
Jeu de Paume:

A Security Suite for Handheld Devices

Niklas Frykholm1⋆ and Markus Jakobsson2 and Ari Juels2

1
niklas@kagi.com

2 RSA Laboratories, 174 Middlesex Turnpike, Bedford, MA 01730,
{mjakobsson,ajuels}@rsasecurity.com

Abstract. We describe jeu de paume, a small suite of security tools
specially geared toward the protection of data on handheld devices. The
components of jeu de paume are: (1) A visual password system adapted
to stylus-based data entry; (2) An encryption system for credit-card num-
bers using low-entropy keys; and (3) A signature scheme with a crypto-
graphic mechanism for deterring theft.

Key words: digital signing, encryption, graphical passwords, handheld-device
security, palm devices, visual passwords

1 Introduction

Decreasing size and increasing power are rapidly extending the pervasiveness of
handheld consumer computing devices. Palm devices, as we refer to them in this
paper, are now capable of storing large amounts of information and performing
functions requiring a good deal of computing power, such as generation of digital
signatures. Indeed, the most recent generation of palm devices offers much of the
functionality associated only a few years ago with desktop computers, including
powerful operating systems and color screens. With the benefits of portability
and power, however, comes a drawback: Palm devices are very easily lost or
stolen. This is especially problematic given the range and sensitivity of the data
that users increasingly rely on palm devices to store, including appointment and
address books, credit card numbers, and even passwords.

In this paper, we describe a suite of information security tools that we refer to
collectively as jeu de paume. (“Jeu de paume” literally means “palm game”. The
name refers to an adversarial sport played in France several centuries ago, and
recognized as an ancestor of modern-day tennis. In our work, we maintain the
adversarial aspect of the game, but strive to guarantee loss for the adversary.)
The aim of jeu de paume is to protect the data in lost or stolen palm devices
against compromise.

⋆ This work performed while the author was at RSA Laboratories, Stockholm, Sweden.

Palm security: Old concerns in a new setting: The questions we address
(such as password-secured login and secure encryption) have received extensive
treatment in the literature, with a wide range of proposed solutions. Most of the
proposed security mechanisms, however, have focused on traditional, stationary
computing systems and do not work well for palm devices, which are subject to
a somewhat different spectrum of threats.

One issue of importance is that the design of palm devices specifically makes
synchronization easy, an advantage that has to be considered from the perspec-
tive of an attacker as well as that of the honest user. An adversary that suc-
cessfully manages to synchronize with a stolen or otherwise compromised device
can transfer its complete state to a hostile environment. This special form of
vulnerability is analogous to but more comprehensive than compromise of larger
computing devices by Trojan horse or viruses.

Another important consideration is the particular nature of data entry on
palm devices: Use of a stylus or numerical keypad makes text entry more cum-
bersome than with than a keyboard. This turns into a security problem if users
decide to circumvent or cut corners with security mechanisms due to their incon-
venience. The problem is aggravated by the fact that palm devices typically are
used in ”short bursts” (unlike standard computers), which reduces user tolerance
to hassles and delays.

As a result, users tend to employ passwords and PINs on palm devices that
are even weaker and more poorly managed than in traditional setttings, i.e., of
lower effective entropy. In stationary environments, the use of domain passwords
and other server-assisted security mechanisms helps compensate to some extent
for weak passwords. On palm devices, no such aids may be assumed to be consis-
tently available. This renders the design of good security architectures for lost,
temporarily misplaced, or stolen palm devices particularly challenging.

Our security tools: Let us now give a summary description of the security
tools in jeu de paume:

1. Visual passwords: Our password-entry system is specially geared to the
small screens and stylus-based data entry common in palm devices. A visual
password (or visual PIN) in jeu de paume consists of a set of distinguished
points on multiple images. Visual cues, capacity for error-tolerance, and an
initial training routine enable users to retain visual passwords better than
text-based ones, we believe. The fact that the system is stylus based also
allows users to enter visual passwords more easily than text-based ones on
palm devices.

2. Credit-card vault: The credit-card vault in jeu de paume is a file encryp-
tion system designed specifically for use with credit card or bank account
numbers. By exploiting a form of non-redundant encryption, this system
provides good security even with a very low-entropy encryption key.

3. Funkspiel signatures: Funkspiel signatures similarly represent a way of
protecting a digital signing key with a low-entropy PIN. The basic notion is
to have the user provide a PIN at the time of signing. This PIN is embedded

in the digital signature in such a way that it can be checked by some trusted
third party, such as a bank. At the same time, an adversary with access to
many signing transcripts (even in an active attack) cannot feasibly determine
the PIN, or verify the correctness of a guess.

We note that the credit card vault and the funkspiel signatures both can be
used with keys obtained from the visual password scheme we propose – however,
it is important to note that conventional password schemes may be used as well,
whether in combination, as a backup technique, or alone.

It should be noted that our focus in the design of jeu de paume is on solutions
that are viable in the short-term, particularly for the current generation of palm
devices. New technologies such as compact fingerprint readers, new forms of
hardware tamper resistance, and the continuous Internet connectivity promised
by 3G mobile phones may provide attractive alternative security mechanisms at
some time in the future, such as that explored in [15, 16] for digital signing. We
restrict our exploration to devices with limited or unreliable forms of connectivity
and little effective tamper resistance, as is the case for most palm computers (and
many mobile phones) today.

Organization

We describe each of the components of jeu de paume in successive sections. In
section 2, we present the visual password system. We describe the credit-card
vault in section 3, and funkspiel signatures in section 4. We have constructed
PalmOS prototypes of the visual password system, and the credit-card vault.
Where it is likely to be of interest to the reader, we discuss our experiences with
these. We discuss background in the literature and in practice in the respective
section for each security tool.

