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Abstract

We introducéhoney encryptio(HE), a simple, general approach to encrypting messageg lasv min-entropy
keys such as passwords. HE is designed to produce a ciphetteh, when decrypted with any of a number of
incorrectkeys, yields plausible-looking but bogus plaintexts chieney messages key benefit of HE is that it
provides security in cases where too little entropy is adél to withstand brute-force attacks that try every key;
in this sense, HE provides security beyond conventiondkbinrce bounds. HE can also provide a hedge against
partial disclosure of high min-entropy keys.

HE significantly improves security in a number of practiceattings. To showcase this improvement, we build
concrete HE schemes for password-based encryption of R&Atdeeys and credit card numbers. The key chal-
lenges are development of appropriate instances of a newafypandomized message encoding scheme called a
distribution-transforming encoddéDTE), and analyses of the expected maximum loading of bing&rious kinds
of balls-and-bins games.

1 Introduction

Many real-world systems rely for encryption on low-entrapyveak secrets, most commonly user-chosen passwords.
Password-based encryption (PBE), however, has a fundahiienitation: users routinely pick poor passwords. Ex-
isting PBE mechanisms attempt to strengthen bad passwizrdslfting, which slows attacks against multiple users,
and iterated application of one-way functions, which slaesryption and thus attacks by a constant facte.g.,

¢ = 10,000). Recent results [4] prove that for conventional PBE sclefedy., [[30]), work; suffices to crack a single
ciphertext with probabilityg/c2# for passwords selected from a distribution with min-enyrep This brute-force
boundis the best possible for in-use schemes.

Unfortunately empirical studies show this level of segutit frequently be insufficient. A recent study [9] reports
u < 7 for passwords observed in a real-world population of 69ionilusers. (1.08% of users chose the same
password.) For any slowdownsmall enough to support timely decryption in nhormal use,dbeurity offered by
conventional PBE is clearly too small to prevent messagevery (MR) attacks.

We explore a new approach to PBE that provides security likytom brute-force bound. The idea is to build
schemes for which attackers areable to succeed in message recovery even after tryiny @essible password /
key. We formalize this approach by way of a new cryptographimjiive calledhoney encryptiofHE). We provide a
framework for realizing HE schemes and show scenarios Lisgbuactice in which even computationally unbounded
attackers can provably recover an HE-encrypted plainté@ktpvobability at mos2~# + ¢ for negligiblee. Since there
exists a trivial, fast attack that succeeds with probghilit* (guess the most probable password), we thus demonstrate
that HE can yield optimal security.

While HE is particularly useful for password-based endoyp{PBE), we emphasize that “password” here is meant
very loosely. HE is applicable tanydistribution of low min-entropy keys, including passwar&$Ns, biometrically
extracted keys, etc. It can also serve usefully as a hedgesagartial compromise of high min-entropy keys.

Background. Stepping back, let us review briefly how brute-force messagevery attacks work. Given an en-
cryption C = enc(K, M) of messagé\/, where K and M are drawn from known distributions, an attacker’s goal



is to recoverM. The attacker decrypt§’ under as many candidate keys as she can, resulting in a setssges
My, ..., M,. Should one of the candidate keys be correct (keis from a low-entropy distribution)}/ is guaranteed
to appear in this list, and at this stage the attacker winis pribbability equal to her ability to pick out/ from theq
candidates. Conventional PBE schemes make this easy irstasihgettings. As just one example Mif is a 16-digit
credit card number encoded via ASCII and the PBE scheme bsHike an ideal cipher, the probability that any
M; # M is a valid ASCII encoding of a 16-digit string is negligiblat, (10/256)'6 < 2=7. An attacker can thus
reject incorrect messages and recaVvewith overwhelming probability. In fact, cryptographersngeally ignore the
problem of identifying valid plaintexts and assume conatively that if A/ appears in the list, the attacker wins.

Prior theoretical frameworks for analyzing PBE schemesHacused on showing strong security bounds for
sufficiently unpredictable keys. A result for the PKCS#5 P&femes due to Bellare, Ristenpart, and Tes$aro [4]
proves that no attacker can break semantic security (learpartial information about plaintexts) with probability
greater thamg/(c2*); here,c is the time to perform a single decryptignjs the min-entropy of the distribution of the
keys, and negligible terms are ignored. As mentioned alibeegh, when: = 7, such a result provides unsatisfying
security guarantees, and the formalisms and proof techgiqti[4] cannot offer better results. It may seem that this
is the best one can do and that providing security beyondihige-force barrier” remains out of reach.

