
Funkspiel Schemes: An Alternative to

Conventional Tamper Resistance

Johan H̊astad

Royal Institute of Technology∗

Stockholm, Sweden

johanh@nada.kth.se

Jakob Jonsson

RSA Laboratories

Stockholm, Sweden

jjonsson@rsasecurity.com

Ari Juels

RSA Laboratories

Bedford, MA, USA

ajuels@rsasecurity.com

Moti Yung

CertCo, Inc.

New York, NY, USA

moti@certco.com

moti@cs.columbia.edu

September 25, 2013

Abstract

We investigate a simple method of fraud management for secure de-

vices that may serve as an alternative or complement to conventional

hardware-based tamper resistance. Under normal operating conditions in

our scheme, a secure device includes an authentication code in its commu-

nications, e.g., in the digital signatures it issues. This code may be verified

by a fraud management center under a pre-determined key σ. When the

device detects an attempted break-in, it modifies σ. This results in a

change to the authentication codes issued by the device such that the

fraud management center can detect the apparent break-in. Hence, in

contrast to the case with typical tamper-resistance schemes, the deployer

of our proposed scheme seeks to trace break-ins, rather than prevent them.

In reference to the wartime practice of physically capturing and subvert-

ing underground radio transmitters – a practice analogous to the capture

and use of secret information on secure devices – we denote this idea by

the German term funkspiel, meaning “radio game.”

One challenge in constructing a funkspiel scheme is to ensure that

an attacker privy to the authentication codes of the secure device both

before and after the break-in, as well as the secrets of the device following

the break-in, cannot detect the alteration to σ. Additional challenges

∗Some of this work was done while visiting RSA Laboratories.

1

involve minimizing the communication and computation overhead, the

requirement for use of shared secrets, and the state information associated

with the authentication codes. We present several simple and practical

schemes in this paper.

1 Introduction

In 1942, a member of the underground Allied radio network in Holland named
Lauwers was captured by German intelligence agents. Lauwers had been trained
in such an event to feign cooperation with his captors, but to alert London
covertly by omitting a security check from his messages. For Lauwers, the se-
curity check consisted of a deliberate corruption of every sixteenth letter in his
messages. The Germans, however, were aware of the existence of such security
checks, and also in possession of three messages previously transmitted by Lauw-
ers. Hoping to be able to transmit further, misleading messages to the Allied
underground, the Germans demanded that Lauwers reveal his security check. As
it happened, the sixteenth letter in two of the three captured transmissions was
the letter ‘o’ in the word “stop”. Lauwers, therefore, cleverly claimed that his
security check consisted of a periodic corruption of the word “stop”. This claim
was seemingly consistent with previous transmissions, and successfully spoofed
Lauwer’s German captors.1 The Germans referred to the practice of subverting
radio transmission setups like that of Lauwers as a funkspiel, or “radio game”
[17].

This historical anecdote mirrors a scenario encountered in contemporary
security systems. The underground transmitter may be regarded as analogous in
function to a secure hardware device, such as a smartcard, while the intelligence
agents represent an attacker attempting to break into the device. In this case,
the “funkspiel” mounted by the attacker is an attempt to compromise the secrets
contained in the device in such a way that the secrets remain valid.

While manufacturers of secure devices have developed a panoply of coun-
termeasures against invasive attacks, these devices remain largely vulnerable to
a variety of probing techniques [3, 4, 9, 18]. One of the most effective mea-
sures for protecting tamper resistant modules is to have them “zeroize”, that is,
obliterate, sensitive information when a break-in attempt is detected. In this
way, a compromised device is disabled, and therefore rendered valueless to an
attacker. It is often possible for a sophisticated attacker to circumvent such
countermeasures, and thus capture intact the secret information in the device
[3]. The example of Lauwers offers an alternate strategy. Rather than zeroizing
sensitive information when a break-in is detected, we can instead alter it. In
this way, a forger will have greater difficulty telling whether or not his attempts
to circumvent the countermeasures in the card have been successful. If the al-

1The cleverness of Lauwers was not ultimately rewarded. The Allies, accustomed to poor

telegraphy skills in their agents, assumed that the incorrect security check was a mistake.

2

teration of sensitive information goes undetected, then a system administrator
can be covertly alerted to the compromise of a device. Instead of seeking to
prevent device compromise in this case, the system administrator is then able
to identify and trace successful attacks. We refer to this approach as a funkspiel
scheme.2 Funkspiel schemes may serve as an alternative to the approach of
zeroizing secrets, or else as a complementary technique.

In its most naive form, a funkspiel scheme might be as follows. A smartcard
generates signatures using private key SK under normal operating conditions,
but replaces this key with a new, unrelated key SK ′ upon detection of a break-
in attempt. The problem with this approach is that an attacker with access to
signatures previously generated by the card will be able to detect the change
in key, and thereby determine that the device is seeking to transmit a covert
alarm.

The trick of Lauwers, of course, was to alter his authentication check in
such a way that it was seemingly consistent with the transcripts of his past
transmissions, but capable of alerting an allied party. In this paper, we show
how to achieve an analogous property in a cryptographic setting. This provides
us with a new approach for managing fraud in a system dependent upon tamper
resistant devices. In a smartcard-based ATM cash withdrawal system that uses
conventional tamper-resistance methods alone, a forger attempting to break into
a smartcard will find himself either capable of defeating the tamper-resistance
measures, yielding a false cash card without detection, or else with a damaged
and non-functioning card. Given the use of a funkspiel scheme in such a system,
there is an intermediate possibility. The forger may trigger a covert alarm,
providing the system administrator with an opportunity to identify and trace
forged cards, and ultimately locate the forger.

1.1 Organization

In section 2, we review previous, related ideas in the cryptographic literature.
We propose three different funkspiel schemes in section 3. We discuss security
in section 4, and conclude in section 5 with proposals for some directions for
future research.

