This lets us bound the denominator in (4)

as:

∑
~w∈S~δ

pr(~w) =
∑
~w∈S~δ

(∏
i∈I1

pri(wi)
∏
i∈I2

pri(wi)

)
≥

≥
(∏

i∈I1

mini

) ∑
~w∈S~δ

∏
i∈I2

pri(wi) =
|C|
qlI2

∏
i∈I1

mini,

where the last step makes use of the fact that the sum runs
over all possible symbol patterns, since S~δ is m-wise uniform
and lI2 ≤ m.

We thus obtain:

pworst
A ≤ |C|−1

∏
i∈I1

maxi

mini

∏
i∈I2

qlimaxi.

As before, we define Φworst := − log pworst
A . Since Φworst

measures the difficulty of guessing the worst password, it
corresponds to the minentropy of an ordinary password sys-
tem. An ETPAR system with Φworst = 60 corresponds to

an ordinary password system with a minentropy of 60 bits.
We obtain:

Φworst ≥ k log q −
∑
i∈I1

log
maxi

mini
−

∑
i∈I2

(log maxi + li log q).

As before, we want to see the contribution of each passkey,
so we define:

Φworst,(i) :=
kli
n

log q − log maxi + log mini. (5)

Now,

Φworst ≥
∑
i∈I1

Φworst,(i) +
∑
i∈I2

Φavg,(i).

The uniformity of the code lets us use Φavg,(i) instead of
Φworst,(i) for troublesome passwords. We can select I2 freely
under the constraint lI2 ≤ m. If we can move all passkeys
wi such that mini = 0 into I2, we are able to compute a
security bound where this would otherwise not be possible.
When mini 6= 0, moving wi from I1 to I2 gives us Φavg,(i) −
Φworst,(i) = − log mini − li log q more bits of security. We
get the best security bound if we move into I2 those passkeys
wi that have the highest value of this last expression.

4.3 The Effects of Mapping
The quantities pavg

A and pworst
A depend not only on the

distribution of passwords and codewords, but also on the
way the mapping from passwords [pi] to passkeys [wi] is per-
formed by the mapping functions [fi]. We want to maximize
(5) by having a large value for li log q while making sure that
the distribution is as uniform as possible (maxi ≈ mini).

The mapping function fi : pi 7→ wi for the ith password
acts as a bucket sort, mapping each password in the input
space to one of the qli buckets in the output space. Thus,
fi will in fact be a hash function, but in the conventional
rather than the cryptographical sense (we do not depend
on fi being hard to invert). To avoid confusion, we will
continue to refer to fi as a mapping or a bucket sort.

If we have complete knowledge of a password distribution
Pi, then we can construct a customized mapping fi that dis-
tributes the passwords evenly among the buckets. We then
get maxi ≈ mini and Φworst,(i) ≈ kli log q/n. Of course, an

even distribution is only possible if q−li ≥ pmax
i , where pmax

i

is the probability of the most probable password. We can
write this as li log q ≤ Hmin(Pi), so the security is bounded
by the minentropy of the passwords, as should be expected.

Since the range of the mapping functions is F li we cannot
select the number of buckets freely, it must be a power of q.
This restriction means that entropy will sometimes have to
be sacrificed (we must use fewer buckets than we would like
to). An alternative is to allow an arbitrary output range
for fi and use a more complex transformation from [wi] to
~w ∈ Fn. The disadvantage of this approach is that it makes
the equations more complex. Also, since passkeys and code
symbols will no longer coincide, erroneous passkeys will cor-
rupt more symbols.

If we have no knowledge of the distribution, the best we
can do is to use a random mapping. Standard hash func-
tions such as MD5 and SHA-1 will essentially act as ran-
dom mappings. The problem with using a random mapping
is that it will typically distribute the passwords unevenly,

with some buckets containing more passwords than others
(maxi > mini). A detailed analysis of the effects of using a
random mapping is found in appendix B. For a typical case,
a random mapping can reduce the entropy by as much as
85 % from what is achievable with a customized mapping.3

The conclusion is that to get good security we should use
a mapping that has been tailored as closely as possible to
the password distribution. Section 5.2 discusses how this
can be achieved in a practical setting.