2 Visual Passwords

Text passwords have an extensive history in the world of computing, due in large
part to the compactness of ASCII text and the universality of keyboards as data
entry devices. The motivation for exploring alternative forms of authentication,
however, is strong. Keyboards are no longer ubiquitous in computing devices,
and numerous studies reveal both the ease with which users forget text pass-
words and their tendency to select passwords subject to dictionary attacks [11].
Computer memory and communication bandwidth, moreover, are available in
ever increasing abundance.

A number of researchers have considered alternative forms of representing
passwords. Psychological studies provide evidence, in particular, for superior
retentiveness in visual memory over verbal memory in many human subjects.
(A frequently cited example is the work of Shepard [20], which studies relative
recognition memory capacity.) The literature on human memory and cognition

posits especially strong inate ability in human beings to recognize previously
presented images [20, 23, 24]. In this vein, a commercial system called “Passfaces”
[14] aims to exploit human users’ well known capability for recognizing faces. In
this system, the secret key of the user consists of a number of faces selected during
an initialization phase. To authenticate herself, a user picks these initial faces
from a challenge set containing a random lineup of spurious faces. A drawback
of the “Passface” system is its need for a fixed database of images of faces; this
database is cumbersome to store. In a system called “Déjà Vu”, Dhammija and
Perrig [9] seek to overcome this limitation by using randomly generated, abstract
art images in lieu of faces in the challenge sets. In their system, the secret key
of a user consists of a collection of such images.

While well conceived in the way that they draw on the cognitive strengths of
users, both the Passfaces system and Déjà Vu are geared toward use with large
screens, and not handheld devices. A serious problem in any setting, though,
is their vulnerability to intersection attacks. In order that spurious images do
not become familiarly recognizable to the user and therefore confused with the
correct ones, it is necessary to rotate new sets of spurious images into challenge
sets on a frequent basis. Thus an attacker viewing multiple challenges sets can in
principle identify the correct images as those that are presented repeatedly, i.e.,
can identify correct images as the intersection of multiple challenge sets. Observ-
ing this difficulty, Dhammija and Perrig propose serveral possible remedies. One
is to have the user change secret images on an ongoing basis, e.g., after every
successful authentication. Dhammija and Perrig have not yet, however, studied
the ability of users to handle such frequent changes in their target images.

In a somewhat different vein, Blonder [5] describes a system based on distin-
guished features in an image known as “touchpoints”. For example, in the image
of a horse, the tail, nose, mane, and hoofs might each consistute a touchpoint.
The secret key of the user in this system consists of sequence of touchpoints. For
example, a user might enter her password by indicating the rearmost hoof, then
the nose, and finally the tail of the horse.

Jerymn et al. propose a “graphical password” system specially constructed
for use with palm devices. In their system, the user sketches a picture, e.g., a
house or abstract design, in order to authenticate herself. The graphical pass-
word system achieves a certain degree of error tolerance by deriving the associ-
ated secret key from the set of lines intersected in an implicit underlying grid.
While Jerymn et al. make good arguments respecting the underlying entropy of
user-selected keys in their system, they do not (and perhaps cannot) consider
potential vulnerability to “pictionary attacks”, i.e., the visual analog of dictio-
nary attacks. Another drawback of the Jerymn et al. system is the nature of the
error tolerance it offers: The grid system does not reflect the distortions, e.g.,
simple affine projections, naturally introduced by human users when they draw
objects. Frykholm [10] offers some preliminary new ideas to address this latter
problem.

Another visual password system is provided by Passlogix, Inc. as part of their
“V-Go” platform. In this system, the user authenticates herself by manipulating

objects in a graphical window so as to simulate a real-world activity. For ex-
ample, there are variants in which the user may select and combine ingredients
so as to cook a meal or mix a cocktail. Data entry in the V-Go system is quite
cumbercome. In consequence, the system enourages use of what are effectively
short, low-entropy passwords. This weakness is aggravated by the fact that users
select their own passwords, opening the system up to attacks based on ordinary
user preferences, e.g., guessing common drinks.

Our visual password system: The visual password system in jeu de paume is
most closely allied with the proposal of Blonder. Our system, however, does
not make use of distinguished points. Instead, any point in an image can serve
as part of the secret key of the user. The system narrows this wide field of
possibilities in two ways. First, it offers a natural form of error tolerance in
which the user can touch any point within a certain, predefined region around
the correct one. Second, the system associates a distinct icon with each region
in the image. When the user places the stylus on the image, the icon for the
specified region is displayed. Hence, the user has two mnemonic stimuli guiding
her toward the correct point: The objects composing the underlying image and
the icons associated with regions.

We implemented our system to work on any of the current generation of
PalmPilot models. On first interacting with the visual password system, the user
is instructed to drag the stylus for several seconds in an arbitrary fashion across
the screen in order to provide random seeding material. The user then selects
her password. She is then presented with a sequence of k images, where k is a
parameter based on the desired password entropy. On each image, two randomly
generated points are presented. The user selects one of these two points as part
of her password. Thus, in our system a balance is sought between user password
selection, with its benefits of heightened password retention (see, e.g., [21]), and
random password generation, which is beneficial for achieving good underlying
entropy.