2 Previous Work

The covert channel through which a device alerts a system administrator to a
compromise in a funkspiel scheme is similar in flavor to a subliminal channel.
The notion of a subliminal channel arises in the context of the prisoners’ prob-
lem. Here, two players, known as “prisoners”, agree in advance upon a secret
key σ. Their aim then is to hide information in seemingly innocuous messages

2We reject the perhaps somewhat more accurate term “anti-funkspiel scheme” as too cum-

bersome and confusing.

3

in such a way that a third player with access to their communications, known
as a “jailor”, cannot read or even detect the hidden information. Simmons [23],
for example, investigated methods of superimposing covert channels on DSS
signatures. These schemes are such that even if the jailor captures the signing
keys of the prisoners, he cannot detect the existence of the subliminal channel.
Capture by the jailor of σ, however, will uncover the contents of the channel.

Another closely related notion is that of deniable encryption, as proposed
in [11]. Deniable encryption is an asymmetric encryption scheme in which the
sender encrypts a plaintext m as ciphertext c under a randomization factor r.
The receiver can successfully extract the plaintext m. The sender is capable,
however, of determining a different pair (m′, r′) such that m′ 6= m, but c ap-
pears to an attacker to be a correct corresponding ciphertext. The aim here is
for the sender of a message, placed under duress by a third party, to be able
to repudiate the originally transmitted plaintext. The idea of producing false
plaintexts consistent with previous outputs is similar to the goal of a funkspiel
scheme. In general in a funkspiel scheme, however, the information of the sender
at the time of capture need only be such that the attacker cannot detect incon-
sistency with previous transcripts. There is no need, as in a deniable encryption
scheme, for the sender to produce plaintexts or keys for these transcripts. (We
do nonetheless propose one funkspiel variant meeting this requirement.) At the
same time, while deniable encryption seeks to protect previously transmitted
messages, a funkspiel scheme in essence aims to corrupt future messages in an
undetectable fashion. In the same spirit as denable encryption, deniable au-
thentication seeks to enable repudiation of previously authenticated messages.
This idea is addressed in [13, 5].

In an electronic secret-ballot election, a voter must be able to prove securely
to the voting authorities that she cast her vote in a particular way. At the same
time, so as to avoid the possibility of vote-buying or forcible coercion of voters,
it is desirable for a voter to be unable to prove her choice to another party.
Schemes with this latter property, investigated in, e.g., [7, 22, 21], are referred
to as receipt-free voting schemes. As a ciphertext ballot cast by a given voter is
generally visible to other voters, and thus to potentially malicious parties, the
aim in a receipt-free voting system is much like that in a deniable encryption
scheme. The voter must be able to produce two different plaintexts for a given
ciphertext ballot, so that it is impossible for the voter to construct a proof
that she has voted in a given fashion. As it is possible for a vote-buyer to
construct the ciphertexts in advance on behalf of the voter, deniable encryption
does not quite accomplish the aims of a receipt-free voting system, and it is not
known how to construct a correct receipt-free voting scheme without the aid
of untappable channels. Thus the framework in receipt-free voting systems is
rather different from that which we consider here.

As we do in this paper, Burmester, Desmedt, and Seberry [10] as well as
Bellare and Miner [6] consider the notion of protecting past history in a device
whose secret information has been compromised. They propose what they refer

4

to as a forward-secure signature scheme. The signer in their scheme holds a fixed
public key PK and an initial private key SK1. On signing the ith message, the
signer discards the key SKi and generates a new private key SKi+1. Thus, the
Bellare and Miner scheme employs a mechanism for key evolution after each
step as a means of protecting past information. The special security property
of the Bellare and Miner scheme is that an attacker who has seized key SKi is
unable to forge messages with indices less than i. He is, however, able to forge
future messages straightforwardly. The scheme in [10] provides forward security
to escrowed keys for a public-key cryptographic systes. Once a key is removed
from escrow, associated past messages can no longer be opened.

Like the above schemes, our constructions in this paper draw on techniques
of key evolution as a mechanism for protecting past history. In contrast to the
scenario envisaged in [6], however, we consider that an attack may be detected
by the device protecting the signature key of the user. Our goal is therefore
somewhat different. The Bellare and Miner construction employs alteration
of signature secrets to prevent attacks involving expired signature keys. We
impose the additional requirement, when an attack is detected, that alteration
of signature secrets be undetectable by the attacker, even with access to previous
public transcripts. Given our exploration of a different security model, we are
able to achieve wider variety and greater efficiency in our constructions than
[6]. Nonetheless, our techniques and goals are somewhat similar in flavor, and
[6] represents important antecedent work.

The notion of a covert distress channel achieved by alteration to a secret
key has appeared previously in a proposal for “distress cash” by Davida et al.
[12]. They describe a cash system in which each user possesses two PINs, one
PIN for normal use and a secondary “distress” PIN. When placed under duress,
e.g., when physically coerced, the user employs the distress PIN, rather than
the normal one. With use of the distress PIN, the transaction proceeds in an
apparently normal fashion, but a covert distress signal is transmitted to the
appropriate authorities.

A distress PIN relies on the sustained integrity of the transaction transcripts
of the system in which it is used. An attacker with access to transcripts of
previous authentication sessions and capable of breaking into the device of the
sender can distinguish a valid PIN from the duress PIN. As explained above, our
goal in this paper is similar in spirit to that motivating deployment of distress
PINs, except that we seek to employ hardware modification of secrets, rather
than human modification, and aim to tolerate compromise of hardware integrity.

2.1 Example funkspiel deployment

To provide a more concrete idea of how a funkspiel scheme might be deployed, we
briefly sketch an example. Consider an ATM (Automatic Teller Machine) sys-
tem in which a user U possesses a smartcard containing a private signature key
SKU and a certificate CU on the corresponding public key. When Alice wishes

5

to make a withdrawal, she inserts her card into the ATM machine. By au-
thenticating herself in an appropriate fashion to the card using, e.g., a PIN, she
produces a signature ΣSKA

[m] on some messagem = “I want to withdraw $50”.
The ATM verifies the validity of m prior to dispensing the requested cash. The
ATM also verifies Alice’s account balance and other information by communi-
cating with a central bank server.