Perhaps unintuitively (at least to the authors of the priggaper), the bounds above are actualby tight for all
settings, as they do not take into account the distributibth@ challenge messagdel. ShouldM be a uniformly
chosen bit-string of length longer thamn for instance, then the best possible message recoveck attzuld appear
to work with probability at most /2#. This is because for typical PBE schemes an attacker wik laalvard time, in
practice, distinguishing the result déc( K, C') for any K from a uniform bit string. Said another way, the candidate

messagesd/i, ..., M, would all appear to be equally valid as plaintexts. Thus ameeshry would seem to maximize
her probability of message recovery simply by decryptingising the key with the highest probability, which is at
most1/2+.

Previously proposed security tools have exploited exadhtlyintuition for special cases. Hoover and Kausik [24]
consider the problem of encrypting a (uniformly-chosen)ARS DSA secret exponent for authenticating a user to a
remote system. Only the remote system holds the associat#it gey. To hedge against compromise of the user’s
machine, they suggest encrypting the secret exponent arfelé (a short decimal-string password). They informally
argue that brute-force attacks will only result in a set didvlboking exponents, and so the best an attacker can do is
use each candidate exponent to attempt login to the remstersyeffectively requiring an online brute-force attack.
Their work led to a commercially deployed systém| [26]. Ohetems similarly seek to foil offline brute-force attacks,
but mainly by means of hiding valid authentication credaatin anexplicitly stored lisof plausible-looking fake ones
(often called “decoys” or “honeywords”) [[8, 25]. Similarlgletection of system breaches using “honeytokens,” such
as fake credit-card numbers, is a common industry prad@ick [

Honey encryption (HE). Inspired by such decoy systems, we set out to build HE scheéna¢sprovide security
beyond the brute-force barrier, in particular yielding diglate messages during brute-force attacks that areimdist
guishable from the attacker’'s perspective. We refer to ticerrect plaintext candidates in HE lasney messages
following the long tradition of this sweet substance’s roleomputer security terminology.

We provide a formal treatment of HE. Functionally, an HE sohas exactly like a PBE scheme: it takes arbitrary
strings as passwords and uses them to perform randomizegbgan of a message. We ask that HE schemes simulta-
neously target two security goals: message recovery (M&irgg as parameterized by a distribution over messages,
and the more (multi-instance) semantic-security styldggofi[4]. As we noted, the latter can only be achieved up
to the brute-force barrier, and is thus meaningful only fightmin-entropy keys; our HR schemes achieve the goals
of [4] using standard techniques. The bulk of our effortsis paper will be on MR security, where we target security
better thany/c2#. Our schemes will, in fact, achieve security bounds closk/#% for unbounded attackers when
messages are sufficiently unpredictable.

HE schemes also produce compact ciphertexts (unlike @kpktored decoys). While lengths vary by construc-
tion, an HE ciphertext o/ is typically a small constant multiple (e.g., 2) of the lemgif a conventional PBE
ciphertext onlM.

Framework for HE schemes. We provide a general methodology for building HE schemescdtnerstone is a new
kind of (randomized) message encoding that we cdik&ibution-transforming encoder (DTEA DTE is designed



with an estimate of the message distributigy in mind, making it conceptually similar to arithmetic/Hofén cod-

ing [16]. The message space handled by a DTE is exactly theosupf p,,, (messages with non-zero probability).
Encoding a message sampled frpp yields a “seed” value distributed (approximately) uniféymit is convenient

in many cases for seeds to be binary strings. A DTE must haedfigient decoder that, given a seed, obtains the
corresponding message. Applying the decoder to a unifosantypled seed produces a message distributed (approxi-
mately) undemp,,,. A good (secure) DTE is such that no attacker can distingwigi significant probability between
these two distributions: (1) a paif/, S) generated by selectiny/ from p,, and encoding it to obtain seed and (2)

a pair(M, S) generated by selecting a segdiniformly at random and decoding it to obtain messade Building
DTEs is non-trivial in many cases, for example whegnis non-uniform.