Regions in our system consist of 10×10 pixel blocks, each one of which, as
explained below, has a unique associated icon. A designated point is centered
in its block, so that the user can stray from this point anywhere in the region
when entering her password. As there are 256 regions in total, each point/image
pair in a visual password provides 8 bits of entropy. Thus, the full password has
a total of 8k bits of entropy.1

We have implemented two versions of our system. The first, a “visual vault”,
involves selection of points on k = 6 images so as to produce a 48-bit visual
password. This password serves as input to a key derivation function, namely

1 This is true under the assumption that the user selects between the two alternative
points in each image with equal probability during the initialization procedure. While
this may or may not be the case, we believe that the impact on effective security
of this choice is minimal. In the worst case, if user choice between points may be
predicted completely by an attacker, the resulting effective entropy is reduced to
seven bits per point/image instead of eight.

the PBKDF2 function from the PKCS #5 standard [18].2 We calibrated this key
derivation function so as to require roughly one second of compuation on the
Palm V. This resulted in a parameterization using 500 iterations of the pseudo-
random function. The Palm V has a 2.7 MIPS processor. Hence, we estimate the
cost of breaking the system by brute force at over 12,000,000 MIPS years. Given
that the peak speed attainable on a 1 GHz Pentium III processor is roughly 3000
MIPS [13], this should provide adequate security in most cases for the casual
user.

We conducted an initial experiment designed to test the ease with which users
were able to retain their memory of visual passwords. In a small pilot involving
nine participants, we presented a 48-bit (i.e., k = 6) visual password and also a
roughly 48-bit text password comprising 9 alphanumeric characters (’a’. . .’z’, ’0’,
. . ., ’9’); the former was selected through the visual password selection routine;
the latter was selected uniformly at random3. Because not all participants owned
PalmPilots, we referred them to a Web site that provided the passwords by
means of applets, permitting participation in the experiment by means of PC-
based browsers.

A week after password selection, participants were asked to re-enter the two
forms of password. We measured a match in text passwords according to the
size of the longest substring (not necessarily contiguous) present in both the
original and the submitted password. Table 2 below indicates the percentage
overlap according to this measurement, with a score of 0 recorded for refusal
on the part of the user to enter a password (if, for example, the password was
entirely forgotten). Also provided in Table 2 is the level of exact matching in the
visual password according to the percentage of correctly selected points among
the six images in the experiment. Finally, the last column of the table indicates
the lapse of time between registration and password entry for each of the users.
(Although users were asked to enter their passwords after a week, most took
longer.)

These results are only preliminary. They are encouraging, however, in that, de-
spite the larger number of successful authentications using text-based passwords,
all users retained at least some memory of their visual passwords. It is clear
nonetheless that greater refinement of our visual password system or more in-
tensive user training is required to make the system wholly workable for a wide
range of users. Smaller, more intensive user trials have yielded more promising
results. We have found in particular that users who re-use their vaults on a daily
basis for a short time after initialization are able to recall their visual passwords
for long periods of time, and better than text-based passwords. Moreover, it

2 Our prototype makes use of MD5 instead of the recommended HMAC-SHA1 as the
underlying pseudorandom function. An updated version is to employ HMAC-SHA1
instead.

3 While this is perhaps not the most even-handed basis for comparison, it is not clear
how, for instance, random text password selection ought to be made interactive.
Thus, we opted for a holistic system comparison as the only meaningful preliminary
experiment for our idea.

User Text V isual Days

1 0 50 8
2 0 33 7
3 0 16 10
4 44 16 14
5 0 66 8
6 0 83 9
7 0 16 7
8 100 83 8
9 100 100 8

Average 27 51 9

Table 1. Memory test: Experimental results showing the portions (in percentage
terms) of correctly entered text password/visual password features

seems very likely that picture retention improves as users become familar with
picture-based password schemes.

With the limitations of the stronger system in mind, a second variant of
our system aims to achieve what might be described as PIN-level strength, i.e.,
entropy only slightly better than a four-digit PIN. This variant uses only two
images, i.e., the setting k = 2. The relatively weak, 16-bit key provided by this
system is useful in many applications. In one prototype variant, for example,
we use it to furnish the PIN to a PalmPilot-based version of SecurID (in which
PINs are typically four decimal digits in length, and thus around 13 bits). This
variant may also be used in conjunction with the credit-card vault and funkspiel
signature systems described below.

Future work: In response to user feedback, we are planning several enhancements
to the visual password system. In the present version, background images are pre-
selected. Psychological studies demonstrate better mnemonic retention, however,
for objects that users have selected on the basis of preference in taste. Thus, we
plan in a future version to offer a selection of “skins” among which the user
might make selections for background images. Icons in the present system are
more or less arbitrary. As a future enhancement, we plan to bind icons to regions
on the basis of the content in background images. If a given region, for example,
contains the top of a human figure’s head, for example, the icon might be a
hat, and so forth. Finally, our next version of the system will present images in
randomized order during the training phase. This is done since the psychological
literature suggests that memorization of data items in multiple, different contexts
improves retention [6].

In summary, the visual password system in jeu de paume is specially geared
toward use with handheld devices, for which it permits fast and easy password
entry. In constrast to previous systems, the underlying entropy of passwords in
our system may be precisely characterized; at the same time, the system promises
good password (or short PIN) retention for a wide range of users.

3 Credit-Card Vault

The aim of our credit-card vault application is to provide good protection of
credit-card numbers and similar information using low entropy keys. The under-
lying principle is simple: Instead of using a conventional form of encryption, we
employ an encryption scheme that is non-redundant when applied to credit-card
numbers. In other words, we create ciphertexts such that any decryption key
yields what appears to be a valid ciphertext, i.e., credit-card number. Thus, this
will cause analysis (by a powerful computer) to fail even though the the PIN
is short, and even if the format of card numbers is known. Our technique can
also be used on other short and random-looking data, such as PINs. (Thus, one
could use one PIN or password – potentially visually based – to protect multiple
other PINs and passwords, as well as credit cards.)

