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Abstract. Dining cryptographers networks (or DC-nets) are a privacy-
preserving primitive devised by Chaum for anonymous message publica-
tion. A very attractive feature of the basic DC-net is its non-interactivity.
Subsequent to key establishment, players may publish their messages in
a single broadcast round, with no player-to-player communication. This
feature is not possible in other privacy-preserving tools like mixnets. A
drawback to DC-nets, however, is that malicious players can easily jam
them, i.e., corrupt or block the transmission of messages from honest
parties, and may do so without being traced.
Several researchers have proposed valuable methods of detecting cheat-
ing players in DC-nets. This is usually at the cost, however, of multiple
broadcast rounds, even in the optimistic case, and often of high computa-
tional and/or communications overhead, particularly for fault recovery.
We present new DC-net constructions that simultaneously achieve non-
interactivity and high-probability detection and identification of cheating
players. Our proposals are quite efficient, imposing a basic cost that
is linear in the number of participating players. Moreover, even in the
case of cheating in our proposed system, just one additional broadcast
round suffices for full fault recovery. Among other tools, our constructions
employ bilinear maps, a recently popular cryptographic technique for
reducing communication complexity.
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1 Introduction

Anonymous message transmission is a fundamental privacy-preserving tool, both
in the literature and in practice. Toward this aim, Chaum devised two seminal
techniques: mixnets [10] and “dining-cryptographers” nets [11], also known as
DC-nets. Mixnets have seen broad exploration in the literature, and serve as
the basis for several fielded anonymity systems, e.g., [3, 13, 17, 19]. (See [14] for
a good bibliography.) DC-nets, by contrast, have remained relatively neglected,



apart from a small scattering of papers, e.g., [1, 2, 11, 21, 22]. One reason for this
is perhaps that DC-nets, unlike mixnets, cannot operate by proxy; in particular,
the players operating a DC-net must be identical with those providing input.
In many real-world cases, however, this is not necessarily a serious drawback,
as in the Crowds system [19], where participants provide mutual protection of
privacy. Moreover, as formulated by Chaum for the case involving honest players,
DC-nets have one very compelling feature unavailable in mixnets:

In a basic DC-net, anonymous message transmission may be accomplished
by players in a non-interactive manner, i.e., in a single broadcast round.

Non-interactivity is of course very naturally attractive as a practical feature of
system design. It also renders security definitions and proofs simpler than in the
case of mixnets (for which formal definitions have been quite elusive).

There is a major drawback to DC-nets, however, and a large obstacle to their
deployment: They are subject to straightforward jamming by malicious players.
Such players can prevent the delivery of messages from honest participants,
either by broadcasting invalid messages or even simply by dropping out of the
protocol. Several valuable techniques have been proposed for addressing this
problem, but to this point have had the limitation of requiring either unfeasibly
intensive computation and/or multiple rounds of interaction among players.

Our first contribution in this paper is a set of techniques permitting the
identification of cheating players with very high probability, while retaining the
property of non-interactivity. The resulting DC-net constructions are computa-
tionally efficient: Assuming n players, they require each participant to perform
a number of modular exponentiations that is linear in n during the broadcast
phase. Any player, whether a participant or not, may perform a quadratic num-
ber of exponentiations for verification of the output. Indeed, the computational
costs of our constructions are comparable to those of the most efficient mixnets
(assuming n players processing n inputs). Our DC-net proposals are therefore
reasonable for small sets of, say, some dozens of players.

Of equal importance, we propose techniques that permit recovery from lost or
corrupted messages in a single, additional broadcast round, provided that there is
a majority of honest players. Previous proposals have required multiple rounds
for this purpose, or assumed a re-broadcast of messages. The computational
costs for our recovery protocol are comparable to those for the basic message-
transmission protocol.

Although it is possible to detect cheating by a player in a non-interactive
mix network, we maintain that under any reasonable set of security assump-
tions, it is not possible for such a mix network to recover from failure (and thus
from cheating) by even one player without an additional round of interaction.
Our reasoning is as follows. Suppose that we could recover the inputs of all par-
ticipating players regardless of who participated. Then if a given player Pi did
participate, and furnished message mi as input, an adversary could determine
mi by taking the difference between the set M of all messages submitted and
the set M ′ of all messages except that of Pi (the adversary would obtain M ′ by
simulating the absence of Pi).



We describe two different DC-net constructions, which we characterize as
short and long. In a short DC-net, the basic unit of message transmission is an
algebraic group element. For such DC-nets, we propose techniques that detect
cheating with overwhelming probability. A long DC-net, by contrast, permits
efficient transmission of messages of arbitrary length essentially by means of a
form of hybrid encryption. (It may be viewed as roughly analogous to a “hybrid”
mixnet.) For long DC-nets, we describe techniques to detect cheating with high,
but not overwhelming probability; an adversary in this case may feasibly perform
some limited jamming of messages.

In both constructions, we make use of bilinear maps, cryptographic tech-
niques that have achieved much recently popularity as tools for reducing protocol
interactivity [5]. In consequence, the security of our constructions is predicated
on the Decisional Bilinear Diffie-Hellman assumption (DBDH) (see, e.g., [6]), as
well as the random oracle assumption [4].

Organization In section 2, we explain the basic concepts of DC-net construc-
tion, and describe previous results on the topic. We present our formal model
and other preliminary material in section 3. In section 4, we describe our short
DC-net construction, followed in section 5 by presentation of our long DC-net
proposal. We conclude in section 6. In the paper appendix, we offer security
definitions and proofs for the protocols presented in the body of the paper.