Encrypting a messagkl under HE involves a two-step procedure that we BAlE-then-encryptFirst, the DTE
is applied toM to obtain a seed. Second, the seeflis encrypted under a conventional encryption scheneusing
the key K, yielding an HE ciphertexf’. This conventional encryption scheraac must have message space equal
to the seed space and all ciphertexts must decrypt underegnipla valid seed. Typical PBE schemes operating on
bitstrings provide all of this (but authenticated encrgptschemes do not). Appropriate care must be taken, however,
to craft a DTE whose outputs require no padding (e.g., for @Bgtle encryption).

We prove a general theorem (Theoriem 2) that upper bounds fhsddurity of any DTE-then-encrypt scheme by
the DTE’s security and a scheme-specific value that we calki#tpected maximum load. Informally, the expected
maximum load measures the worst-case ability of an unbaliatteacker to output the right message; we relate it
to the expected maximum load of a bin in a kind of balls-antslgame. Analyzing an HE scheme built with our
approach (and a good DTE) therefore reduces to analyzingaifeand-bins game that arises for the particular key
and message distribution. Assuming the random oracle navddéeal cipher model for the underlying conventional
encryption scheme enables us to assume balls are throwpeindently in these games. (We conjecture thatise
independent hashing, and thiusvise independent ball placement, may achieve strong isggumany cases as well.)

A DTE is designed using an estimate of the target messagibdi&tin p,,. If the DTE is only approximately right,
we can nevertheless prove message-recovery securityyflantdéhe brute-force-barrier. If the DTE is bad, i.e., based
on a poor estimate af,,,, we fall back to normal security (up to the brute-force kejtiat least provably achieving
the semantic security goals [n [4]. This means we never deevibran prior PBE schemes, and, in particular, attackers
must always first perform the work of offline brute-force ekimbefore HE security becomes relevant.

HE instantiations. We offer as examples several concrete instantiations ofjeneral DTE-then-encrypt construc-
tion. We build HE schemes that work for RSA secret keys bytioigfa DTE for uniformly chosen pairs of prime
numbers. This enables us to apply HE to RSA secret keys asagedeand stored by common tools such as OpenSSL.
This improves on the scheme of Hoover and Kausik, which reguhat RSA secret exponents be generated in a non-
standard mannef_[24]. Interestingly, simple encodingtexias here fail. For example, encoding the secret keys
directly as binary integers (in the appropriate range) weauable an attacker to rule out candidate messages rgsultin
from decryption by running primality tests. Indeed, the DiW& design has decode (essentially) implement a prime
number generation algorithm. (This approach slows downygéon significantly, but as noted above, in PBE settings
we want decryption to not be very fast anyway.)

We also build HE schemes for password-based encryptioneafitccard numbers, their associated Card Veri-
fication Values (CVVs), and (user-selected) PINs. Encoyptif PINs requires a DTE that handles a non-uniform
distribution over messages, as empirical studies show aheser bias in PIN selection|[6]. The resulting analy-
sis consequently involves a balls-and-bins game with nofeum bin capacities, a somewhat unusual setup in the
literature.

In each of the cases above we are able to prove close to oplR&ecurity.

Limitations of HE. The security guarantees offered by HE come with some staitigehed. First, HE security
does not hold when the adversary has some side informatiout #ifte target message. As a concrete example, the
RSA secret key HE scheme will only provide the strong MR goi@@s when the attacker does not already have the
public key associated with the encrypted secret key. Theigith guarantees are not typically going to help protect
normal HTTPS certificate keys. (The intended applicatiaritic HE scheme is client authorization, where the public
key is stored only at the remote server, a typical settingS®8H users. Refer td [24] for more detailed deployment
discussion.) Second, because decryption of an HE cipheuteder a wrong key produces fake but valid-looking



messages, typos in passwords might confuse legitimats iissome settings. We address this issue of “typo-safety”
in Sectior Y. Third and finally, we assume in our HE analysasttie key and message distributions are independent.
If they are correlated, an attacker may be able to identifpr@ect message by comparing it with the decryption
key that produced it. Similarly, encrypting two correlat@éssages under the same key may enable an adversary to
identify correct messages. (Encrypting independent ngessander the same key is fine.) We however emphasize
that, should any of these assumptions fail, HE securitg tadick to normal PBE security: there is never any harm in
using HE.