The integrity of the cards in this system depends upon the inability of an
attacker to seize SKU from the card of a legitimate user U or to modify the
card so as to produce signatures without proper authorization. To protect the
system using a funkspiel scheme, we might include an additional secret sU in the
card of user U , and also store sU in the record for U in the central bank server.
In a given transaction originally involving message m, the card for user U in
this modified system appends to m a corresponding code cm based on sU . The
validity of this code is verified by the central server during the cash withdrawal.

If an attacker breaks into a card in a detectable fashion, the card replaces
the secret sU (or a derivative thereof) in an undetectable manner with some
secret s′U . When the attacker attempts to use the card at an ATM, produc-
ing signed message m, the corresponding code cm will be incorrect. The ATM
will thus learn of the fraud attempt on communicating with the central server.
Appropriate action may then be taken to assist fraud management personnel:
a silent alarm may be triggered or the user may be photographed. The con-
ventional tamper resistance mechanism, namely erasure of card secrets, would
instead render a card invalid, alerting the attacker to her failed attempt, and
enabling her to avoid being traced or captured.

3 Several Funkspiel Schemes

We may regard a funkspiel scheme as including the participation of three players,
a sender, a receiver, and an attacker. In an initial keying step, the sender and
receiver compute a shared secret key using an algorithm KeySet, or else exchange
certified public keys. In time step i, the sender is presented with a message
mi, typically selected by the receiver or generated in response to some desired
transaction. In an attack scenario, it is possible that mi may be selected by the
attacker. The sender employs an algorithm Sig to produce a response ci. This
response plays a role similar to that of a digital signature or a MAC depending
on the situation. After producing ci, the sender may execute a key evolution
algorithm KeyEv that updates her secret key.

The receiver receives some subset of the message/response pairs {(mi, ci)}
of the sender in an arbitrary order, and must be able to determine whether each
one is valid. The receiver does this by means of a verification algorithm that we
denote by Ver.

On detecting a break-in attempt by the attacker in time step t, the sender
initiates a key swapping algorithm denoted by Swap. This algorithm modifies

6

the internal state of the sender. The attacker may be assumed subsequently to
gain access to all state information held by the sender, as well as all previous
messages and responses.

The aim of an attacker is to try to forge valid responses on new, future
messages mt,mt+1, . . . of his choice. The security of a funkspiel scheme has two
aspects, which we elaborate on in section 4:

1. The attacker should be unable to determine whether or not the sender has
indeed modified her internal state in response to the attack. We refer to
this security property as stealth.

2. The attacker should be unable to create a response ct+u, where u ≥ 0,
for any new message mt+u such that the ct+u is regarded as valid by the
receiver. We refer to this security property as unforgeability.

These informal definitions are sufficient for an understanding of our proposed
schemes. We offer more formal characterizations of the security of a funkspiel
scheme in section 4.

3.1 Symmetric funkspiel scheme

The first scheme we describe is based on use of symmetric keys. In this scheme,
the sender updates her secret key through application of a suitable pseudoran-
dom generator f . Her sequence of secret keys is a sequence of successive images
generated by f . The receiver, who shares the same initial secret key, is capable
of producing an identical pseudorandom sequence without interaction with the
sender. When she detects an attack, the sender substitutes a random key s′i for
her present secret key si. The security properties of f ensure that an attacker
cannot derive significant information about si−1 from si, and therefore cannot
check whether s′i is consistent with past history. Additional features of this
solution include use of MACs as an authentication mechanism, as well as use of
indices to synchronize the view of the receiver with that of the sender.

Let f : {0, 1}j → {0, 1}j+k denote a pseudorandom generator that stretches
an arbitrary j-bit input to one of length j+k. In practice, f may be instantiated
through, e.g., a conventional hash function such as SHA-1 [1]. We omit details
here, instead referring the reader to [19] for a general treatment of the topic.
(Of theoretical interest is the fact that f may be realized given the existence of
any one-way function [16].)

Let f1(x) denote the first j bits of the output of f on input x, and let f2(x)
denote the last k bits. Let MAC : {0, 1}k × {0, 1}∗ → {0, 1}l be a message
authentication code (MAC) that takes as input a k-bit secret key and a message
of arbitrary length, and outputs an l-bit authentication code. (See, e.g., [20] for
a discussion of MACs.) We use the symbol ‖ to denote string concatenation.
Variables j, k, and l are security parameters in this scheme. The algorithms are
as follows:

7

Key setup (KeySet): The sender and receiver share the output of a key setup
algorithm KeySet. The output of the algorithm is a secret key s1 = (σ1, 1), where
σ1 is a j-bit string generated uniformly at random, and the second element of
the pair is an index number.

Authentication code generation (Sig): The algorithm Sig takes as input
a secret key si = (σi, i) and a message mi ∈ {0, 1}

∗. The output is a code
ci = (MACf2(σi)[mi ‖ i], i). Given that the receiver may not receive messages
in the order in which they are sent, concatenation of the index i is important
here to ensure a binding between the message and the correct MAC key.

Key evolution (KeyEv): The algorithm KeyEv takes as input a secret key
si = (σi, i) and outputs si+1 = (σi+1 = f1(σi), i+ 1).

Key swapping (Swap): Input to the key swapping algorithm Swap is a secret
key si = (σi, i). Output is a secret key s′i = (σ′

i, i), where σ′

i is a j-bit string
generated uniformly at random. In other words, when the sender detects a
tampering attempt, she simply overwrites her secret key with a random bit
string.