2 Background

The intuition behind DC-nets is best introduced with a simple two-player exam-
ple. Suppose that Alice and Bob possess k-bit messages mA and mB respectively.
They wish to publish these messages anonymously, that is, in such a way that
an observer cannot determine which player published which message. Suppose
further that Alice and Bob share k-bit secret keys kAB(0) and kAB(1), as well
as a secret, random bit b. Alice and Bob publish message pairs as follows:

if b = 0: Alice: MA,0 = kAB(0)⊕mA, MA,1 = kAB(1)
Bob: MB,0 = kAB(0), MB,1 = kAB(1)⊕mB

if b = 1: Alice: MA,0 = kAB(0), MA,1 = kAB(1)⊕mA

Bob: MB,0 = kAB(0)⊕mB , MB,1 = kAB(1)

An observer can compute MA,0⊕MB,0 and MA,1⊕MB,1, yielding the (unordered)
message pair (mA, mB). The origin of these messages, however, remains uncon-
ditionally private: Without knowing the secrets shared by Alice and Bob, the
observer cannot determine which player published which message. Observe that
this protocol is non-interactive, in the sense that once their secrets are estab-
lished, Alice and Bob need not communicate directly with one another.

This basic protocol may be extended to multiple players P1, P2, . . . , Pn. Sup-
pose that each pair of players (Pi, Pj) shares a set of keys ki,j(w) for i, j, w ∈
{1, 2, . . . , n}, where ki,j(w) = kj,i(w).



Each player Pi computes a vector of values as follows:

Wi = {Wi(1) = ⊕n
j=1ki,j(1),Wi(2) = ⊕n

j=1ki,j(2), . . . , Wi(n) = ⊕n
j=1ki,j(n)}.

We refer to each message Wi(w) as a pad, and refer to each value ki,j(w) as a
partial pad. Observe that ⊕n

i=1Wi(w) = 0, i.e., the pads in a given position w
cancel when XORed together.

To broadcast messages in this scheme, each player Pi chooses a random posi-
tion ci and XORs her message mi with the pad Wi(ci) in Wi. This yields a new
vector Vi = {Vi(1), Vi(2) . . . Vi(n)} differing from Wi in the position ci. Provided
that all players have selected different positions ci, the vector V = ⊕n

i=1Vi (i.e.,
the vector formed by XORing all messages in a given position), will consist of the
set of messages posted by all players. Provided that keys and position selections
{ci} are secret, the privacy of messages, i.e., the hiding of their originators, is
unconditional.

As noted in Chaum’s original paper, shared secrets may be established non-
interactively via Diffie-Hellman key exchange, yielding computationally secure
privacy.

A note on “collisions”: Even when all players are honest, a problem arises in
multi-player DC-nets in the selection of message positions {ci}. In particular,
there is no good non-interactive means of enabling all players to select distinct
message positions. Hence, with some probability, two (or more) players will at-
tempt to transmit messages in the same slot. In other words, players Pi and
Pj will select ci = cj , so that the message mi ⊕mj appears in the final vector
V , rather than the individual messages. Some multi-round DC-net protocols ad-
dress this problem via reservation procedure, whereby players request “slots” in
advance. In all cases, however, DC-nets involve collisions, whether of messages
themselves or reservation requests. (The problem can be avoided through tech-
niques like secure multiparty computation of a secretly distributed permutation
of slots among players, but this is impractical.)

We do not treat the issue of collisions in this paper, but simply regard a DC-
net as a primitive that provides only partial throughput, i.e., drops some fraction
of messages. Better throughput may be achieved by high-layer protocols, e.g.,
protocol repetition, either serially or in parallel.

2.1 Previous work

As already explained, a basic DC-net is subject to jamming by even a single
dishonest player. Such a player Pi may simply set the vector Vi to a series of
random pads. This effectively jams the DC-net: All elements in the final output
V will be random and thus no messages will be successfully delivered. Worse still,
the very privacy guarantees of the DC-net render it impossible to trace the source
of the jamming in this case. Alternatively, an attacker may corrupt messages by
tampering with bits in a valid vector Vi. It is on this security problem that the
literature on DC-nets mainly focuses.



In his original paper [11], Chaum proposes the detection of dishonest players
via a system of “traps” in a multi-round protocol. Prior to message transmission,
a reservation protocol takes place in which players reserve future message slots.
At this time, each player commits to a declaration of “trap” or “non-trap” for her
reserved slot. To jam the DC-net, a dishonest player must transmit a message in
a slot she has not reserved. But if she tries to transmit a message in a slot that
is a “trap,” then the attack may be detected during a decommitment phase.

An important follow-up result is that of Waidner and Pfitzman [21], who
identify a weakness in this original protocol, and show that an attacker can
feasibly strip the anonymity of honest players. (Improved reservation techniques
in [2] and [22] reduce this possibility to some extent.) They propose a multi-
round solution to this problem, also based on the idea of setting “traps” during
a reservation phase. Like Chaum’s protocol, theirs is only guaranteed to identify
one dishonest player for a given “trap.” No obvious method for fault recovery
is available, apart from re-broadcasting. That said, it should be noted that the
goal of this work is a little different than ours. While these researchers have
sought to achieve unconditional untraceability assuming only honest point-to-
point communication, our aim is to achieve privacy under only computational
hardness assumptions.

Most recently, in [1], von Ahn, Bortz, and Hopper consider a constant-round
anonymous-broadcast protocol that is essentially a DC-net variant (with an ini-
tial partitioning of players into autonomous groups). They accomplish the dis-
tribution of secrets for each protocol invocation via a secret-sharing protocol. In
their scheme, the correctness of pads is proven via a cut-and-choose protocol. In
the optimistic case, their protocol requires three broadcast rounds, and has O(n2)
communications complexity (assuming a constant number of cut-and-choose in-
vocations). In the presence of cheating players, the communications complexity
rises to O(n4).