Example 1. To introduce the concept of non-redundant encryption, let us con-
sider a simple example. Suppose that account numbers at Croessus Bank consist
of ten random decimal digits, all of which are selected uniformly at random from
the corresponding space. Let A = a1a2 . . . a10 be such a number, where ai stand
for the ith digit. Suppose further that the four-digit PIN P = p1p2p3p4 of a
user is mapped by a function f to a unique stream of ten decimal digits. To
produce a ciphertext C on the account number A, we first compute the stream
X = f(P) = x1x2 . . . x10. We then compute C = c1c2 . . . c10, where ci = xi ⊕ ai;
here ⊕ stands for digitwise addition mod 10. Thus, we offset the non-redundant
part of the card (and only this) by XORing the output of a pseudo-random gen-
erator. Even though the seed to the latter (namely, the PIN) is short enough to
be guessed by an attacker, the attacker will not be able to verify his guess. This
holds since we only apply the offset to non-redundant parts. We assume here
that the distribution of the non-redundant parts is uniform or nearly uniform in
the view of an attacker. (This might not be the case for an attacker with “insider
knowledge”, but such an attacker can probably obtain credit card numbers using
more direct means in any case.)

Observe that given C, an attacker cannot distinguish, even information the-
oretically, among the set of ten thousand possible corresponding plaintexts. In
contrast, näıve use of, e.g., AES [2], for the encryption operation would reveal
the account number to an attacker: It is very likely that all incorrect four-digit
PINs would, on decryption of C, yield invalid credit-card numbers, e.g., numbers
that are not strictly decimal in form.4 Observe also that our scheme can be used
to encrypt multiple account numbers simultaneously.

Non-redundant encryption is employed in many different forms in the cryp-
tographic literature and practice. It may be viewed as the essential idea behind

4 Assuming for the sake of example an 80-bit block size, ASCII encoding of an account
number in a single block, and an ideal cipher, the probability that an invalid PIN
yields a valid account number here is a little more than 8×10−17. Thus the expected
number of invalid PINs yield valid account numbers is a little more than 8× 10−13.
This is an upper bound on the probability that even one invalid PIN does so.

the one-time pad, for instance [19]. In a more recent setting, non-redundant en-
cryption serves as the underpinning of the EKE password-based authentication
protocol and its successors. In the EKE protocol, a public key is encrypted under
a password in a non-redundant form that prohibits an attacker from mounting a
direct dictionary attack [4]. Another example of its use is in the authentication
system in the VPN product of Arcot Systems [25], where non-redundant encryp-
tion is used to secure an authentication key. Other examples are numerous.

Our non-redundant encryption system for credit-card information consists
of two parts: (1) A decimal stream cipher, i.e., a stream cipher that produces
decimal-digit output instead of binary output and; (2) A redundancy extrac-

tor, i.e., a procedure for stripping away redundant information in a credit-card
number (and reconstructing it during decryption).

Decimal stream cipher: As explained above, näıve use of a conventional encryp-
tion algorithm does not enable us to achieve the desired form of non-redunancy
here. Instead, we employ a form of stream cipher, denoted by DecStream, whose
output consists of a stream of decimal digits. Let P represent the password or
PIN provided by the user, both expressed as ASCII bitstrings. Let ‖ denote
bitstring concatenation. Let pad() denote the appending of ’0’ bits needed to
ensure a string of 512-bit blocks. We employ the RC4 algorithm as the basis for
our algorithm, parameterized for use with a 128-bit key and table size 256. Let
RC4(k, i) denote the ith byte of output of this parameterization of RC4 on input
key k. Our decimal stream cipher DecStream may then be specified in terms of
the following pseudocode, where length is a specification of the desired length
of the output stream.

function DecStream(length, salt, P)
k = MD5(pad(data ‖ P));
while D < length

i← i+ 1;
ci ← RC4(k, i);
if ci < 200;

d2D ← ci mod 10;
d2D+1 ← ⌊ci/20⌋;
D ← D + 2;

output d1, d2, . . . , dlength;

In our implementation, we employ the vault data as the salt for the cipher, so
as to avoid the need for having the user provide an initial random seed. Obviously,
stronger salt can be provided, according to taste. We use DecStream to encrypt
a decimal string in the obvious manner, based on addition mod 10, rather than
addition mod 2. It may be seen that DecStream benefits from the underlying
strength of RC4, i.e., the hardness of digit prediction for DecStream is reducible
to that of bit prediction in RC4. (This notion can be formalized straightforwardly
through characterization of the ciphers as pseudorandom generators [12].)

Credit-card redundancy extractor: For the purpose of our exposition, we focus
on Mastercard account numbers, although our system accepts most major credit
cards. A Mastercard account number A comprises sixteen digits. We write A =
a1a2 . . . a16 according to our notation above. Let [ai, aj] consist of the string of
decimal digits between ai and aj inclusive.

The first digit a1 in any Mastercard account number is a ’5’. The value of
digit a2 determines the set of digits identifying the issuing bank; in particular,
the issuer identifier extends across the set of digits [a2, a3+a2

]. The last digit, a16,
is called a check digit. This is an error-correction digit derived from a1a2 . . . a15
according to an apparently unpublished but publicly available algorithm [1]. We
denote this function by g, and thus write a16 = g([a1, a15]). The set of digits
[a7, a15] is in all cases reserved as part of the account number of the holder.
We treat this digit set as random, and thus as the non-redundant core of the
credit-card number5. It is these digits ([a7, a15]) that we encrypt.