Verification (Ver): The verification algorithm Ver takes as input a mes-
sage/code pair (m, c′), where c′ = (a′, i) for some integer i, and also the secret
key s1. The verification algorithm computes a = MACf2(σi)[m ‖ i]. In other
words, the verification algorithm checks the purported message authentication
code onm using the index i. If a = a′, then the algorithm outputs ‘1‘. Otherwise
it outputs ‘0‘.

Remarks. Note that if authentication codes are received in order, the verifica-
tion algorithm may be made more efficient by having the receiver store si for use
in the next verification. Even if authentication codes are received out of order,
storage of seeds can still be used to reduce computational costs. Alternatively,
storage costs may be reduced on the receiver side through derivation, rather
than storage, of σ1. In particular, the receiver may derive σ1 = h(IDsender, S),
where IDsender is a unique identification number associated with the sender,
while S is a master secret held by the receiver.3

More efficient use of f is possible for general pseudorandom generator con-
structions involving one-way permutations and hard-core bits. For example, it

3Of course, it is possible to eliminate use of message indices entirely. Rather than deriving

the MAC for mi through knowledge of i, the receiver can simply perform a search for the

correct MAC key up to some predetermined number of steps, starting with σ1. This can

be costly, and slightly weakens the security of the scheme, but may be appropriate in some

circumstances.

8

is possible to use the Blum-Blum-Shub generator [8], regarding the state of the
generator as the output of f1 and a sequence of hard-core bits as the output
of f2. This is more efficient than the scheme described above, in which it is
implied that the output of f1 itself consists of hard-core bits. The authors wish
to thank an anonymous reviewer for this observation.

Finally, we note that in practice, the parameter l can be made quite small,
e.g., on the order of 10 bits. Although this weakens the collision resistance
property substantially, the funkspiel scheme will still work with well over 99%
probability under straightforward assumptions on the underlying MAC. For the
sake of simplicity, we omit investigation of the relevant security considerations
from this paper.

3.2 Asymmetric funkspiel scheme

Our aim in proposing an asymmetric funkspiel scheme is twofold. First, we
eliminate the use of indices associated with the authentication codes. Second,
we achieve some strengthening of the security of the scheme. In contrast to our
symmetric scheme, our asymmetric funkspiel scheme is resistant to forgery of
authentication codes by an attacker with passive access to the private informa-
tion of the receiver. (Note that our asymmetric scheme is not, however, resistant
to detection of key swapping by such an attacker. The stealth property, as de-
fined in section 4 is lost in this case, but the unforgeability property is retained.)
As an additional benefit, we eliminate the need for the algorithm KeyEv and the
associated key management and erasure. Barring a detected break-in by the
attacker, the private information of the sender remains static throughout the
lifetime of the scheme. In exchange for these benefits, our asymmetric scheme
incurs greater overhead in terms of both communication and computational
costs.

The idea behind the scheme is very simple. By sending authentication codes
as ciphertexts under a semantically secure encryption algorithm (as defined in
[15]), we prevent the attacker from seeing these codes. In consequence, on
breaking into the device of the sender, the attacker cannot determine whether
the private key contained therein is correct.

Let SigKeyGen be an algorithm that takes as input a security parameter
k ∈ Z+ and outputs a private/public signature key pair (SK,PK). Let ΣSK [m]
denote a signature on message m under the corresponding signature algorithm
with private key SK. Let V erPK [Σ] be the verification operation on signature
Σ using PK, with output ‘1‘ if the verification is successful, and ‘0‘ otherwise.

Similarly, let EncKeyGen be an algorithm that takes as input a security
parameter k ∈ Z+ and outputs a private/public encryption key pair (SK,PK).
We assume that the encryption algorithm is semantically secure. We might,
for example, use the El Gamal encryption algorithm [14, 24]. Generation of a
ciphertext in such a cryptosystem requires a random encryption factor as input.
Let EPK,ρ[m] denote an encryption of message m under public key PK using

9

random encryption factor ρ, and let DSK denote the corresponding decryption
operation.

In an initialization phase, the receiver produces an encryption key pair
(SKr, PKr) ← EncKeyGen(k). The public key PKr is subsequently certified
and published. Our funkspiel scheme thus consists of the following algorithms.

Key setup : The receiver generates a signature key pair (SKs, PKs) ←
SigKeyGen(k), stores PKs, and sends (SKs, PKs) to the sender over a secure,
authenticated channel. Alternatively, the sender generates the key pair and
sends the PKs to the receiver, likewise over a secure, authenticated channel.

Authentication code generation (Sig): The algorithm Sig takes as input
the secret key SKs, a message mi ∈ {0, 1}

∗, and a random seed ρi ∈u {0, 1}
l,

where ∈u denotes uniform random selection4, Output is ci = EPKr ,ρi
[ΣSKs

[mi]].

Key swapping (Swap): Input to the key swapping algorithm Swap is the
security parameter k. Output is a new key pair (SK ′, PK ′) ← SigKeyGen(k).
In other words, when the sender detects a tampering attempt, she simply over-
writes her private key with a new private key.

Verification (Ver): The verification algorithm Ver takes as input a mes-
sage/code pair (m, c′), The output is simply V erPKs

[DSKr
[c′]]. In other words,

the receiver decrypts the received code and then verifies the plaintext signature
against the public key of the sender.

Remarks. The scheme as described relies wholly on expensive public-key op-
erations. Of course, it is possible to construct any of a number of hybrid schemes
involving use of both symmetric and asymmetric techniques. For example,
rather than signing messages, the sender can compute a MAC using a shared
key s. The use of semantically secure encryption in this case still eliminates the
need for a key evolution algorithm, although in this hybrid scheme an attacker
with access to the private information of the receiver can forge authentication
codes. The lack of key evolution can open up other nonmathematical avenues
of attack. In particular, a key swap might be detected from unusual power
consumption or other abnormal electrical activity. Analysis of such attacks is
beyond the scope of this paper, hence we confine ourselves to mention of the
possibility.