2 Reated Work

Our HE schemes (though not all HE schemes) provide a fornfafrimation-theoretic encryption, as their MR security
does not rely on any computational hardness assumptioornhation-theoretic encryption schemes, starting with the
one-time pad[34], have seen extensive study. Most clostdyed is entropic security [118,133], where the idea is to
exploit high-entropy messages to perform encryption thakd no predicate on the plaintext even against unbounded
attackers (and hence beyond the brute-force bound). Theirwgas to enable use of uniform, smaller (than one-
time pads) keys yet achieve information-theoretic seguttE similarly exploits the entropy of messages, but also
provides useful bounds (by targeting MR security) even whercombined entropy of messages and keys goes below
the threshold needed to achieve entropic security. Sedt@sdiscussion in Appendix]A.

In natural applications of HE, the message spAdemust encompass messages of special format, rather than
just bitstrings. In this sense, HE is somewhat related tomédwpreserving encryption (FPE) [2], although HE is
randomized and has no preservation requirement (our ¢gtierare unstructured bit strings). An implication of
our approach, however, is that some FPE constructions, fergcredit-card encryption) can be shown to achieve
HE-like security guarantees when message distributiomsiaiform. HE is also conceptually related to collisionful
hashingl[7], the idea of creating password hashes for whishelatively easy to find inverses and thus hard to identify
the original, correct password (as opposed to identifyiegraect message).

(Non-interactive) non-committing encryption |14]29] aehemes for which a ciphertext can be “opened” to an
arbitrary message by finding an appropriate key to do so. dkample, a one-time-pad is non-committing.) HE has
no such requirement, rather HE schemes seek to ensure trgptileg a fixed ciphertext under different keys gives
rise to independent-looking samples of the message spaute. tihat unlike non-committing encryption [29], HE is
achievable in the non-programmable random oracle modeliabke encryption [15] also allows opening a ciphertext
to a chosen message; HE schemes do not in general provideiigni

Canetti, Halevi, and Stein€r [13] propose a protocol in Whacpassword specifies a subset of CAPTCHAs that
must be solved to decrypt a credential store. Their schepaas ambiguity around where human effort can be most
effectively invested, rather than around the correctnéfiseccontents of the credential store, as HE would.

Perhaps most closely related to HE is a wealth of literature@ception and decoys in computer security. Hon-
eypots, fake computer systems intended to attract and stiidgks, are a stock-in-trade of computer security re-
search([36]. Researchers have proposed honeytdkens [1}8&h are data objects whose use signals a compromise,
and honeywords [25], a system encompassing the use of passashoneytokens. Additional proposals include false
documents{[11], false network traffic [10], and many vasant

The Kamouflage system![8] is particularly relevant. It calsa true password vault encrypted under a true master
password among/’ bogus vaults encrypted under bogus master passwords. Kag®uvequire®) (V) storage. With
a suitable DTE, HE offers the possibility of realizing siamifunctionality and security witld(1) storage. Decoy
deployment in Kamouflage and related systems requires tisroation of plausible decoys. This problem has seen
study specifically for protection of passwords in, e.lgl2l, but to the best of our knowledge, we are the first to
formalize it with the concept of DTEs.

3 HE Overview

HE schemes. An HE scheme has syntax and semantics equivalent to thatyohmstric encryption scheme. En-
cryption maps a key and message to a ciphertext, and in oermshencryption will be randomized. Decryption
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recovers messages from ciphertexts. The departure fromectonal symmetric encryption schemes will be in how
HE decryption behaves when one uses the wrong key in attegnfatidecrypt a ciphertext. Instead of giving rise to
some error, decryption will emit a plaintext that “looks’apkible.

Formally, let/C and M be sets, the key space and message space. For generalitgsuvaeathaiC consists
of variable-length bit strings. (This supports, in paréu varying length passwords.) An HE scheid& =
(HEnc,HDec) is a a pair of algorithms. EncryptioHEnc takes input a keyx' € K, messagel/ € M, some
uniform random bits, and outputs a ciphertéktWe write this as” <—s HEncy (M ), where <—s denotes thatiEnc
may use some number of uniform random bits. Decryptitibec takes as input a ke € K, ciphertextC, and
outputs a messagel € M. Decryption, always deterministic, is written &6 <— HDecx (C).

We require that decryption works, formally tHat[HDecy (HEnck (M)) = M| = 1forall K € K, all M € M,
and where the event is defined over the randomness usdé by.

We will write SE = (enc, dec) to denote a conventional symmetric encryption scheme, ditat that the syntax
and semantics match those of an HE scheme.