One problem with these previous protocols is that the computational and
communications costs of catching cheating players with overwhelming probabil-
ity is very high, requiring either many “traps” or many cut-and-choose invo-
cations. This may not be problematic in cases where players may be reliably
identified and where cheating carries a high penalty. For Internet systems, how-
ever, in which identities are not trustworthy, and participation in anonymous
systems may be short-lived, even a small amount of cheating in the form of, e.g.,
tampering with messages, may be highly problematic. There is the risk that a
savvy attacker may simply create false identities and then discard them when
cheating is detected.

Our work is similar to the approach of von Ahn et al. in that we employ
cryptographic proofs of correctness rather than “traps” in order to detect cheat-
ing. We employ a different strategy for pad computation, however, that has the
benefit of more efficient proofs of correct pad computation. In particular, for
our short DC-net proposal, in which players perform only a linear number of
modular exponentiations (in n) on furnishing inputs, we show how to detect
cheating with overwhelming probability. Another critical feature of our proposal



is, of course, its non-interactivity in the optimistic case. Additionally, even in
the presence of faults, our protocols may be completed in just two broadcast
rounds, and with O(n2) communications complexity.

3 Preliminaries

For the sake of simplicity, we assume throughout this paper the presence of a
reliable broadcast channel. As is well known, such a channel may be simulated
via Byzantine agreement in a network with reliable point-to-point delivery. (See
[7] for recent results in this area.) Another possible instantiation would be a
Web server that performs the function of receiving and publishing messages in
an honest and reliable manner. (Our constructions may also be employed in the
presence of an unreliable broadcast channel provided that a given message is seen
either by all players or by none. In this case, a dropped message may be modelled
as a faulty player.) We further assume that all messages are authenticated, i.e.,
securely bound to the identities of their originators. In practice, this may be
accomplished via digital signatures.

We define next the component functions of DC-nets. We denote the set of
participants in the DC-net by P = P1, P2, . . . , Pn. In what follows, when we
specify a value as public or published, we assume it is transmitted to all players
in P via an authenticated channel or entity. Setup is achieved by means of a
parameter generation function paramgen and a key distribution function keydist.
These functions are similar to those employed in standard discrete-log-based
distributed cryptographic protocols. They are called once at the beginning to
set up long-lived parameters shared by all players. A difference here, however,
is that we employ admissible bilinear maps as a basic tool in our constructions,
and must therefore make use of elliptic-curve based algebraic groups accordingly.
We assume the appropriate background on the part of the reader, and refer to
[5] for further details and notation.

– Parameter generation: Taking security parameter l as input, the func-
tion paramgen outputs a quintuple ρ = (p,G1, G2, ê, Q), where G1 and G2

are two groups of order p, Q is a generator of G1 and ê : G1 × G1 → G2 is
an admissible bilinear map [5]. We require furthermore that the Decisional
Bilinear Diffie-Hellman (DBDH) assumption holds for ê. Using the terminol-
ogy of [5], the function paramgen is a parameter generator that satisfies the
DBDH assumption. (For our “long” DC-net construction, we may weaken
our hardness assumption to the Bilinear Diffie-Hellman problem (BDH), i.e.,
the computational variant, rather than the decisional one.) In practice, the
map ê may be instantiated with the Weil pairing over a suitable elliptic
curve. The function paramgen may be executed by a trusted entity, which
is our working assumption here. (Alternatively, it may be accompanied by
a non-interactive proof of correct execution.) The quintuple ρ is published.
We leave system parameters implicit in our notation where appropriate.



– Key generation: The function keydist takes as input the parameter spec-
ification ρ. It yields for each player Pi a private key xi ∈U Zp and a corre-
sponding public key yi = xi · Q. Each private key xi is additionally shared
among other players in a (k, n)-threshold manner. In particular, let fi be
a polynomial over Fp of degree k − 1 selected uniformly at random such
that fi(0) = xi. Player Pj ∈ P receives from player Pi the private share
xi,j = fi(j), with a corresponding public share yi,j = xi,j · Q. We assume
that the function keygen is an algorithm executed by a trusted entity and a
secure environment. (In practice, it may be instantiated by means of a dis-
tributed protocol; see [16] for an example of such a protocol and a discussion
of the underlying security guarantees.)

We now describe the functions employed in the DC-net itself. We assume that
players have access to a trustworthy global session counter s and specification
Πs ⊂ P of players participating in the session s. Note that the privacy properties
of our construction (defined in appendix A) do not rely upon publication of s or
Πs in a trustworthy manner, but the robustness does.

Posting: (Vi,s, σi,s, i, s) ← post(s,mi, xi) ; [Πs, {yj}j∈P ].
The function post is invoked in session s by every player in Πs. It returns to each
player a set of outputs that hides that player’s input, as well as auxiliary data
that proves the correctness of the outputs. More precisely, the function post is
a randomized function that takes as input the session counter s, a message mi

and the private key xi of player Pi. Inputs to the function also include the set
of players Πs participating in the sessions and all public keys. For visual clarity,
we set off the latter parameters in square brackets. We define πs = |Πs| to be
the number of participants in session s. The function post outputs:

– An output vector Vi,s =
(
Vi,s(1), . . . , Vi,s(πs)

)
. Let us denote the vector

of random pads used by player Pi as Wi,s =
(
Wi,s(1), . . . ,Wi,s(πs)

)
. The

elements of the output vector and of the pad vector agree in all positions
but one: the position ci where message mi is xored with the pad. In other
words Vi,s(w) = Wi,s(w) for all w 6= ci and Vi,s(ci) = mi ⊕Wi,s(ci)

– Subsidiary data σi,s. The value σi,s includes the identity of player Pi and a
proof of valid formatting of the vector Vi,s.