4It is possible to generate ρi using a pseudorandom generator in a manner that is forward

secure. In other words, it should be infeasible to determine previous outputs from the current

output. This is achievable, for example, using the idea underlying the first funkspiel scheme,

i.e., the pseudorandom generator should be used to produce both a randomization factor for

the encryption and a new pseudorandom seed.

10

Another source of inefficiency is the need to re-derive a new key pair in the
key swapping algorithm Swap. This problem can be addressed in most discrete-
log based signature schemes, such as DSS [2], as follows. The secret key in
such schemes consists of an integer x ∈ Zq for some 160-bit prime q. It suffices
therefore for the key swapping algorithm to select a new integer x′ ∈u Zq. In
fact, the key swapping algorithm can be made even more efficient if the sender
simply flips a large set of low order bits – say, the first 100 bits – independently
at random. (There is only a negligible chance that this will yield x′ ≥ q.)
Provided that the sender does not store PKs, an attacker will be unable to
determine that x′ is not the original private key of the sender.

3.3 Backward-malleable funkspiel scheme

Both of the funkspiel schemes proposed above rely on the sender producing a
false secret key. This key is not in fact consistent with the transcripts produced
by the sender. Instead, the security of these funkspiel schemes relies on the
fact that the attacker is computationally incapable of determining whether the
false secret is consistent with the previous outputs of the sender. An interesting
problem is to find a funkspiel scheme in which the sender can demonstrate to the
attacker that the false secret is consistent with previous outputs by the sender,
but such that this false secret in fact yields invalid future outputs. We call this
a backward-malleable funkspiel scheme. In contrast to the funkspiel schemes
above, which offer cryptographic security, the backward-malleable funkspiel
scheme we present here may be constructed so as to offer unconditional, i.e.,
information theoretic security. Backward-malleable funkspiel schemes are also
of interest as an extension of the idea of duress PINs.

The aim in a backward-malleable funkspiel scheme is for the sender to store
information such that when the attacker breaks in, and the key swapping al-
gorithm Swap is executed, the sender device still contains private key material
that is consistent with previous outputs. More precisely:

Definition 1 A funkspiel scheme is backward malleable if there is an algorithm
Acheck polynomial in all security parameters such that the following holds for any
polynomial time attacker A and any set of sender transcripts (m1, c1), (m2, c2), . . . , (mj , cj).
Suppose that Swap is triggered on break-in by the attacker in time step j, yielding
state s′ in the sender device. The output s∗ = Acheck(s

′) is a valid initial state
for the sender device such that when reset to initial state s∗, the sender device
yields authentication codes c1, c2, . . . , cj on input messages m1,m2, . . . ,mj.

Note that there is no clear way to convert the funkspiel schemes described
into backward malleable ones. For example, for the asymmetric scheme to be
rendered backward malleable, the attacker would have to be given or be able
to determine a tape R containing random encryption factors for ciphertexts
c1, c2, . . . , cj such that the decryption of these ciphertexts would be correct

11

plaintext signatures under signature key s′ – even though these plaintext signa-
tures were really produced using a different signature key.

The property of backward malleability here is essentially achievable using a
deniable encryption scheme. Recall that the sender of a ciphertext c in such a
scheme is able to produce two valid but distinct plaintexts m and m′. Thus,
one way to achieve a backward-malleable funkspiel scheme is for the sender to
substitute a secret s′ for secret s and then, for previous deniable encryptions ci,
produce a valid plaintext corresponding to MACs′ [mi] to convince the attacker
of the validity of s′. Deniable encryption, however, incurs a rather high overhead
in terms of both communication and computation, so that this scheme is not
terribly practical.

A more practical strategy is the following. The sender and receiver share
two secrets and a sequence of bits. The sender uses one of the two secrets,
depending on the bit value designated by the current index. There are two
ostensible drawbacks to this scheme. First, it involves larger asymptotic storage
requirements than the schemes above. Second, it permits a small number of
forgeries on the part of the attacker with non-negligible probability after break-
in. In practice, however, neither of these drawbacks appears to be serious.
Moreover, like the asymmetric scheme, this scheme carries the benefit of not
requiring a KeyEv algorithmwith the associated complexities of key management
for the sender. The sender must maintain an index counter, while the receiver
must keep track of which indices have been used by the sender, in order to avoid
replay attacks.

The scheme comprises the following algorithms.

Key setup (KeySet): The sender and receiver share the output of a key setup
algorithm KeySet. The algorithm takes as input a security parameter k ∈ Z+

and a scheme lifetime T . The output of the algorithm is a pair of random, secret
keys σ0 and σ1 and a sequence of randomly generated bits b1, b2, . . . , bT , along
with T . The index i is initialized to 1.

Authentication code generation (Sig): The algorithm Sig takes as input
the secret keys σ0 and σ1 and bits b1, b2, . . . , bT as well as T and the current index
i. If i > T , then the algorithm outputs “expiration”. Otherwise, the output of
the algorithm is (MACσbi

[mi ‖ i], i). The index i is then incremented.

Key swapping (Swap): Input to the key swapping algorithm Swap is the
sequence of bits b1, b2, . . . , bT and the current index i. The key swapping algo-
rithm replaces bt with b′t ∈U {0, 1} for all t ∈ [i, i + 1, . . . , T] and outputs the
new bit sequence b1, b2, . . . , bi, b

′

i+1, b
′

i+2, . . . , b
′

T . If i > T , then the key swapping
algorithm outputs the input bit sequence with no changes.

12

Verification (Ver): The verification algorithm Ver takes as input a mes-
sage/code pair (mi, c

′), where c′ = (a′, i) for some integer i. Additional inputs
are the secret keys σ0 and σ1 and the bit sequence b1, b2, . . . , bT . The algorithm
first checks that the index i has not been used previously by the sender, and
that i ≤ T ; if either condition is violated, then the algorithm outputs ‘0‘ and
halts. Otherwise, the algorithm computes a = MACσbi

[mi ‖ i]. If a = a′, then
the algorithm outputs ‘1‘. Otherwise it outputs ‘0‘.