4.4 Computationally Bounded Attackers
So far we have only considered the security against a com-

putationally unbounded attacker. We have assumed that
the attacker will always be able to find the most proba-
ble password in S~δ and that she will be able to distinguish

“weak” ~δ from “strong” ~δ.
For a polynomially bounded attacker neither task is easy.

Enumerating all passwords in S~δ requires qk operations and
is thus on par with guessing the secret by brute force. So
the attacker must try a more sophisticated approach. But
today, there are no known polynomial time algorithms that
accomplish this task for Reed-Solomon codes.

The offset together with the password distribution gives
a probability distribution for the symbols in the codeword.
The task of the attacker is to compute a list of the most prob-
able codewords given this symbol distribution. The problem
is related to the problem of decoding from uncertain recep-
tions where η options are given for each codeword symbol
and we want to find all codewords matching this pattern.
Guruswami and Sudan [7] show that this problem can be
solved in polynomial time for an (n, k)-Reed-Solomon code,
provided that η < n/k = 1/R. This is the best known re-
sult for this problem. We will typically use a code rate of
k/n = 1/2 which means that the Guruswami-Sudan method
cannot be used unless η = 1, in which case decoding is trivial
anyway.

This result illustrates the large gap between the capabil-
ities of the unbounded and the bounded attacker using the
current state of the art. The unbounded attacker can, in our
model, compute the codeword provided that she can rule out
one option for m + 1 of the symbols in the codeword, where
m is the uniformity of the code. With state-of-the-art tech-
niques, it is asymptotically infeasible for the bounded at-
tacker to compute the codeword efficiently (in polynomial
time) even if she can rule out all but two options for each
symbol in the code. (Of course, practically speaking, with
small enough parameters brute force search of the keyspace
might be within reach.)

The weaknesses induced by random mapping thus seem
to be much less serious when we consider computationally
bounded attackers. Still, there are no hardness proofs for
these problems and coding theory is a rapidly advancing
field. If and when more is known about the computational
complexity it might be possible to relax the requirements
and use random mapping functions while still achieving good
security guarantees.

3In view of the leftover hash lemma [13], it might at first
glance seem that random hashing could increase the unifor-
mity, but that assumes that the mapping is unknown to the
attacker. In our case the attacker has access to all public
information and knows which mapping was used.

5. PROTOTYPE SYSTEM DESIGN
To evaluate the proposals in this paper in a practical set-

ting and provide reference parameters, we developed a pro-
totype system. In this prototype, a local text file t is en-
crypted under a key K(~c) derived from the random code-
word ~c by a key derivation function K. The purpose of K
is to convert ~c into a format compatible with the choice of
system cipher and to act as a time-lock that slows down
brute-force attacks. The encrypted file EK(~c)(t) is stored
on the user’s hard drive, together with the ETPAR encryp-

tion of the codeword, ~δ = Enc([p1, ..., pN],~c). When the user
wants to read the file, her password ensemble is used to de-
crypt ~c, which in turn is used to decrypt the text file. In this
section of the paper, we discuss the design choices made in
the construction of the prototype.

The current prototype runs on NT and Windows 98 sys-
tems and requires very little in terms of system resources.
Since it uses the platform-independent wxWindows library
for all GUI operations we expect that it can be easily ported
to other systems.

5.1 Security Level
The attack model we consider is one in which, having

stolen the hard drive of the user, an attacker wants to ac-
cess the encrypted data. Since the attacker will be able to
guess the password offline we aim for a minimum of roughly
Φworst ≈ 60 to achieve acceptable security, i.e., a 60-bit
security level.4

In a situation in which an online throttling mechanism af-
fords extra protection, it might be sufficient to have a sub-
stantially lower security level, e.g., Φworst ≈ 14, a 14-bit se-
curity level. This might be the case, for example, where the
password protected by the ETPAR system is used in conjunc-
tion with the server-assisted password hardening protocol by
Kaliski and Ford [5]. This system uses multiple authentica-
tion servers to ensure effective throttling even if one server
database is compromised.