Verification: {0, 1} ← verify((V, σ), s, i, Πs) ; [{yj}j∈P ].
The function verify determines the correctness of the vector V output by a given
player Pi. When V is deemed correct, verify outputs ‘1’; otherwise it outputs ‘0’.
This function can be called non-interactively by any player who wishes to verify
the correctness of an output vector produced by another player.

Message extraction: M ← extract({V ′
i,s}i∈Π ,Πs) ; [{yj}j∈P ].

Once all players in Πs have posted their output vectors, it should be possible
for any entity to extract the messages input to the mix procedure. We denote
by extract the function that accomplishes this. The outputs of extract is a set M



of at most πs distinct messages.

Pad reconstruction: Wi,s ← reconstruct(i,Πs, {xi,j}j∈Πs
).

If a player Pi ∈ Πs fails to produce a correct output vector (or any output at
all), a quorum of other players in Πs can reconstruct that missing output. We
denote by reconstruct the function that accomplishes this.

We denote by DC = {paramgen, keydist, post, verify, extract, reconstruct} the
complete set of functions constituting a DC-net.

4 Short DC-Net Protocol

4.1 Intuition and tools

In our first construction, the basic message unit is an algebraic group element.
We would like to enable players to prove correct behavior in this setting with
overwhelming probability. This combination of features leads to two basic prob-
lems:

Problem 1: We would like any given player Pi to be able to compute a partial
pad ki,j(w) with any other player Pj in a non-interactive way. In fact, Pi must
be able to compute many such partial pads non-interactively, namely one partial
pad for every value w. Additionally, Pi must be able to prove the correctness
of any partial pad ki,j(w) (or more precisely, of any pad, which is composed of
partial pads).

The contradiction: Suppose that Pi computes partial pad ki,j(w) using a stan-
dard D-H protocol employing her own secret key xi and the public key yj of
player Pj . (I.e., ki,j(w) = yxi

j .) Since this computation is algebraic in form, Pi

can efficiently prove statements in zero knowledge about ki,j(w). On the other
hand, it is only possible to perform this D-H computation once, and Pi needs to
do so for many different values of w! An alternative possibility is to hash yxi

j with
w to generate partial pad ki,j(w). In this case, though, there is no way to prove
that ki,j(w) was correctly constructed with overwhelming probability without
inefficient techniques like cut-and-choose or general secure function evaluation.

The solution: It is in resolving this problem that bilinear mapping comes into
play.3 It is possible to think of a bilinear map as a way of effecting a D-H
exchange non-interactively across many different algebraic bases. In particular,
Pi can compute the partial pad ki,j(w) = ê(yj , xiQw) = ê(Q, Qw)xixj , where Qw

3 There are other possible solutions to this problem without use of bilinear maps, e.g.,
changing keydist such that the sum

∑
i xi = 0 mod q becomes a special condition on

private keys. This, however, would mean that in practice the protocol could never
be efficiently realized by having players generate their own key pairs. Also, this type
of solution would not work for the long DC-net construction.



is a randomly selected elliptic-curve point specific to w. We may thus think of
Pi as performing a D-H exchange relative to a different algebraic base ê(Q, Qw)
for every different value of w.

Problem 2: When a player Pi publishes a vector V of pads, she must prove
its correctness. This means proving that every element of V is a correct pad –
except the one element modified to contain the message mi that Pi wants to
publish. The problem here is that Pi of course does not wish to reveal which
element of V contains the message mi!

The solution: For each pad position w in her published vector, player Pi commits
to a bit bw. She lets bw = 0 if the element in position w represents a correct pad,
and bw = 1 otherwise. Pi then proves two things:

1. For every position w, either the pad is correct OR the bit bw = 1.
2. The sum

∑
w bw = 1, i.e., the vector V contains at most one message.

To prove both of these facts, we use standard techniques for non-interactive
proofs regarding statements involving discrete logs. We do so over the groups
G1 and G2. As explored in many papers, these techniques permit honest-verifier
zero-knowledge proof of knowledge of discrete logs [20], proof of equivalence of
discrete logs [12], and first-order logical statements on such statements [9]. The
proof protocols may be made non-interactive through use of the Fiat-Shamir
heuristic [15]; they may be perfectly simulated with application of the random
oracle model to the hash function used to generate challenges. We draw on
the notation of Camenisch and Stadler [8] for a unified treatment and formal
specification of these proofs in our detailed protocol. (E.g., PoK{x : e = gx

∧
f =

hx} means a proof of knowledge that logg e = logh f , and is NIZK for our
purposes.)

4.2 Protocol details

Parameter and key generation. The function paramgen outputs the set of
parameters ρ = (p,G1, G2, ê, Q). We also assume the existence of a hash func-
tions h : {0, 1}∗ → G1 that is publicly known. The function keydist(ρ) then
outputs a secret key xi ∈ Zp for each player Pi. Recall that shares of this secret
key are distributed to other players and that all public keys are published.