It is easy to see now that an encryption of account number A under password
P consists of the fifteen-digit ciphertext C = ([a1, a6], [a7, a15]⊕DC(7, salt, P)).
To decrypt ciphertext C under password P ′ as account number A′, we let
[a′1, a

′

8] = [c1, c8], and [a′7, a
′

15] = [c7, c15] ⊕ DC(7, salt, P), and finally a′16 =
g([a1, a15]). The same principle can be extended to the encryption of other ran-
dom data elements with pre-determined structure and, as noted above, it is
possible to encrypt multiple data elements simultaneously under the same pass-
word. Our credit-card vault is particularly convenient when used in conjunction
with the two-slide version of our visual password system.

4 Funkspiel Signatures

4.1 Background: Funkspiel schemes

Funkspiel schemes are an idea recently introduced by H̊astad et al. [22].6 In con-
ventional hardware security modules with continuous power sources, the usual
strategy for providing tamper-resistance is known as “zeroization”. When a
breach is detected in the physical integrity of the module, the secret keys are
erased. The idea behind funkspiel schemes is different. Rather than erasing se-
cret keys, a funkspiel scheme modifies them in a way that is undetectable to the
attacker, at least in a cryptographic sense. The hope is that an attacker who
breaks into the security module will be unable to detect whether a change has
occurred in the keys she recovers. Thus she will either be deterred from using
these keys, or will unwittingly use invalid ones. If the attacker does make use of
invalid keys, then a funkspiel scheme creates a provision for her behavior to be

5 Given knowledge of bank policy, an attacker might be able to exploit information
about account number assignment, but we consider this a minor risk.

6 The term “funkspiel” may be translated loosely as “radio game” in German. The
term describes a form of attack on underground radio networks during WWII that
served as inspiration for the cryptographic construction. See [22] for more details.

detected and traced. In a sense, a funkspiel scheme involves the triggering of a
“silent alarm”. As such, it could provide security against theft and loss of mobile
devices, in the sense that it would limit access to resources accessed from the
device, thereby limiting the loss to the cost of replacement.

An alternative to detecting unauthorized access, and communicating this by
means of silent alerts, is to attempt to prevent unauthorized access in the first
place. While we have shown this to be possible using a PIN for short segments of
random data (such as other PINs and credit card numbers), one cannot secure
all the palm contents in this manner. This becomes possible using techniques
in which more entropy is extracted and used as encryption and decryption key,
such as the biometric protection techniques of CloakwareTM [7]. Not considering
aspects relating to the false-positive and false-negative rates of biometric meth-
ods, it is clear that these do not offer protection against an attacker that forces
the device owenr to collaborate – in contrast, funkspiel schemes do. This holds
since the device will work using a wide range of PINs (if not all), but all PINs
but the correct will sound a silent alarm – silent because it cannot be detected
by the attacker, even if he is given full access to the device and its data, and to
old transcripts of the device. The only party that could detect the alarm is a so-
called “monitoring center”. This monitoring center knows the PINs of all users
it monitors, and verifies that the correct PINs were used, as it obtains signature
transcripts. The monitoring center could therefore reside either with a certifica-
tion authority that is contacted by verifiers wanting to verify that the certificate
in question still is valid, or with a service provider, such as the user’s bank, were
the signatures to be used for funds transfers. A signature generated using the
secret key stored on the device, but using the wrong PIN, would therefore be
distinguishable from an “entirely correct” signature, but only to the monitoring
center, and not to any other party (including the attacker). This holds even if
the attacker has access to old transcripts.

Funkspiel schemes were originally designed to help secure devices implement-
ing authentication protocols. For example, a (powered) smartcard might apply
a MAC (message authentication code) under secret key k to each transaction it
performs; this would enable transactions to be validated by a bank server. One
might try implementing a funkspiel scheme as follows. On detecting a physical
security breach by an attacker, the smartcard replaces the key k with a false
key k′ = h(k), for some hash function h. In contrast, we do not assume any
tamperproofness, but use PINs to “secretly validate” signatures, and incorrect
PINs to signal theft and distress.

In a traditional funkspiel scheme, an attacker would be unable to detect the
change in MAC key by examining the contents of the smartcard alone, and might
be tempted to create a fake smartcard using the MAC key k′. The bank would be
able to detect this, and indeed verify that the funkspiel scheme was triggered,
since the bank knows k, and can therefore determine k′. On the other hand,
even if the attacker knows that a funkspiel scheme is being used, she cannot tell
whether the key she recovers is correct, and cannot compute k even if she obtains
k′ and suspects that it is a false key. (In our scheme, instead, the attacker cannot

determine whether a given PIN is valid or not, even when given full access to
the contents of the corersponding device, and to previous transcripts.)

The problem with the above näıve approach is that the “silent alarm”, i.e.,
the change from the original key k to the false key k′, is not truly silent. If
the attacker can view transcripts produced by the smartcard prior to break-in,
then she can examine the associated MACs and determine whether the key she
recovers is valid or not. The funkspiel schemes in [22] are designed to address
this problem, and are undetectable even to attacker with access to all of the
communications of the protected hardware device.

The inability of the attacker to detect a key swap in a funkspiel scheme is
referred to as the stealth property. This property is formally modelled by the
following game. Alice holds a secret key k. She sends derivative keys y1, y2, . . .
to Bob for some number of timesteps. The attacker, Eve, is able to see these yi
values, and adaptively decides when she wishes to break into Alice’s key storage.
Prior to the break-in, Alice flips a coin, obtaining bit b. If b = 0, then she
leaves the key k unaltered. Otherwise, she is permitted to replace k with some
false key k′ – in our setting, we consider different PINs instead of keys. Eve
then sees the key held by Alice. Eve’s task is to guess the bit b. If she can do
so with a non-negligible advantage, i.e., probability non-negligibly greater than
1/2, then she wins the game. Otherwise the funkspiel scheme is regarded as
having the stealth property. Another important property for a funkspiel scheme
is that of unforgeability. Stated briefly, Eve should be unable with non-negligible
probability to cause Bob to accept a new yi value that she herself produces.