Message and key distributions. We denote a distribution on sét by a mapp: S — [0,1] and require that

> scsP(s) = 1. The min-entropy of a distribution is log max,cs p(s). Sampling according to such a distribu-
tion is written s <—, S, and we assume all sampling is efficient. We pggeto denote a message distribution over
M andpy, for a key distribution ovefC. Thus sampling according to these distributions is dendted-,, M and

K <, K. Note that we assume that draws frem andp; are independent, which is not always the case but will
be in our example applications; see Secfibn 7. Whether HEnsek can provide security for any kind of dependent
distributions is an interesting question for future work.

M essage recovery security. To formalize our security goals, we use the notion of seg@gainst message recovery
attacks. Normally, one aims that, given the encryption ofessage, the probability of any adversary recovering the
correct message is negligible. But this is only possibleiigth messages and keys have high entropy, and here we
may have neither. Nevertheless, we can measure the messayeny advantage of any adversary concretely, and
will do so to show (say) that attackers cannot achieve adgenbetter tham/2# wherey is the min-entropy of the
key distributionpy,.

Formally, we define the MR security game as shown in Figure 1
and define advantage for an adversafy against a schemé&lE by

Adviig, o (A) = PrMR{g = true]. When working in the ran- MR, .
dom oracle (RO) model, the MR game additionally has a praeedn- K — K- o K My, M

plementing a random function that may query. For our schemes, we C* «s HEnc(K*, M*)
allow A to run for an unbounded amount of time and make an unbounded | 57 . s 4(c*)
number of queries to the RO. For simplicity we assuppgand p;, are returnM — M*
independent of the RO.

. , . _ Figure 1: Game defining MR security.
Semantic security. Inthe case that keys are sufficiently unpredictable and

adversaries are computationally bounded, our HE schenleschieve

semantic security [21]. Our schemes will therefore nevevigie worse confidentiality than conventional encryption,
and in particular the MR advantage in this case equals theemtiopy of the message distribution, plus the
(assumed) negligible semantic security term.

When combined with a suitable password-based key-desivditinction [30], our schemes will also achieve the
multi-instance security guarantees often desired forvpassbased encryption[4]. Note that the resultsCin [4] stil
hold only for attackers that cannot exhaust the min-entafhe key space.

In AppendiXA we discuss why existing or naive approacheshss conventional encryption or hiding the true
plaintext in a list of fake ones, fail to be satisfactory HEemes.

4 Distribution-Transforming Encoders

We introduce a new type of message encoding scheme that erdaoefs aistribution-transforming encoddDTE).
Formally, it is a paiDTE = (encode, decode) of algorithms. The usually randomized algorittencode takes as



input a messag@/ € M and outputs a value in a s8t We call the rangeS the seed spacéor reasons that will
become clear in a moment. The deterministic algorittenode takes as input a valug € S and outputs a message
M € M. We call a DTE schemeorrectif for any M € M, Pr[decode(encode(M)) = M| = 1.

A DTE encodes a priori knowledge of the message distributign One goal in constructing a DTE is that
decode applied to uniform points provides sampling close to thatdhrget distributiorp,,,. For a given DTE
(that will later always be clear from context), we defingto be the distribution oveM defined byp,(M) =
Pr[M'=M : U+sS; M« decode(S)]. We will often refer top,; as the DTE distribution. Intuitively, in a
good or secure DTE, the distributiops, andp, are “close.”

Formally, we define this notion of DTE security or goodness falows. Let.4 be an adversary attempting
to distinguish between the two games shown in Figlre 2. Weneefidvantage of an adversadyfor a message
distributionp,,, and encoding scheni@TE = (encode, decode) by

Adviie | (A) = (Pr [SAMPlS‘TE,pm = 1] — Pr[SAMPOA ¢ = 1]‘ .

While we focus mostly on adversaries with unbounded runtimgs, we note that these measures can capture
computationally-good DTEs as well. A perfectly secure DBEaischeme for which the indistinguishability ad-
vantage is zero for even unbounded adversaries. In AppEhdiz explore another way of measuring DTE goodness
that, while more complex, sometimes provides slightlydrdibunds.