Message posting. The pads Wi,s(k) for player Pi in session s are computed as
follows. We compute the point Qk = h(s||k) on G1 and let

Wi,s(k) =
∏

j∈Πs;j 6=i

ê(Qk, yj)δi,jxi ,

where δi,j = 1 if i < j and δi,j = −1 if j < i. Player Pi then chooses at random
a value ci ∈ Πs and multiplies the message mi ∈ G2 with pad Wi,s(ci) ∈ G2 to
produce the output vector Vi,s. We turn now to the computation of the auxiliary
verification data σi,s:



1. Let g and h be two fixed random generators in a group G of order q for which
the discrete logarithm problem is hard. Player Pi chooses independently at
random n values r1, . . . , rn ∈ Zq. For 1 ≤ k ≤ n, where k 6= ci, Pi computes
wk = hrk . Pi computes wci = ghrci .

2. The prover proves knowledge of logh(g−1
∏n

i=0 wi), i.e., PoK{r :
∏n

i=0 wi/g =
hr}..

3. For 1 ≤ k ≤ πs, Pi proves the following statement:
(

Wi,s(k) = ê(
∏

yj , Qk)xi and Pi knows logh(wk)
)

or
(

Pi knows logh(wk/g)
)

i.e., PoK{x, r : (Wi,s(k) = ê(
∏

yj , Qk)x
∧

wk = hr)
∨

(wk/g = hr)}.
The string σi,s consists of all the values computed in steps 1 and 2 above.

Finally, the function post outputs (Vi,s, σi,s, i, s).

Verification. Anyone can verify non-interactively that the values computed in
σi,s are correct.

Message extraction. Given the πs vectors V1,s, . . . , Vπs,s published by the
players in Πs, anyone can non-interactively compute rk =

∏
i∈Πs

Vi,s(k) for
k ∈ Πs. Recall that the definition of the pads is such that

∏
i∈Πs

Wi,s(k) = 1.
We need now to introduce a notation for the subset of players who chose to
publish their message in position k for a given k. For k ∈ Πs, we denote
c−1(k) = {i ∈ Πs | ci = k}. Note that the subset c−1(k) could be empty, or
contain a single or multiple players. Now it is clear that in every position k for
which c−1(k) is a singleton {i}, we have rj = mi. All other messages mi for
which c−1(ci) is not a singleton are unrecoverable in the output. The output of
the function extract is the set of messages mi which are recovered in the output.

Pad reconstruction. If a subset of players P ⊆ Πs fail to publish their output
vector, the remaining players can reconstruct the pads of missing players, and
compute the output of the DC-net, as follows. Each player Pi for i 6∈ P publishes
xj,i · Qk for all j ∈ P. Anyone can verify the correctness of these values by
checking that ê(Q, xj,iQk) = ê(yj,i, Qk). Furthermore, these values enable any
player to recompute the pads of missing player Pj since ê(Qk, yi)xj can be derived
from the values ê(xj,iQk, yi) by polynomial interpolation.

5 Long DC-Net Protocol

5.1 Intuition and tools

In order to obtain a “stretched” pad of the desired length in our long DC-net,
it is necessary to apply a PRNG to a secret seed K, i.e., to use symmetric-key
techniques. In consequence, proofs based on the algebraic structure of pads are
no longer possible, and there are no efficient techniques for effecting proofs with
overwhelming probability. Our use of symmetric-key techniques thus engenders
two basic problems:



Problem 1: We face the same basic problem as in the short DC-net: It is
necessary to prove correct construction of vectors without revealing where the
messages are positioned. But the use of symmetric-key primitives means that we
cannot benefit from the same NIZK proof techniques as in the short DC-net.

The solution: We resolve this problem by employing proof techniques that detect
cheating players with high, but not overwhelming probability. In particular, we
use a technique very similar to that of “randomized partial checking” [18] for
mixnets. The idea is for a player Pi to prove correctness of her published vector V
by generating a random challenge R non-interactively. This challenge R specifies
a subset of half of the elements in the vector V . Pi reveals the underlying seeds
for these as part of her proof. These seeds are derived essentially just like pads
in the short DC-net. Thus, it is possible to provide a simple proof of correctness
that may be non-interactively verified by other players.

One problem, of course, is that if Pi transmits a message mi, then with
probability 1/2, the challenge R will lead to opening of the seed for the position
containing that message. This problem may be resolved quite simply: Pi chooses
challenges until she finds one that does not lead to opening of the seed for the
message position. Some tens of attempts will permit this with overwhelming
probability.

Since only half of the seeds are revealed, some number of invalid pads can
escape detection. In particular, for a given challenge, any seed will be revealed
with probability 1/2. Hence, given u invalid pads, an adversary must perform
work roughly 2u to compute a challenge R that does not reveal cheating. In
practice, therefore, we would expect an adversarial player to be unable to insert
more than, say, 80 invalid pads into a vector. Thus such a player can “jam” only
a limited number of slots. Assuming large enough vectors and adversarial control
of a small enough set of players, the throughput for the DC-net remains fairly
high.

Thus, our proof protocol is as follows. Let h be a hash function from {0, 1}∗
to Zn (modelled in our proof as a random oracle).

1. The player chooses a random seed r and computes h(V ||r||1), h(V ||r||2), . . .
until all these values form a subset S ⊂ {1, . . . , n} of size |S| = n/2. Note
that i 6= j does not imply h(V ||r||i) 6= h(V ||r||j) so that more than n/2
computations may be required to obtain the set S.

2. If i0 ∈ S, the set S is discarded. The prover returns to step 1 and chooses a
new random seed. Step 1 is successful on average after 2 tries.

3. Otherwise, the protocol outputs the random seed r and the set S. For all
j ∈ S, the protocol also outputs the secret key kj .

4. The verifier verifies that the set S is correctly computed from randomness
r. For all j ∈ S, the verifier uses the key kj to verify the correctness of Vj .