Remarks. This scheme may easily be seen to satisfy the definition of back-
ward malleability. The algorithm Acheck simply resets the counter i to 1. This
backward-malleable funkspiel scheme may really be viewed as a kind of one-
time pad underlying an efficient authentication algorithm. While the storage
requirements of this scheme are linear in the scheme lifetime T , in practice they
are small. Tradeoffs are possible between the storage efficiency of the scheme
and the ability of the attacker to forge authentication codes successfully. As
parameterized above, the probability of the attacker forging d valid codes after
break-in is 2−d. In an alternate scheme, the algorithm Sig uses σ0 for t1 steps,
then σ1 for t2 steps, etc., where tj may be fairly large. The key swapping algo-
rithm randomly perturbs the lengths of these intervals. This results in a scheme
with better storage efficiency, but in which the attacker may perform forgeries
more successfully. Conversely, we could use ℓ bits for each message. If ℓ is
reasonably small we could have 2ℓ different secrets, or we might simply append
ℓ bits to a universal secret σ input to the MAC.

3.4 Funkspiel deployment: Avoiding denial-of-service at-

tacks

As in the ATM example presented in section 2.1, we may assume that on receipt
of an invalid message/code pair (m, c), the receiver concludes that the sending
device has been compromised. In this case, the receiver takes some kind of
defensive action, perhaps seeking to trace the device or user of the device, or
sounding an alarm. Thus, the funkspiel schemes as described above are vulner-
able to a form of denial-of-service attack. An attacker capable of modifying the
communications between the sender and receiver can simply corrupt a funkspiel
code c, triggering a false alarm on the part of the receiver.

To address this problem in practice, it is necessary to employ an additional
layer of message authentication on top of that provided by the funkspiel scheme.
Often, a funkspiel scheme may simply be layered under an existing authentica-
tion mechanism. For example, in the ATM example in section 2.1, the funkspiel
code was included as part of the signed message produced by the card. In gen-
eral, the sender may use an independent secret s or private key SK as a means
of providing message integrity on the pair (m, c) during transmission. The key
s or SK may be protected from the attacker using conventional means. When

13

such an outer MAC or signature is applied, the inner MAC used in the described
schemes can be dropped, and the associated keying material instead inserted ex-
plicitly. This is true since, as established below, the security properties against
an attacker that obtains the information of the sender after the key swap do
not depend on the existence of this MAC. The purpose of this inner MAC was
simply to defend against less powerful attacks in which the private information
of the sender is not compromised.

4 Security

There are two aspects to the security of a funkspiel scheme. First, an attacker
breaking into the device of the sender should not be able to detect the use of the
algorithm Swap, a property we refer to as stealth. Second, assuming successful
deployment of Swap, an attacker should be unable to forge a correct authenti-
cation code even after breaking into the device. We refer to this latter property
as unforgeability. It is easy to see that neither of these security characteristics
implies the other. Below we give some properties achieved by our construction
together with some sketches of proofs. For cryptographic definitions we appeal
to the main body of cryptographic literature, including such standard texts as
[19, 20]. In particular, we assume that all algorithms are efficient in the sense
that they run in expected polynomial time; we refer to a probability as negligible
if it is smaller than any inverse polynomial in the relevant security parameters.

4.1 Stealth security

The stealth property is best characterized in terms of the following experiment.
The sender executes KeySet with the receiver, as in the normal protocol. The
attacker then chooses a sequence of messages m1,m2, . . . ,mi in an adaptive
manner, and is permitted to view the resulting authentication code sequence
c1, c2, . . . , ci. For an i of its choice, polynomial in the security parameters, and
again determined adaptively, the attacker subsequently declares that he will
break into the device of the sender. At this point, the sender flips a coin. If
the outcome is heads, she executes KeySwap; if the outcome is tails, she does
nothing. The attacker now gains access to the full internal state of the device
of the sender, and must determine whether KeySwap has been executed. If
the stealth property holds, then the attacker will be able to do so with only
negligible advantage.

The attacker A may be characterized by a pair of algorithms Aintr and Aguess,
as follows.

• An adaptive intrusion algorithmAintr. Input to the algorithm is a sequence
of messages and corresponding authentication codes (m1, c1), (m2, c2), . . . , (mi, ci)
for i ≥ 0. For i = 0, we denote the sequence by φ. The output of Aintr is
a message mi+1 or the special message “break”.

14

• A guessing algorithm Aguess. Aguess takes as input a secret si+1 and a
message/code sequence (m1, c1), (m2, c2), . . . , (mi, ci). For i = 0, this may
be regarded as a null sequence. The output of Aguess is ‘0‘ if the algorithm
has determined that the sender executed Swap and ‘1‘ otherwise.

Given a funkspiel scheme FAC and an attacker A, the experiment now is as
follows:

Experiment STEALTH(FAC,A)
s1 ← KeySet(k)
i← 1
m1 ← AIntr(φ)
while mi 6= “break” do

ci ← Sig(si,mi)
i← i+ 1
si ← KeyEv(si−1)
mi ← AIntr((m1, c1), . . . , (mi−1, ci−1))

select y ∈u {0, 1}
if (y = 1) then

si ← Swap(si)
g ← Aguess(si, (m1, c1), . . . , (mi−1, ci−1))
if g = y then

return ‘1‘
else

return ‘0‘

Definition 2 Let FAC be a funkspiel authentication code scheme with security
parameters j, k and l. The scheme has the stealth security property if for any
adversary A with resources polynomially bounded in security parameters k and
l, it is the case that | 12 − STEALTH(FAC,A)| is negligible, i.e., asymptotically
smaller than any polynomial in j, k, and l.

The stealth property of the symmetric funkspiel scheme may be seen to
depend on the properties of the underlying pseudorandom generator. Let us
prove that the scheme is secure in the case when the output of the generator
cannot be efficiently distinguished from truly random bits. The key lemma is
given below.