5.2 Questions & Hashing
The password ensemble in the prototype is formed by the

user’s answers to a set of questions about her personal his-
tory. Careful consideration is needed in the construction of
such questions. We want as much entropy as possible in each
question, but we also want to make sure that the user is not
likely to forget the answer and that she will be able to pro-
duce consistent input. Answers to questions about the user’s
childhood or youth are usually more stable than questions
about opinions or the present (e.g. compare “What was your
first job?” with “What is your current job?” — the first
question is both more stable and harder to guess).

Answers that are semantically but not syntactically equiv-
alent pose another problem. If a question is not carefully
phrased, it might be possible for a user to answer it in sev-

4Some may argue that we need even more, but since pass-
word recovery protocols are run so infrequently we can af-
ford to use a key derivation function K that takes a full CPU
minute or more. An example of a key derivation function can
be found in [10]. The SETI@home project, which has been
called the largest computing effort in human history, has cur-
rently used about 238 CPU minutes. Breaking a 260 system
with one minute key derivation by brute force would thus
require an effort corresponding to 222 SETI@home projects.
This seems to be a reasonable safety margin.

eral different ways, e.g. “car”, “the car”, or “my car”. This
must be taken into account when the question is written. It
sometimes help to rewrite the question as a sentence with a
fill-in answer, e.g. “My favorite toy was a ...”.

Some syntactical differences can be fixed by normalizing
the input. For example, our prototype strips punctuation,
whitespace and case from the input before deriving the key,
so “John A. Doe” and “john a doe” are viewed as equiva-
lent. The idea of normalization might be taken even further
— although we do not do so in our prototype. For exam-
ple, common words such as “the”, “and”, and “of ” could be
stripped and the words in the input could be sorted alpha-
betically. That way “Matt and Sue” and “sue, matt” would
be equivalent input. It should be noted that if normalization
is taken too far, entropy loss will occur.

Some of the questions used in the prototype are: “What
was the name of the first boy/girl you kissed?”, “Where
did you celebrate the millennium?”, “What was the name
of your first pet?”.

Because of the many delicate issues surrounding question
design: stability over time, entropy estimation, mapping,
normalization, etc., we do not believe that users should be
trusted with designing their own questions. Still, some flex-
ibility is desired. For example, the third question above
will be nonsensical to users who have never owned a pet.
We can achieve this by letting the user select a set of ques-
tions from a library designed by security and human inter-
face experts. For identification, only the selected questions
are asked. This functionality is implemented in the proto-
type.

To ensure that the system meets the security demands, we
must estimate the entropy of each question and tailor a map-
ping function fi to the distribution of the answers. To do
this properly, we must know the distribution of the answers
(using a random mapping is, as we have seen, not advisable
and overestimating the entropy will reduce the security of
the system). For some questions, national census data or
other wide scale investigations can give information about
the distribution, e.g., Statistics Sweden [12] has complete in-
formation about the distribution of Swedish first names and
surnames. When no public data are available, a survey can
be used to determine the distribution at a moderate cost.
An on-line site using the ETPAR system could gather such
statistics as part of its normal operation.

For evaluation of our prototype, we pretend that such a
survey has been conducted, i.e., when estimating the secu-
rity of the system, we assume that we have access to map-
ping functions fi that perfectly match the distributions of
the answers.

5.3 Code Selection
The prototype uses Reed-Solomon codes, since they have

excellent distance and uniformity. A Reed-Solomon code is
a q-ary (n, k)-MDS code with, q = ts, n ≤ ts − 1 and k ≤ n.
It has distance d = n − k + 1, uniformity k and can correct
b(n−k)/2c errors or n−k erasures (an erasure occurs when
the value of a certain code symbol is unknown, i.e., if a
question is left unanswered). We will only use codes with
t = 2.