Problem 2: Since the seeds used to compute pads in our long DC-net assume
the same form as those in the short DC-net, the reconstruction procedure is very
similar. The only difference in the process is that once a seed is recovered, the



PRNG must be applied to obtain the corresponding pad. What we highlight,
however, is that our use of bilinear maps is solving a fundamental problem in
the long DC-net construction.

In the short DC-net, honest players could, in principle, make do without using
bilinear maps. Indeed, they can reconstruct a pad in a verifiable way without
revealing any long term secrets, by exploiting the algebraic structure of pads. (As
explained in the footnote above, it is possible in principle to have, for example,
secret keys {xi} that cancel, i.e., such that

∑
i xi = 0 mod q, thereby engendering

pads that “cancel.” Note that this results in a very cumbersome key setup.) In
the case of long DC-nets, however, there is no good way to do this. Briefly stated,
the application of the PRNG eliminates algebraic structure on the pads.

The only way, therefore, to achieve “cancellation” of pads in a long DC-net,
is for pairs of players to share secrets. But as already noted, in a standard setup
without bilinear maps, it is possible for a pair of players (Pi, Pj) to establish
a shared secret S non-interactively only once through application of D-H to
their public keys. This secret S can be used to generate new secrets for multiple
sessions through application of symmetric-key primitives, e.g., secrets may be
generated as h(S, 1), h(S, 2), . . .. But without expensive general techniques, there
is no way to reconstruct a given secret h(S,w) without revealing S itself and
consequently compromising all shared secrets between Pi and Pj .

The solution: This is where bilinear maps are helpful. As explained above, the
intuition is that for a single pair of public keys, a bilinear map may be thought
of as permitting non-interactive D-H key establishment across many different
algebraic bases. Thus, each seed may be reconstructed individually by honest
players holding shares of the private keys of Pi and Pj . Under the (Bilinear)
Diffie-Hellman assumption, this may be accomplished without compromising
the privacy of other seeds. (In algebraic terms, one seed might assume the form
S1 = g1

xixj , while another assumes the form S2 = g2
xixj . Provided that g1 and

g2 are random, knowledge of S1 does not permit computation of S2.)

5.2 Protocol details

In this section, we define our long DC-net protocol and highlight the differences
with the short DC-net. The main differences between the long and short schemes
lie in the definition of the auxiliary data σi,s and the verification algorithm.

Parameter and key generation. This step is nearly identical to the short pro-
tocol. The function paramgen outputs parameters ρ = (p,G1, G2, ê, Q). As in the
short protocol, we use a hash functions h : {0, 1}∗ → G1. We also assume the ex-
istence of a publicly known pseudo-random number generator f : G2 → {0, 1}l,
where l is the length in bits of messages processed by the long DC-net. (For
the purposes of our proofs, we model this as a random oracle.) The function
keydist(ρ) distributes keys to all players.



Message posting. Recall that we define the point Qk = h(s||k) on G1. The
pads Wi,s(k) for player Pi in session s are computed as follows:

Wi,s(k) = ⊕j∈Πs;j 6=i f
(
ê(Qk, yj)xi

)

Recall that player Pi then chooses at random a value ci ∈ Πs and XORs the
message mi with pad Wi,s(ci) to produce the output vector Vi,s. We turn now
to the computation of the auxiliary verification data σi,s:

1. Recall that the number of participants in session s is denoted πs. Let ϕ be a
hash function from {0, 1}∗ to Zπs

. Using ϕ and a random value r, the player
Pi computes a subset S ⊂ {1, . . . , πs} of size πs/2 such that ci 6∈ S.

2. For all j ∈ S, Pi proves that the value Vi,s(j) is computed correctly by
revealing xiQj .

The string σi,s consists of the values computed in steps 1 and 2 above. Fi-
nally, the function post outputs (Vi,s, σi,s, i, s).

Verification. Anyone can verify non-interactively that the values computed in
σi,s are correct.

Message extraction. Given the πs vectors V1,s, . . . , Vπs,s published by the play-
ers in Πs, anyone can non-interactively compute rk = ⊕i∈ΠsVi,s(k) for k ∈ Πs.
Recall that the definition of the pads is such that ⊕i∈ΠsWi,s(k) = 0. Using the
same notations as in the short protocol, it is clear that rk = ⊕i∈c−1(k) mi. In
other words, in every position k for which c−1(k) is a singleton {i}, we have
rj = mi. All other messages mi for which c−1(ci) is not a singleton are unrecov-
erable in the output. The output of the function extract is the set of messages
mi which are recovered in the output.

Pad reconstruction. If a subset of players P ⊆ Πs fail to publish their output
vector, the remaining players can reconstruct the pads of missing players, and
compute the output of the DC-net, as follows. Each player Pi for i 6∈ P publishes
xj,i · Qk for all j ∈ P. Anyone can verify the correctness of these values by
checking that ê(Q, xj,iQk) = ê(yj,i, Qk). Furthermore, these values enable any
player to recompute the seeds of missing player Pj since the value ê(Qk, yi)xj

can be computed from the values ê(xj,iQk, yi) by polynomial interpolation. The
pads themselves may then be computed through application of f .

6 Conclusion

We have proposed two new DC-net constructions. Unlike previous DC-net pro-
posals, our constructions allow for efficient detection and identification of cheat-
ing players with high probability. When cheating is detected, a single additional
broadcast round enables full fault recovery. Our DC-net protocols are thus re-
silient to the jamming attacks that negated the simplicity and non-interactivity
of earlier DC-net proposals.