Lemma 1 Suppose the pseudorandom generator f in the symmetric funkspiel
has an output that is indistinguishable from a truly random bitstring. Then, for
any i ≥ 0 the sequence (f2(σℓ)

i
ℓ=1, σi+1) cannot be distinguished from a truly

random bitstring of length ik + j.

Proof: (Sketch) Fix the value of i and define hybrid distributions Dm, 1 ≤
m ≤ i+ 1. These are all closely related to the distributions given in the lemma
and are defined as follows.

15

For ℓ < m, replace the value f2(σℓ) for ℓ < m by a random bitstring, set σm

to a random bitstring, and calculate σℓ for ℓ > m as in the symmetric funkspiel
scheme.

Clearly D1 gives the same distribution as in the symmetric funkspiel scheme
while Di+1 picks all strings uniformly at random.

If the conclusion of the lemma is false then D1 and Di+1 can be efficiently
distinguished and hence there is some m such that we can distinguish Dm and
Dm+1. Now we claim that this implies an experiment such that we can distin-
guish the output of f from random bits.

In particular, given j + k bits as input, we replace f2(σℓ) with a random
bitstring for ℓ < m. We then let the given j+k bits compose f2(σm) and σm+1,
and compute the rest of the output as above. If the given bits are random we
have constructed an element from Dm+1, while if they were pseudorandom we
have an element from Dm. The lemma follows.

Clearly the above lemma implies stealth security for the symmetric funkspiel
scheme. For the asymmetric scheme, stealth follows from the semantic security
of the underlying encryption scheme.

Theorem 2 If the public key encryption function used by the receiver in the
asymmetric funkspiel scheme is semantically secure then that scheme has the
stealth security property.

Proof: (Sketch) Assume not. This implies that the attacker can distinguish
between the two distributions

(EPKr ,ρℓ
[ΣSKs

[mℓ]])
i
ℓ=1, SKs

and
(EPKr ,ρℓ

[ΣSKs
[mℓ]])

i
ℓ=1, SK

′

s,

where SKs and SK ′

s are private keys chosen uniformly at random. We define
hybrid distributions Dj by replacing the first j messages in the second distribu-
tion by ciphertexts of signatures under the key SK ′

s. For j = 0 this yields no
change, while for j = i+1 we in fact have the distribution seen by the attacker.
Thus if the stealth property is violated, it is possible to efficiently distinguish
between D0 and Di and hence for some j we can distinguish between Dj and
Dj+1.

This in its turn implies that we can efficiently generate two messages such
that such that the attacker can distinguish between corresponding ciphertexts.
It follows that the encryption scheme does not have the indistinguishability
property and hence (by [15]) is not semantically secure.

For the backward-malleable funkspiel scheme, stealth security is obvious
since the distributions obtained before and after Swap are identical.

Theorem 3 Stealth security holds for the backward-malleable funkspiel scheme.

16

4.2 Unforgeability

We define unforgeability in terms of the ability of an attacker to forge authen-
tication codes after break-in, and under the assumption, of course, that the
Swap algorithm has been triggered. Having already established stealth secu-
rity unforgeability comes naturally. We assume that we use schemes as they
are given originally in sections 3.1, 3.2, and 3.3, without the outer authenti-
cation discussed in section 3.4. Once a definite outer authentication method
based on sound principles has been decided on, similar results should follow in
a straightforward manner.

We need to make a security assumption on our MAC. For simplicity we
assume that it is collision intractable, i.e., that it is computationally infeasible
to find two different strings that map to the same MAC. Weaker assumptions
are sufficient to establish some properties. All that is needed is that ignorance of
some particular input bits to the MAC implies similar ignorance of the output.

Theorem 4 Suppose that the output of f is indistinguishable from a truly ran-
dom bitstring and the MAC is collision intractable. Then the probability of a
successful forgery in the symmetric funkspiel scheme can exceed 2−k by only a
negligible amount.

Proof: (Sketch) By reasoning similar to that in the proof of Lemma 1, an
attacker cannot distinguish f2(σi) from random bits for any i. The probability
that the attacker can guess those bits correctly can hence exceed 2−k only by
a negligible amount. The theorem follows from the assumed property of the
MAC.

Next we turn to the asymmetric scheme. We need some security property of
the signature scheme to establish security and almost any minimal requirement
is sufficient. Let us assume a simple property which is non-standard. We say
that a signature scheme is diverse if, for any message m the probability (over a
random set of keys) that a given string s is a correct signature form is negligible.

Theorem 5 For the asymmetric funkspiel scheme with a semantically secure
encryption scheme used by the receiver and a diverse signature scheme used by
the sender, the probability that an attacker can violate unforgeability is negligible.

Proof: (Sketch) As established in the proof of Theorem 2 the attacker cannot
distinguish the correct signature key from a random signature key. Thus the
probability that any produced ci is correct is, by diversity, negligible.

In the case when the secret key of the receiver is compromised, a good
signature scheme still guarantees unforgeability. In this case, we essentially
have an ordinary signature scheme. Since security definitions and properties in
this case are standard, we do not state them here.

Finally we consider the backward-malleable funkspiel scheme.

17

Theorem 6 Consider the backward-malleable funkspiel scheme used with a col-
lision intractable MAC. The probability of a successful forgery exceeds 1/2 only
by a negligible amount. The probability of detection is independent for each
forgery attempt.

Proof: (Sketch) Follows straightforwardly from the stealth security properties
and the security property of the MAC.

Finally note that for the variants of the backward-malleable funkspiel in
which we use more or fewer bits in each message, it is straightforward to prove
similar statements.