The inverse sampling DTE. We first build a broadly
useful DTE based on inverse sampling, the well-known

technique for converting uniform random variables into SAMPlgTE,pm SAMPOE

ones from some other distribution. L&}, be the cu- m S esS

mulative distribution function (CDF) associated with a S s e";]code(M*) M* + decode(5*)
known message distributiop,,, according to some or- b s B(S*, M*) b s B(S*, M*)

dering of M = {Mj, ..., M|y }. DefineF,,(My) = 0. returnbd returnb

Let the seed space k& = [0,1). Inverse sampling

picks a value according tp,, by selectingsS «s [0,1) Figure 2: Games defining DTE goodness.

and outputsM; such thatF,, (M;_1) < S < F,(M;);

this amounts to computing the inverse CDF functibh = F;!(S). The associated DTE schen®-DTE =
(is-encode, is-decode) encodes by picking uniformly from the rangg,,(M;_1), F,,,(M;)) for input messagé/;,
and decodes by computing,,*(S).

All that remains is to fix a suitably granular representatibrihe reals betweefd), 1). The representation error
gives an upper bound on the DTE security of the scheme. We ttefedetails and analysis to Appenfik B. The
scheme works in timé&(log | M|) using a tables of siz&(|M]|), though its performance can easily be improved for
many special cases (e.g., uniform distributions).

DTEsfor RSA secret keys. We turn to building a DTE for RSA secret keys. Recall that aypapkey generation
algorithm (used in, e.g., OpenSSL) generates an RSA keyt-¢érmyth 2¢ via rejection sampling of random values
p,q € [271,2). The rejection criterion for eithep or ¢ is failure of a Miller-Rabin primality test [28, 31]; the
resulting distribution of primes is (essentially) unifoilmmer the range. The private exponent is computed as
e~ mod (p — 1)(¢ — 1) for some fixeck (typically 65537), yielding secret keyN, d) and public key(N, ¢). Most
often, however, the key as stored inclugesg, and some ancillary values (not efficiently recoverablenftf) to speed
up exponentiation via the Chinese Remainder Theorem. $imdexed e, the secret key is fully defined by, ¢, we
now focus on building DTESs that take as input primeg < [2/~!,2%) for some/ and aim to match the message
distributionp,,, that is uniformly distributed over the primes|[f—!, 2¢).

One strawman approach is just to encode the ippytas a pair of(¢ — 2)-bit strings (the leading ‘1’ bit left
implicit), but this gives a poor DTE. The prime number theormdicates that ard-bit integer will be prime with
probability aboutl /¢; thus an adversaryl that applies primality tests to a candidate plaintext hasey(high) DTE
advantage of about — 1/¢2.

We can instead adapt the rejection-sampling approach neepgeneration itself as a DTRSA-REJ-DTE =
(rsa-rej-encode, rsa-rej-decode), which works as follows. Encodingga-rej-encode) takes a pair of primeg, q),
constructs a vector afbitstrings selected uniformly at random from the raffe!, 2¢), replaces the first (resp. sec-



ond) prime integer in the list by (resp.q), and outputs the modified vector dintegers (each encoded usihg 2
bits). (If there’s one prime and it's not the last integertia vector, then that prime is replaced;bgnd the last integer
is replaced by;. Should there be no primes in the vector, or one prime in thiggasition, then the last two integers
in the vector are replaced Wy, ¢).) Decoding (sa-rej-decode) takes as input a vector of thentegers, and outputs
its first two primes. If there do not exist two primes, thenutputs some (hard-coded) fixed printeBor simplicity,
we assume a perfect primality testing algorithm; it is natdhi® generalize to probabilistic orl@sWe obtain the
following security bound.

Theorem 1 Letp,, be uniform over primes if2‘~*, 2¢) for somef > 2 andRSA-REJ-DTE be the scheme described
above. ThetAdviSa resoTe ,, (A) < (1 —1/(30))'"! for any adversaryA.

Proof: Letn(x) be the number of primes less than or equattorhen Bertrand’s postulate (c.f., [35]) states that
m(20)—m(26-1) > 21 for ¢ > 2. Thus the probability of each sample frdiiy 1} being a prime is at least/3¢. One
can verify that the SAMPrsa-ReJ-DTE p,, @Nd SAMRRsA-REJ-DTE ., NAVE identical distributions assuming at least
two primes are chosen amongst thé\ standard argument gives that the advantage is boundét-byt /(3¢))! 1. |

This scheme is simple, but a small adversarial advantage tdaeslate into a large encoding. For example with
¢ = 1024 (2048-bit RSA), to achieve&dvg‘g)A_REJ_DTE,pm (A) < 107° requirest > 35,361, resulting in an encoding
of about 4.5 megabytes. (Assuming keys of low entrapy,® is small enough to contribute insignificantly to security
bounds on the order of those in Sectidn 7.) It may be temptirtgytto save on space by treatisgas a seed for a
pseudorandom generator (PRG) that is then used to genkedatealues during decoding. Encoding, though, would
then need to identify seed values that map to particular agess(prime pairs), effectively inverting the PRG, which
is infeasible.