4.2 Funkspiel signatures

H̊astad et al. present three different funkspiel schemes, each with different prop-
erties. We show how to adapt one of these schemes for protection of a private
digital signing key. The setting we consider, however, is rather different from that
envisaged by the H̊astad et al. As we have explained, we do not assume any kind
of tamper resistance in the palm devices we are considering in this paper. Thus,
there is no way to detect an attack in an active way in a palm device; stated an-
other way, there is no physical “tripwire” for the funkspiel mechanism. Instead,
we show how to employ the funkspiel idea so as to protect a digital signing key
using a PIN known to the user. This PIN is not present in the device and, thanks
to the security properties of the funkspiel scheme, cannot be extracted from dig-
ital signatures produced by the palm device. Thus, we can construct a system
in which an attacker may be viewed as triggering the funkspiel mechanism by
incorrectly guessing the PIN of the user. We refer to signatures produced this
way as funkspiel signatures.

A funkspiel signature scheme involves three types of participant: A signer,
a verifier, and an entity that we refer to as a monitoring center. The signer
and verifier operate essentially as in a conventional digital signature scheme.
The signer produces digital signatures using a private signing key, but also us-
ing a PIN, which she furnishes at the time of signing and incorporates into her
signatures in a special way. Use of funkspiel signatures results in no noticible

difference for the verifier. Indeed, the verifier need not even be able to distin-
guish a funkspiel-enabled digital signature scheme from a conventional one. The
monitoring center may be viewed as a type of second-line verifier, whose aim is
to check that the signer employed the correct PIN at the time of signing. Only
the monitoring center should be able to check the PIN. In particular, an attacker
– or even an ordinary verifier – should not learn any information about the PIN
associated with a digital signature. The security goal of the scheme, then is this.
An attacker who steals the palm devices of an honest user is unlikely to be able
to guess the PIN of the user, and cannot learn information about the PIN from
correctly issued digital signatures. Thus, even though the attacker may gain ac-
cess to the private signing key in the palm device, and can produce signatures
that look correct to the verifier, the attacker is likely to produce signatures using
the wrong PIN, thereby alerting the monitoring center. In a typical scenario, the
signer might be a consumer, the verifier a merchant, and the monitoring center
a bank. The bank, on seeing invalid PINs, would be able to close the associated
user account, or take other action according to its chosen policy.

We take the view that it is best to employ an existing digital signature scheme
and standard for the purpose of achieving the funkspiel property, rather than
to develop a new one. In particular, we show how to incorporate the funkspiel
property into PSS RSA signatures [3]. PSS is short for Probabilistic Signature

Scheme, and is a padding method of RSA developed by Bellare and Rogaway.
Its aim is to yield a digital signature scheme whose security is reducible to
standard cryptographic assumptions, namely the standard RSA assumption and
the random oracle assumption on a hash function.

PSS is an IEEE P1363a standards submission (likely to be approved this
year), and is part of PKCS #1 v2.1, which is in its final 30-day review at the
time of writing. The message recovery version of PSS is also in ISO/IEC 9796-2,
and is likely to be approved during the next few months. Thus, it is likely to see
wide use in coming years.

How PSS works. In order to sign a message M , a signer first pads it using a
random pad r, and the technique proposed in [3], which we detail below. The
padded message is then signed, using the standard RSA signature scheme, and
the message and corresponding pad communicated along with the signature. A
verifier again pads the message according to the PSS scheme, after which the
signature on the resulting string is verified. We will use the very same structure,
with a minor modification: We let the random pad r be a pseudo-random function
of both a seed and a PIN p, instead of only of the seed. An attacker will not be
able to distinguish a pad from the correct PIN from a pad generated from the
incorrect PIN. However, the monitoring center, who knows the user’s PIN, can
distinguish between the two cases. Let us now consider in detail how PSS works:

1. First, a random string r is selected uniformly at random from {0, 1}
k0 for

some security parameter k0, of proposed size k0 = 128.

2. Second, hash(M |r) is computed, whereM is the message to be signed; hash :

{0, 1}∗ → {0, 1}k1 is proposed to be implemented using MD5 [17]; and where
| denotes concatenation. The result is denoted w.

3. Third, the value g1(w) is computed, where g1(w) returns the first k0 bits of

g(w), and where g : {0, 1}
k1 → {0, 1}

k−k1−1
, again, suggested to be imple-

mented using MD5.

4. Next, r∗ is computed as r∗ = g1(w) ⊕ r.

5. Finally, g2(w) is computed, where g2(w) returns the last k− k0− k1− 1 bits
of g(w), as defined above. The output is the string (0|w|r∗|g2(w)).

Adding Funkspiel Capabilities. As mentioned, instead of letting r be the
output of a pseudo-random function that takes a seed and a counter as its only
inputs, we obtain it as a pseudo-random function of a seed; a counter; and the
user-entered PIN p. Thus, the value r, used for padding, communicates the PIN
entered to the monitoring center, who can determine if the correct PIN was used
(since it knows the PIN of each user registered with it.) As explained above,
however, an attacker should not be able to distinguish a “good PIN” pad from
a “bad PIN” pad – even given previous transcripts. In order to achieve this, the
following technique is employed:

Setup. The signer and the monitoring center select a random seed σ0 that is
kept secret from all others, but stored both with the monitoring central and the
user device. In addition, the user selects a PIN p, that is given to the monitoring
central, and stored by the same. A counter cnt is set to zero.