5 Conclusion: Further Directions

The most critical area for further exploration of funkspiel schemes is their ap-
plication to secure hardware devices in current use. Smartcards, of course, are
the most widely deployed tamper-resistant computing devices, and an impor-
tant candidate platform for deployment of the idea. At present, however, secure
processors on smartcards do not typically include contiguous power supplies,
so that it is not feasible for them to perform computation when a break-in
is detected. (Indeed, “zeroizing” cannot be deployed as a countermeasure on
smartcards for this reason.) Contiguous power supplies do, however, form a
part of secure modules for larger devices, such as the Dallas Semiconductor
1954 and IBM 4758 modules. It is possible, moreover, that contiguous power
supplies will become a feature of smartcards in the future, given the relative
effectiveness of “zeroization” in comparison with other, more passive counter-
measures [18]. We may also expect the proliferation of handheld computing
devices such as PalmPilots to provide platforms for more substantial security
modules. Even given the availability of contiguous power supplies, a number
of security engineering questions remain. Is it possible – or necessary, for that
matter – to prevent power-analysis or timing attacks against funkspiel schemes?
How much computation can such a tamper-resistant device be expected to per-
form in the course of an attack? Finally, there is the interesting question of
whether a funkspiel scheme can be profitably deployed in software. Are there
software agents or platforms on which a tampering attempt can be effectively
detected? Online systems with intrusion detection mechanisms seem a partic-
ularly promising avenue of exploration in this regard. With use of a funkspiel
scheme, it is potentially possible to identify and track the actions of an attacker
after a break-in without having to resort to shutting down the system.

Deployment of funkspiel schemes also raises some different fraud manage-
ment issues. Should a funkspiel scheme be deployed as a publicly announced
security feature, or a concealed one? If the existence of a funkspiel countermea-
sure is made known, then it serves as a deterrent to fraud, as an attacker can
never be certain that he will not be vulnerable to tracing. On the other hand,

18

an attacker aware of the existence of a funkspiel scheme will know to attempt
to circumvent it. One of the advantages of a funkspiel scheme, of course, is
that the attacker cannot determine – from a cryptographic perspective, at least
– whether his attempt at circumvention has been successful. If the funkspiel
mechanism is to be deployed in a concealed fashion, then “zeroization” might
also be deployed as a decoy or as an alternative first-line countermeasure.

Acknowledgments

Thanks to Burt Kaliski, Michael Steiner, and also the anonymous reviewers of
this paper for their comments and suggestions.

References

[1] FIPS 180-1. Secure hash standard. In Federal Information Processing Stan-
dards Publication 180-1. U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, 1995.

[2] FIPS 186. Digital signature standard. In Federal Information Processing
Standards Publication 186. U.S. Department of Commerce/N.I.S.T., Na-
tional Technical Information Service, 1994.

[3] R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. In The
Second USENIX Workshop on Electronic Commerce, pages 1–11, 1996.

[4] R. Anderson and M. Kuhn. Low cost attacks against tamper-resistant
devices. In M. Lomas et al., editor, Security Protocols, 5th International
Workshop, pages 125–136. Springer-Verlag, 1997. LNCS no. 1361.

[5] Y. Aumann and M.O. Rabin. Authentication, enhanced security and error
correcting codes (extended abstract). In H. Krawczyk, editor, Advances in
Cryptology – Crypto ’98, pages 299–303. Springer-Verlag, 1998. LNCS no.
1462.

[6] M. Bellare and S. Miner. A forward-secure digital signature scheme. In
M. Wiener, editor, Advances in Cryptology - Crypto ’99, pages 431–448.
Springer-Verlag, 1999. LNCS no. 1666.

[7] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In 26th
ACM Symposium on Theory of Computing (STOC), pages 544–553. ACM
Press, 1994.

[8] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random
number generator. SIAM Journal on Computing, 15(2):364–383, 1986.

19

[9] D. Boneh, R.A. Demillo, and R.J. Lipton. On the importance of check-
ing cryptographic protocols for faults. In W. Fumy, editor, Advances in
Cryptology - Eurocrypt ’97, pages 37–51. Springer-Verlag, 1997. LNCS no.
1233.

[10] M. Burmester, Y. Desmedt, and J. Seberry. Equitable key escrow with
limited time span (or, how to enforce time expiration cryptographically).
In K. Ohta and D. Pei, editors, Advances in Cryptology - Asiacrypt ’98,
pages 380–391. Springer-Verlag, 1998. LNCS no. 1514.

[11] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption.
In B.S. Kaliski, editor, Advances in Cryptology - Crypto ’97, pages 90–104.
Springer-Verlag, 1997. LNCS no. 1294.

[12] G. Davida, Y. Frankel, Y. Tsiounis, and M. Yung. Anonymity control in
e-cash systems. In R. Hirschfeld, editor, Financial Cryptography ’97, pages
1–16. Springer-Verlag, 1997. LNCS no. 1318.

[13] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In STOC
’98, pages 409–418. ACM Press, 1998.

[14] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

[15] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

[16] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom gen-
erator from any one-way function. SIAM Journal on Computing, 28:1364–
1396, 1999.

[17] D. Kahn. The Codebreakers. Macmillian Publishing Company, 1996.

[18] O. Kömmerling and M.G. Kuhn. Design principles for tamper-resistant
smartcard processors. In USENIX Workshop on Smartcard Technology
(Smartcard ’99), pages 9–20, 1999.

[19] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
Univ. Press, 1996.

[20] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[21] K. Sako and M. Hirt. Efficient receipt-free voting based on homomorphic
encryption. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT
’00, pages 539–556. Springer-Verlag, 2000. LNCS no. 1807.

20

[22] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical
solution to the implementation of a voting booth. In L.C. Guillou and J.-J.
Quisquater, editors, Advances in Cryptology – EUROCRYPT ’95, pages
393–403. Springer-Verlag, 1995. LNCS no. 921.

[23] G. Simmons. Subliminal channels; past and present. European Transactions
on Telecommunications, 5(4):459–473, 1994.

[24] Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption.
In 1998 International Workshop on Practice and Theory in Public Key
Cryptography (PKC ’98), pages 117–134. Springer-Verlag, 1998. LNCS no.
1431.

21