Some RSA key generators do not use rejection-samplingnbtgad use the classic algorithm that picks a random
integer in[2¢71,2¢) and increments it by two until a prime is found (c.f., [12] R2]n this case, a DTE can be
constructed (see AppendiX D for details) that requires @ly— 2)-bit seeds, and so is space-optimal. Other, more
randomness-efficient rejection-sampling techniglies fi28y also be used to obtain smaller encodings.

In some special settings it may be possible to hook existeéygdeneration software, extract the PRG key / seed
 used for the initial generation of an RSA key pair, and applydirectly tox. A good DTE (and thus HE scheme)
can then be constructed trivially, ass just a short (e.qg., 256-bit) uniformly random bitstring.

5 DTE-then-Encrypt Constructions

We now present a general construction for HE schemes fogattdistributionp,,,. Intuitively, the goal of any HE
scheme is to ensure that the plaintext resulting from deicry@ ciphertext string under a key is indistinguishable
from freshly sampling a plaintext accordingjg,. Let DTE = (encode, decode) be a DTE scheme whose outputs
are in the spacé = {0,1}°. Let SE = (enc,dec) be a conventional symmetric encryption scheme with message
spaceS and some ciphertext spa€e

Then DTE-then-EncrydE[DTE, SE] =
(HEnc,HDec) applies the DTE encoding

first, and then performs encryption under the HEnc? (K, M) HDec” (K, (R, C3))
key. Decryption works in the natural way. It S +s encode (M) S+ Cy® HR,K)
is easy to see that the resulting scheme is se- R«s{0,1}" M + decode(S)
cure in the sense of semantic security (when Co+sH(R,K)® S ||returnM

keys are drawn from a large enough space) return(R, Cs)

shouldSE enjoy the same property.
We fix a simple instantiation using a hashigure 3: A particularly simple instantiation of DTE-th&mcrypt us-

function H : {0,1}" x K — S to perform ing a hash-functiorf/ to implement the symmetric encryption.

1We could also output bottom, but this would require allowémgprs in decoding and HE decryption.
2Doing so would also require our definition of DTE correctnisallow errors.



symmetric encryption, see Figurk 3. It is de-
noted aHE[DTE, H]. Of course, one should apply a password-based key-demvatnction toK first, as per([30];
we omit this for simplicity.

To analyze security, we use the following approach. Firsegtablish a general theorem (Theofém 2) that uses
the goodness of the DTE scheme to move to a setting wherdatjviely, the attacker’s best bet is to always output
the messagé/ which maximizes the probability (over choice of key) &f being the result of decrypting a random
challenge ciphertext. The attacker wins, then, with eyaittt sum of the probabilities of the keys that map the
ciphertext to that message. Second, we define a weightesidrallbins game with non-uniform bin sizes in a way
that makes the expected load of the maximally loaded bineaétid of the game exactly the winning probability of
the attacker. We can then analyze these balls-and-binssggfamearious message and key distributions combinations
(in the random oracle model). We put all of this together tivéebounds for some concrete applications in Sedflon 7,
but emphasize that the results here provide a general frarkdar analyzing HE constructions that applies more
broadly.

Applying DTE goodness. Let ;o = {K : K € KA M = HDec(K,C)} be the set of keys that decrypt a
specific ciphertext to a specific message and (overloaditafion slightly) letp,(Kyc) = ZKe/cM,c pr(K) be
the aggregate probability of selecting a key that falls iy anch set. Then for ang' € C we defineLye , (C) =
max s pr(Kar,c). Let Lyg,, represent the random variablge ,, (C') defined overC' uniformly chosen fronC
and any coins used to defiméDec. (For example in the hash-based scheme, we take this oveothe used to
define H when modeled as a random oracle.) We will later show, fori§paoessage/key distributions and using
balls-and-bins-style arguments, bounds o[nl]ﬁEmk } We call this value the expected maximum load, following the
terminology from the balls-and-bins literature.

For the following theorem we require fro8E only that encrypting uniform messages gives uniform cifghes.
More precisely, that «<—s S ; C «—senc(K,S) andC «+sC ; S + dec(K, C) define identical distributions for any
key K € K. This is true for many conventional schemes, including thghFbased scheme used in Figdre 3, CTR
mode over a block-cipher, and CBC-mode over a block ciprssufaing the DTE is designed so tlsaincludes only
bit strings of length a multiple of the block size). The probthe following theorem is given in AppendiXl G.