Generation of pad. The user device prompts the user for a PIN p, and computes

{ cnt← cnt+ 1
σcnt ← h1(σcnt−1)
r ← h2(σcnt, p).

Here, h1 and h2 are one-way functions, and may be implemented using MD5.
The value r is used in the PSS signature generation, as described above. In the
above and in the following, we do not indicate the time (or invocation number)
in the variables, in order to simplify the notation.

Verification of funkspiel signature. A PSS funkspiel signature, generated using
PSS for a random pad r generated as above, is verified as standard PSS signature.
Thus, the standard verifier pays no attention to the shape of the value r, as long
as it conforms to the requirements outlined by PSS.

Verification of pad. The monitoring center verifies the correctness of the pad r
used in a PSS signature after verifying the signature itself. If the signature is
valid but the ”wrong” value of r is used, then it knows that the user must have
entered the wrong PIN p. Depending on its policy, it may act on this in various

ways, as will be described below. The verification is performed by computing

{ cnt← cnt+ 1
σcnt ← h1(σcnt−1)
r̃ ← h2(σcnt, p),

checking whether r = r̃. (Recall that the monitoring center stores (σcnt, cnt, p)
for each user – the appropriate entry is selected given the public key of the
signature.)

Handling user errors. The above technique allows for a variety of responses
of the monitoring center, were an incorrect PIN to be used. For example, the
user device may be blacklisted; the user may be contacted; or a more complex
reaction may be performed, potentially based on several received transcripts,
and depending on the nature of the messages signed. However, in order to avoid
such costly measures to be taken each time an honest user enters the wrong PIN,
a technique like the following may be employed:

As above, the user PIN is p. We let π be the result of applying a function
F to p; here, the entropy (size) of π should be much lower that that of p. For
example, if p is a four-digit PIN, π may be a check-digit obtained by adding all
the digits of p, modulo 10. The value π would be stored on the user device. Each
time a user enters his PIN p, the device compares F (p) to π, and alerts the user
if these are different. Note that while this gives some information about p to an
attacker, it does not allow the attacker to determine the value of p, even with
access to previously produced transcripts. However, it catches a large portion
of incorrect PINs, making it less likely that an incorrect PIN corresponds to a
mistake by the user.

Protection against duress. We note that the above error detection feature
does not make the resulting technique susceptible to attacks in which the attacker
forces the device owner to give him the PIN. This is so since it is so easy to modify
the PIN that it can be done even under duress. In particular, the threatened
user can permute the digits in the PIN as he tells it to the attacker. While this
reduces the security substantially, compared to having the full entropy of PINs,
it is better than nothing. A more sophisticated (or perhaps: paranoid) device
owner may instead memorize and give out an ”emergency PIN” with the correct
checksum.

Synchronization issues. The verification performed by the monitoring center
relies on synchronization between it and the signer. However, it is evident that
signatures may be processed and verified out of order, requiring means for these
two parties to synchronize. Thus, instead of generating r as above, the signer
may generate it as follows:

cnt← cnt+ 1
σcnt ← h1(σcnt−1)
r′ ← h2(σ, p)
r← EK(cnt, r′)

Here, K is a shared key between the user and the monitoring center (each user
gets assigned a unique such key), E corresponds to symmetric encryption, e.g.,
using AES [2]. As the monitoring center receives a PSS signature using a padding
of the above format, he looks up the value of K (given the public key associated
with the signature); computes cnt by decrypting r, and uses this to syncronize
to obtain the appropriate value of σ and r′. He then verifies whether r′ was
computed using the correct PIN p. Since the monitoring center will verify signa-
tures out of order, it will have to store an old value of the seed, such as σ0, and
compute newer values of the same from this. To reduce the amount of storage
and computation needed for this, a technique such as [8] may be employed.

Efficiency. The extra operations required in order for us to add the funkspiel
property to PSS signatures do not result in a large computational overhead for
neither signer nor monitoring center (and nothing at all to a standard verifier,
who cannot detect the modification.) In particular, both signer and monitoring
center need to evaluate a hash function twice, and perform one symmetric en-
cryption (or decryption). In addition, the monitoring center needs to compute
the value σcnt−1 employed by the signer from some stored seed – this requires a
number of hash function evaluations corresponding to the distance to the seed
(or other stored intermediary value). This value will be relatively small if signa-
tures are verified (by the monitoring center) in an order largely corresponding
to that in which they were generated. Our modification also does not demand
a large quantity of extra storage, but merely enough to store the above men-
tioned values. Therefore, our modifications do not result in a noticable increase
in neither computation nor storage, compared to “plain” PSS signatures.

Security Analysis. In order to state our security claims, we consider the fol-
lowing game, adapted from [22]. First, the attacker A may be characterized by
a pair of algorithms Aintr and Aguess, as follows.

– An adaptive intrusion algorithm Aintr. Input to the algorithm is a sequence
of messages and corresponding signatures (m1, s1), (m2, s2), . . . , (mi, si) for
i ≥ 0. For i = 0, we denote the sequence by φ. The output of Aintr is a
message mi+1 or the special message “break”.

– A guessing algorithm Aguess. Aguess takes as input a secret σi+1 and a mes-
sage/signature sequence (m1, s1), (m2, s2), . . . , (mi, si). For i = 0, this may
be regarded as a null sequence. The output of Aguess is ‘1‘ if the algorithm
has reset the PIN, and ‘0‘ otherwise.