In the appendix, we define a formal model in which we prove the privacy
and correctness of our constructions. We observe that our comparatively simple
definitions and proofs are made possible by the non-interactivity of DC-nets.
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A Security Definitions

A.1 Privacy

We consider a static adversary A capable of actively corrupting a set PA of fewer
than n/2 players in P . We regard a mix network DC as private if A is unable to
determine the origin of any message input by an honest player with probability
significantly better than a random guess. We capture this concept by way of an
experiment in which A selects just two honest players p0 and p1 as targets. The
adversary may also choose a pair of plaintexts (m0,m1) to serve as inputs for
these two target players. The plaintexts are randomly assigned to p0 and p1; the
task of A is to guess this assignment.

We let ˜posti(·, ·, ·) denote an oracle that posts a message on behalf of player
Pi. The adversary may specify s,m and Πs. The oracle is assumed to have access
to the private keys of Pi. The adversary may not invoke a given oracle twice on
the same session identifier s. (In a real-world protocol, this restriction is easily
enforced through use of a local counter.)

The oracle ˜posti(·, ·, ·) also produces auxiliary data σi,s. A small difficulty
arises in the long protocol, where σi,s reveals half the pads of player Pi. If the
pads of all honest players are revealed in the positions where p0 and p1 posted
m0 and m1, then A can trivially determine which player posted which message.
This happens with low probability if the number of honest players is large. In
our privacy experiment, we assume that the auxiliary data does not reveal the
pads used by p0 and p1 in the positions where they posted m0 and m1.

The oracle ˜post
∗(·, ·, ·, ·) is a special oracle call that causes the two tar-

geted players to post the chosen messages (m0,m1). In particular, this or-
acle call is equivalent to two successive oracle calls: ˜postp0

(mb, s, Πs, ·) and
˜postp1

(m1−b, s, Πs, ·), where p0, p1 ∈ Πs.
We let ˜reconstructi(·, ·) denote an oracle that returns the reconstructed pad of

player Pi. The adversary may specify the session s and Πs. The oracle is assumed
to have access to the private key held by Pi. The oracle ˜reconstructi may be called
by A at any point during the experiment, with the following restriction: A may
not call ˜reconstructp0 or ˜reconstructp1 for the session s in which A chose to call
the special oracle ˜post

∗. This restriction is natural: it simply states that A is not
allowed to ask for the pads of players p0 and p1 in the session in which it must
guess the assignment of messages m0,m1 to p0, p1.

We let ∈U denote uniform, random selection from a set. Security parameters
are left implicit.



Experiment Exppriv
A (DC); [k, n, l]

paramgen(l); keydist;
PA ← A({PKi});
(m0,m1, p0, p1) ← A{ ˜posti(·,·,·,·)}i∈P−PA , ˜reconstructi(·,·);
b ∈U {0, 1};
b′ ← A{ ˜posti(·,·,·,·)}i∈P−PA , ˜reconstructi(·,·), ˜post∗(·,·,·,·);
if b′ = b output ‘1’ else output ‘0’;

We define the advantage of A in this experiment as

Advpriv
A (DC); [k, n, l] = pr[Exppriv

A (DC); [k, n, l] = ‘1’]− 1/2 .

We say that our scheme is private if this advantage is negligible for all adversaries
A with polynomial running time (where the quantities are defined asymptotically
with respect to l in the usual manner). The following propositions show that our
short and long DC-nets are private. (The proofs are in appendix B.)

Proposition 1. The short DC-net protocol of section 4 is private if the Deci-
sional Bilinear Diffie-Hellman (DBDH) problem is hard in the group G1.

Proposition 2. The long DC-net protocol of section 5 is private if the Bilinear
Diffie-Hellman (BDH) problem is hard in the group G1.

Remark: the non-interactivity of the mix network DC makes possible this rela-
tively simple definition of privacy. In a mix network involving interaction among
players, an adversary can change the behavior of honest players by inducing er-
rors or failures in the outputs of corrupted players. The resulting broad scope of
adversarial behavior induces considerably more complex privacy definitions.

A.2 Correctness

We define correctness in terms of the ability of a corrupted player Pi to post
a vector V that has an invalid format, but is accepted by the function verify.
Invalid formatting may mean that V includes incorrectly computed pads or,
alternatively, that V contains an inadmissibly large number of messages. More
formally, we deem a vector V as correct if it constitutes a valid output of post
for the private key of the correct player. (Other definitions are possible.) We use
the triangular brackets ‘〈 〉’ to denote the set of possible function outputs.

Experiment Expcorr
A (DC); [k, n, l]

paramgen(l); keydist;
PA ← A({PKi}); ((V, σ, i, s), Πs) ← A;
if (V, σ, i, s) 6∈ 〈post(s,m, xi); [Πs, {yj}j∈P ]〉 for any m and

verify((V, σ), s, i,Πs); [{yj}j∈P ] = ‘1’ then output ‘1’;
else output ‘0’;

We define the advantage of A in this experiment as Advpriv
A (DC); [k, n, l] =

pr[Expcorr
A (DC); [k, n, l] = ‘1’]. We regard our scheme as providing correctness if

for all adversaries A with polynomial running time, this advantage is negligible.



Proposition 3. The short DC-net protocol of section 4 is correct.

Proposition 4. The long DC-net protocol of section 5 satisfies a weaker prop-
erty. If an adversary submits an output in which k pads out of n are incorrectly
computed, the probability that verify accepts this output is 2−k.

B Proofs of Privacy

Proposition 1. The short DC-net protocol of section 4 is private if the Deci-
sional Bilinear Diffie-Hellman (DBDH) problem is hard in the group G1.