The code size s is determined by two factors: how large
n needs to be (the number of passwords in the system) and
the entropy of the passwords. Note that if s is selected too
large, redundancy will be introduced in the passkeys. For

example, if q = 27 and the passwords have 4 bits of entropy,
we will have at least 3 bits of redundancy in the passkeys,
regardless of which mapping we use. Preferably, s should be
close to the entropy of the passwords (with li = 1) or the
entropy should be a multiple of s (with li > 1).

If we are forced to use passwords with an entropy smaller
than s one option is to concatenate several of these small
passwords before calculating the passkey. When the total
entropy is larger than s we can get rid of the redundancy.
But note that an error in a single one of these smaller pass-
words will spoil the entire passkey.

The rate of the code, R := k/n, determines the amount
of error correction and the number of passwords needed to
attain a certain security level. With a code rate R we can
correct approximately a ((1 − R)/2)-fraction of errors or a
(1 − R)-fraction of erasures. The number of passwords we
need is proportional to 1/R. Values in the vicinity of R =
1/2 often strike a good balance between fault-tolerance and
brevity.

In the prototype each answer is mapped to an 8-bit rep-
resentation. It is therefore suitable to use Reed-Solomon
codes over GF (28). We assume that the mapping is perfect,
so that each passkey holds 8 bits of entropy. Each passkey
then contributes 8R bits of security to the system and the
total security with n passkeys is therefore 8Rn = 8k.

The prototype uses k = 7, which gives us about 56 bits
of security. (With one minute key derivation this would
correspond to 218 SETI projects; to allow rapid experimen-
tation the prototype uses much faster key derivation.) To
get a suitable code rate we set n = 15. This gives us a
system with 15 questions where the user is allowed to an-
swer 4 questions incorrectly or give 8 blank answer (or, more
generally, to make τ errors and 8 − 2τ omissions).

6. PRELIMINARY EXPERIMENT
In a preliminary experiment we tested the prototype on

nine colleagues. They first selected their passwords in re-
sponse to the questions posed by the prototype (with some
flexibility in selection of questions). The experimental sub-
jects subsequently refrained from using the program for one
week, and then attempted to access the data by answering
the questions again. (A longer period of time would have
been desirable, but was impractical for this preliminary ex-
periment.) Of the nine subjects, all were able to correctly
recover their data, but one subject required more than one
attempt.

On average the subjects made 1.6 errors, well below the
correction limit. The errors were somewhat unevenly dis-
tributed. Two of the subjects made three errors and one
subject made four errors.

57 % of the errors made by the subjects were simple syn-
tactic errors that could easily have been handled by a bet-
ter normalizing process, if there had been time to iterate the
prototype design. For example, when asked about their doc-
tor’s name, some people alternated between answering “X ”
and “Dr. X ”. When asked about a date, the date format
varied. When asked about a street name the formulations
“X ” and “X St.” were used.

If the normalization process had been modified to handle
these simple cases, the error rate would have dropped from
1.6 to 0.5, one user would have two errors and the remaining
users zero or one. We would thus be far below the correction
limit. Some further statistics:

• 29 % of the errors were harder syntactical errors, for
example writing “Jen” instead of “Jennifer” or “car-
pet” instead of “Persian carpet”. It might be possible
to eliminate some of these errors by rewriting the ques-
tions to disambiguate the answers, but some errors will
probably always remain in this category.

• 7 % of the errors were semantic errors, where the user
gave completely different answers.

• 7 % of the errors were spelling mistakes. We believe
that in many cases, the user is likely to correct such
mistakes herself on her next login attempt.

In conclusion, the ETPAR system seems to offer very reliable
data recovery.

7. ACKNOWLEDGMENTS
The authors wish to extend their thanks to Madhu Sudan,

Burt Kaliski, H̊akan Andersson and the anonymous review-
ers of this paper for their comments and suggestions.

8. REFERENCES
[1] Biometrics consortium, 2001. Website at

http://www.biometrics.org.