Given a funkspiel scheme FS and an attacker A, the experiment now is as
follows:

Experiment STEALTH(FS, A)
s1 ← KeySet(k)
p← PIN− reset

i← 1

m1 ← AIntr(φ)
while mi 6= “break” do

si ← Sig(mi, σi, p)
i← i+ 1
σi ← KeyEv(σi−1)
mi ← AIntr((m1, s1), . . . , (mi−1, si−1))

select y ∈u {0, 1}
if (y = 1) then

p← PIN− reset

g ← Aguess(si, (m1, c1), . . . , (mi−1, ci−1))
if g = y then

return ‘1‘
else

return ‘0‘
In the above, PIN− reset is a function that selects the pin p uniformly at

random from the appropriate range.

Definition 1. Let FS be a funkspiel signature scheme with security parameters

j, k and l. The scheme has the stealth security property if for any adversary A
with resources polynomially bounded in security parameters k and l, it is the case
that | 1

2
−STEALTH(FAC,A)| is negligible, i.e., asymptotically smaller than any

polynomial in j, k, and l.

With this definition in place, we state the following rough claim.

Claim. Our proposed funkspiel PSS scheme has the stealth security property
under a reduction to the following two assumptions: (1) The random oracle
assumption on the underlying hash functions and (2) The assumption that the
encryption function is computationally secure against adaptive chosen ciphertext
attack.

We note that a variant of PSS, allowing message recovery, was also proposed
in [3]. This variant, referred to as PSS-R, may be augmented for funkspiel in a
manner similar to what we have described above.

5 Conclusion

The three components of jeu de paume are naturally complementary. The visual
password scheme provides a way for users to enter short keys conveniently on
palm devices. The credit-card vault and funkspiel signature scheme represent
ways of using such keys for secure operation despite: (1) The fact that these
keys are too short to provide a cryptographic strength of security and (2) Un-
reliable network connectivity. The credit-card vault achieves a special form of
data encryption, while the funkspiel scheme helps protect digital signing keys in
such constrainted environments.

We conclude by noting that there are other resources exploitable by the se-
curity architect that we have not explored in this paper. For example, it may

prove interesting to explore the possibility of periodic, unreliable network con-
nections as a mechanism for security enhancement. Another possibility is that
of helping to secure palm devices using small push-button devices, such as the
key fobs used to unlock automobiles. Given the comfort of consumers with such
fobs, they might well prove a promising ancillary security tool.

Acknowledgments

We offer thanks to Debbie Stolper and Susanne Wetzel for their ideas and com-
ments on this work.

References

1. ANSI standard X4.13-1983. American National Standards Institute, 1983.
2. Advanced encryption standard, 2001. FIPS Standard FIPS-197.
3. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign

with rsa and rabin. In U. Maurer, editor, Advances in Cryptology - EUROCRYPT

96, pages 399–416. Springer-Verlag, 1996. Lecture Notes in Computer Science Vol.
1070.

4. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password- based protocols
secure against dictionary attacks. In Proceedings of the I.E.E.E. Symposium on

Research in Security and Privacy, Oakland, 1992.
5. G. Blonder. Graphical passwords, 1996. United States Patent Number 5559961.
6. L. Cermak. Improving Your Memory. McGraw-Hill, 1976.
7. Cloakware, 2002. URL: www.cloakware.com.
8. D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal. In

Financial Cryptography, pages ???–??? Springer Verlag, 2002.
9. R. Dhammija and A. Perrig. Déjà Vu: A user study, using images for authen-

tication. In Proceedings of the 9th USENIX Security Symposium, pages 40–46,
2000.

10. N. Frykholm. Passwords: Beyond the terminal interaction model. Master’s thesis,
Ume̊a University, Department of Computer Science, 2000.

11. D. V. Klein. Foiling the cracker: A survey of and improvements to, password secu-
rity. In UNIX Security II: USENIX Workshop Proceedings, pages 5–14, Berkeley,
CA, 1990.

12. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

13. D. Mihocka. Pentium 4: In depth, 2001. URL:
http://www.emulators.com/pentium4.htm#Analyzing.

14. Passfaces, 2002. URL: www.passfaces.com.
15. M.K. Reiter and P. Mackenzie. Delegation of cryptographic servers for capture-

resilient devices. In P. Samarati, editor, ACM CCS ’01, pages 10–19, 2001.
16. M.K. Reiter and P. Mackenzie. Networked cryptographic devices resilient to cap-

ture. In IEEE Security and Privacy, pages 12–25, 2001.
17. R. L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, Internet Activities

Board, 1992.
18. RSA Laboratories. PKCS #5: Password-based cryptography standard 2.0, March

1999. http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/index.html.

19. C.E. Shannon. Communication theory of secrecy systems. Bell System Technical

Journal, 28(4):656–715, 1948.
20. R. N. Shepard. Recognition memory for words, sentences and pictures. Journal of

Verbal Learning and Verbal Behavior, 6:156–163, 1967.
21. N. J. Slamecka and P. Graf. The generation effect: Delineation of the phenomenon.

Journal of Experimental Psychology, 16:272–279, 1978.
22. J. H̊astad, J. Jonsson, A. Juels, and M. Yung. Funkspiel schemes: An alternative

to conventional tamper resistance. In S. Jajodia, editor, Seventh ACM Conference

on Computer and Communications Security, pages 125–133. ACM Press, 2000.
23. L. Standing. Learning 10,000 pictures. Quarterly Journal of Experimental Psy-

chology, 25:207–222, 1973.
24. L. Standing, J. Conezio, and R.N. Haber. Perception and memory for pictures:

Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19:73–74, 1970.
25. Arcot Systems, 2002. URL: www.arcot.com.