Proof. Let A be a polynomial-time adversary who wins Exppriv
A (DC) with non-

negligible advantage ε. We use A to solve DBDH challenges with non-negligible
advantage as follows. We first call paramgen(l) to get parameters (p,G1, G2, ê, Q)
where G1 and G2 are groups of order p, Q is a generator of G1 and ê : G1×G1 →
G2 is an admissible bilinear map. Let (aQ, bQ, cQ, dQ) be a DBDH challenge in
G1 (the challenge is to determine whether d = abc or d is random).

We give A the output of paramgen(l). Next we simulate keydist for A. We
let the public keys of two players (say P1 and P2) be y1 = aQ and y2 = bQ.
For every other player, we choose a private key xi ∈U Zp and compute the
corresponding public key yi = xi ·Q. Given all these public keys, A returns the
set PA of players it controls. If P1 ∈ PA or P2 ∈ PA, we abort. Otherwise, we
give A the private keys of all the players in PA. We also give A the shares of the
private keys held by all the players in PA. For the private key of player P1 and
P2, which we do not know, we generate random shares.

A can then call the oracle ˜posti(·, ·, ·, ·) any number of times for i ∈ P − PA.
For all but one session for which A calls ˜post, we let h(s||k) = rs,kQ, where
the values rs,k ∈U Zp. For one session s0, we define h(s0||k) differently. We
choose 2 “special” positions k0, k1 ∈U {1, . . . , n} as well as R ∈U Zp. We define
h(s0||k0) = cQ, h(s0||k1) = RcQ and for k 6∈ {k0, k1}, we let h(s0||k) = rs0,kQ
for values rs0,k chosen at random in Zp.

To simulate ˜posti(·, ·, ·, ·) for A in session s, we need the pads Wi,s(k) =∏
j∈Πs;j 6=i ê(Qk, yj)δi,jxi , where Qk = h(s||k). For all session s 6= s0, we have

Qk = h(s||k) = rs,kQ and therefore we can compute the pad Wi,s(k) for all
players Pi (even for P1, P2) using the equality ê(Qk, yj)xi = ê(yi, yj)rs,k . For
session s0, we can compute the pads of all players except P1 and P2 whose
private key we do not know. If A calls ˜post for P1 or P2 in session s0, we abort.

Note that knowledge of the pads also enables us to simulate the auxiliary data
σi,s in both the short and the long protocol, as well as the oracle ˜reconstructi.

A then chooses two messages m0,m1 to be posted by two players p0, p1 of
the adversary’s choice. If (p0, p1) 6= (P1, P2), we abort the simulation. A may
again call ˜posti and we simulate that oracle as before.

Finally, A calls ˜post
∗ for a particular session. If that session is not s0, we

abort. Otherwise, we simulate ˜post
∗ as follows. For P1, we define the pads:

W1,s0(k0) = ê(Q, dQ)δ1,2
∏

3≤j≤n

ê(cQ, y1)δ1,jxj ,



W1,s0(k1) = ê(Q, dQ)δ1,2
∏

3≤j≤n

ê(RcQ, y1)δ1,jxj ,

W1,s0(k) =
∏

2≤j≤n

ê(y1, yj)δ1,jrs0,k for k 6∈ {k0, k1}

We define the pads for P2 similarly. We choose a bit b at random and let P1 post
mb in position k1 and P2 post m1−b in position k2. We simulate the corresponding
NIZK proofs for the auxiliary data using standard techniques by allowing the
simulator to set random oracle responses before making commitments.

A outputs a guess b′. If b′ = b, we guess that (aQ, bQ, cQ, dQ) is a DBDH
tuple, and otherwise that it is not. It remains to show that our guess is correct
with non-negligible advantage:

– When d = abc, by definition of A, we have b′ = b with advantage ε.
– When d 6= abc, our simulation of the pads W1,s0(k0),W1,s0(k1),W2,s0(k0) and

W2,s0(k1) was incorrect. There is consequently no way for A to distinguish
between respective partial pads for P1 and P2 of the form (V1, V2) = (Rand⊕
m1, Rand) and (V1, V2) = (Rand,Rand ⊕m2), because they are identically
distributed (here, Rand denotes random values). In other words, A can’t
possibly guess the bit b with non-negligible advantage.

This shows that when the simulation does not abort, A solves DBDH challenges
with advantage ε/2. The probability that the simulation does not abort is greater
than a value that is polynomial in the security parameter. Overall, we have used
A to solve DBDH challenges with non-negligible advantage. ut
Proposition 2. The long DC-net protocol of section 5 is private if the Bilinear
Diffie-Hellman (BDH) problem is hard in the group G1.

Proof. The proof is similar to that of Proposition 1. Let A be a polynomial-
time adversary who wins Exppriv

A (DC) with non-negligible advantage ε and let
(aQ, bQ, cQ) be a BDH challenge (the challenge is to compute dQ, where d =
abc). We embed the BDH challenge as before. The difference worth noting is
that the output of the bilinear function, in the long protocol, is expanded with a
PRNG f . We model f as a random oracle. There are two possible distributions
for the simulator: distribution D, where the simulator calls f(dQ) (for the correct
BDH value d), and distribution D̃, where the simulator uses a random value. A
cannot distinguish between D and D̃ unless it calls f on input dQ.

If A cannot distinguish D from D′, it cannot distinguish a real-world protocol
invocation from one in which random pads are used and therefore cannot learn
anything about which player posted which message. A then must be able to dis-
tinguish D from D′ and so must call the random oracle on input dQ occasionally.
We answer the BDH challenge with one of A’s calls to the random oracle and
win with non-negligible probability since A is polynomially bounded. ut