[2] G. Blakely. Safeguarding cryptographic keys. In
AFIPS Conference Proceedings 1979: National
Computer Conference, volume 48, pages 313–317,
June 1979.

[3] D. Bleichenbacher and P. Q. Nguyen. Noisy
polynomial interpolation and noisy Chinese
remaindering. In B. Preneel, editor, Advances in
Cryptology - EUROCRYPT ’00, pages 53–69.
Springer-Verlag, 2000. LNCS no. 1807.

[4] C. Ellison, C. Hall, R. Milbert, and B. Schneier.
Protecting secret keys with personal entropy. Journal
of Future Generation Computer Systems,
16(4):311–318, Feb. 2000.

[5] W. Ford and B. S. K. Jr. Server-assisted generation of
a strong secret from a password. In Proceedings of the
IEEE 9th International Workshop on Enabling
Technologies (WETICE), Gaithersburg MD, June
2000. NIST.

[6] N. Frykholm. Passwords: Beyond the terminal
interaction model. Master’s thesis, Ume̊a University,
Department of Computing Science, 2000. UMNAD
298/2000.

[7] V. Guruswami and M. Sudan. Improved decoding of
Reed-Solomon and algebraic-geometry codes. IEEE
TOIT: IEEE Transactions on Information Theory,
45:1757–1767, Oct. 1999.

[8] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and
A. D. Rubin. The design and analysis of graphical
passwords. In 8th USENIX Security Symposium, pages
1–14, Washington, D.C., USA, Aug. 1999. USENIX.

[9] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In 5th ACM Conference on Computer and
Communications Security, pages 28–36, Singapore,
Nov. 1999. ACM Press.

[10] RSA. PKCS #5: Password-based cryptography
standard 2.0, Mar. 1999.
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
5/index.html.

[11] A. Shamir. How to share a secret. Communications of
the Association for Computing Machinery,
22(11):612–613, Nov. 1979.

[12] Statistics Sweden, 2001. Website at
http://www.scb.se/eng/index.asp.

[13] D. Stinson. Universal hash families and the leftover
hash lemma, and applications to cryptography and
computing.
http://citeseer.nj.nec.com/stinson01universal.html.

[14] Hacker takes credit-card numbers. Washington Post,
(Tuesday, January 11):E02, 2000.

APPENDIX

A. SECURITY DETAILS
The theorem below shows how the uniformity of any linear

code C can be calculated.

Theorem 1. If C is a linear q-ary (n, k)-code with gen-
erator matrix G, then C is m-wise uniform if and only if
every set of m columns from G is linearly independent.

Proof. The codeword corresponding to a message α is
computed as c = αG. Let I = [i1, . . . , im] be a sequence of
distinct integers and x = [x1, . . . , xm] be a sequence of code
symbols. The number of codewords matching this pattern
is then the number of solutions to the equation x = αG′,
where G′ consists of columns i1, . . . , im from G.

If every set of m columns from G is linearly independent,
then G′ will have rank m for every value of I. Since α has
k degrees of freedom, the equation will have qk−m solutions
for every value of x. The code is thus m-wise uniform.

If every set of m columns from G is not linearly indepen-
dent, then we can find a sequence I such that rank(G′) ≤
m − 1. Since x has m degrees of freedom, there must exist
an x such that the equation has no solutions, thus the code
is not m-wise uniform.

Corollary 1. If C is a linear (n, k)-code, C is m-wise
uniform if and only if its dual code has distance at least
m + 1.

Corollary 2. If C is a self-dual linear (n, k, d)-code,
then C is (d − 1)-wise uniform.

It is evident from the definition that no linear (n, k)-code
can be more than k-wise uniform. The theorem below shows
when this bound is achieved.

Theorem 2. If C is a linear q − ary (n, k, d)-code, then
C is k-wise uniform if and only if C is maximum distance
separable (d = n − k + 1).

Proof. Assume that C is maximum distance separable.
Since C is linear, the smallest Hamming weight of any non-
zero codeword in C is d = n − k + 1.

Suppose c and c′ are two codewords whose values agree
in k positions. By the linearity of the code c′′ = c − c′ is
then a codeword with Hamming weight at most n − k. By
the previous result, the only such codeword is c′′ = 0 which
means that c = c′.

Thus, there can exists at most one codeword that matches
a specific k-symbol pattern. Since there are qk such patterns
and qk codewords, each pattern must occur exactly once in
the code. Thus, C is k-wise uniform.

Assume C is k-wise uniform. Then there exists exactly
one codeword, the zero codeword, which matches a pattern
consisting of k zeros. Thus, the non-zero codeword with
smallest Hamming weight cannot have more than k−1 zeros,
so d ≥ n− k + 1, which means that C is maximum distance
separable.

B. THE EFFECTS OF MAPPING
To see how the mapping affects the security, let f be a

bucket sort that maps A passwords into B buckets. Let
a1, . . . , aA be the passwords and b1, . . . bB be the buckets.
Let αi be the probability that the password is ai and βi the
probability that it is in bucket bi.

The security we get with this mapping, based on (5), will
then be:

Φ = R log B − log βmax + log βmin.

where βmin := mini∈[1,B] βi and βmax := maxi∈[1,B] βi. We
should select fi so that this expression is maximized. (For
the moment, we ignore the fact that B = qli in our system
and allow B to take on any integer value.)

If the system designer has complete knowledge of the pass-
word distribution αi, she can easily select f so that Φ is max-
imized. To estimate the security in this case, let αmax be
the probability of the most probable password and assume
that the probabilities for the remaining A−1 passwords can
always be distributed evenly among the remaining buckets.
We will then have

Φ = R log B for B < 1
αmax

Φ = R log B − log αmax + log 1−αmax
B−1

for B ≥ 1
αmax

This expression is maximized by B = 1/αmax, which gives
us Φ = −R log αmax = RHmin(α). In this case the security
depends only on the initial password minentropy and the

Table 1: Security of random mapping
A B R βmax βmin Φ
10 2 0.5 6.0 3.9 -0.12

100 2 0.5 53 46.6 0.30
100 5 0.5 25 15 0.48
100 10 0.5 15 5.7 0.27
100 5 0.2 25 15 -0.20
100 5 0.8 25 15 1.2

amount of error correction (the R parameter).
With a random mapping, such as MD5, the passwords

will be more unevenly distributed. To simplify the analysis,
assume that all A passwords have equal probability α =
1
A

. βmax and βmin are then determined only by how many
passwords end up in each bucket. This will be binomially
distributed with p = 1/B.

The average value of Φ in this case will always be infinitely
negative, since there is a finite probability that βmin = 0.
This does not mean that the system will be insecure, because
the m-wise uniformity lets us handle some zero mini values.
Rather, it means that the average value of Φ is not a very
good measure of the security. Instead we would want to av-
erage over only the more likely distributions, since with over-
whelming probability, the very rare ones will be few enough
to be put in I2. To avoid complicating matters further over
a point which is only of minor importance we instead com-
pute a ball park figure for Φ by using the expected values
for βmax and βmin.

Table 1 shows some examples.
These figures clearly illustrate the disadvantage of using

a random mapping. Look, for example, at the case A =
100, B = 5, R = 0.5. These parameters give us only 0.48
bits of security, and no other value of B does better. With
a customized mapping we can get 0.5 log 100 = 3.3 bits so
the use of a random mapping means a loss of 85 % of the
security. Or, to put it another way, to get the same level of
security we must make the user’s password 6.6 times longer.5

Also note that some entries in the table above are nega-
tive. Adding such a password to an ensemble would make
it easier for a computationally unbounded attacker to guess
the codeword.

5If we look at Φavg,(i) rather than Φworst,(i), random map-
pings are handled better. The security is then Φ = (R −
1) log B − log βmax + log A. Since βmin is not involved in
this expression we do not have to fear empty buckets and
can use a larger value for B. With A = 100, R = 0.5 we get
the best security by using 45 buckets. This gives us 1.3 bits
of security.