Theorem 2 Fix distributions p,,,, px, an encoding schem@TE for p,,, and a symmetric encryption schel®BE =
(enc,dec). Let.A be an MR adversary againbtE[DTE, SE]. Then we give a specific adversasyin the proof such
that Adviit ,  (A) < Advife, (B)+E[Lugp, |- AdversaryB runs in time that of4 plus the time of one
enc operation.

Theballs-and-binsinterpretation. What remains is to bound ELg ,,, |. To do so, we use the following equivalent
description of the probability space as a type of balls-bind-game. Uniformly pick a ciphertext «—s C. Each ball
represents one kel and has weight equal tg.(K). We leta = || be the number of balls. Each bin represents a
messagé/ andb = | M| is the number of bind.A ball is placed in a particular bin shoutd decrypt undeik to the
message labeling that bin. Thépe ,, as defined above is exactly the random variable defined asakiemam, over
bins, sum of weights of all balls thrown into that bin. In thills-and-bins game the balls are weighted, the bins have
varying capacities, and the (in)dependence of ball throegedds on the details of the symmetric encryption scheme
used.

To derive bounds, then, we must analyze the expected maxioador various balls-and-bins games. For brevity
in the following sections we focus on the hash-based HE ser@mwn in Figurgl3. By modelingf as a random
oracleﬂ we get that all the ball throws are independent. At this stegean also abstract away the details of the DTE,
instead focusing on the distributigry defined overM. The balls-and-bins game is now completely characterized
by pr, andp,, and we define the random variallg, ,,, as the load of the maximally loaded bin at the end of the
balls-and-bins game that throWs| balls with weights described by independently intd M| bins, choosing a bin
according tg,. The following lemma formalizes this transition.

3Convention is to have: balls andn bins, but we use balls andb bins to avoid confusion sinc@ connotes messages.
“Technically speaking we only require the non-programmedntelom oracle [19. 29].



Lemmal ConsiderHE[DTE, H| for H modeled as a RO anBTE having distributionp,. For any key distribu-
tion Pk E[LHE,pk] < E[ka’pd].

We give similar lemmas for block-cipher based modes (in teali cipher model) in AppendiX E. Thus we
can interchange the hash-based symmetric encryption schamother ones in the final results of Sectidn 7 with
essentially the same security bounds.

6 Balls-and-Bins Analyses

In this section we will derive bounds for various specialesasf the balls-and-bins games , these cases motivated and
used by the example applications of HE given in the next@eciihese cases are by no means exhaustive, and rather
we strive only to illustrate the power of our general HE as@yramework. Treating; andp, as vectors, we can
write their dimension agy| = a and|py| = b.

In the special case af = b and bothp; andp, uniform, the balls-and-bins game becomes the standard one.
One can use the classic proof to show thafk, ,, ] < + + ;2nb. HE schemes for real applications, however, are

blnlnbd*
unlikely to coincide with this special case, and so we seb&rdbounds.

Majorization. To analyze more general settings, we exploit a result dueterBink, Friedetzky, Hu, and Martinl[5]
that builds on a technique called “majorization” earlieedi$or the balls-and-bins setting by Azar, Broder, Karlimj a
Upfal [1]].

Distributions such ag;, andp, can be viewed as vectors of appropriate dimension Bvén the below we assume
that vectors have their components in decreasing order tleagipy (i) > px(j) fori < j. Letm be a number and
pr. Py, € R% Thenp, majorizesp, denotedv) > py, if D7 | pili]l = Y i peld) andd 7, plli] > Y7 , pyld] for
alll <j<a.

Majorization intuitively states that, is more “concentrated” thapy,: a prefix of any length of}. has cumulative
weight at least as large as the cumulative weight of the danggh prefix ofp,. We have the following theorem
from [5, Cor. 3.5], slightly recast to use our terminologye \Iso extend our definition of load to include thHaghest
loaded bins: IeIL;Md be the random variable which is the total weight in ittleghest-loaded bins at the end of the
balls-and-bins game.

Theorem 3 (BFHMO8) Letpy, p}., pq be distributions. 1), >~ py, thenE[L;;wpd] > E[L}, ] forallie [1,b].

Consider the case that= 1, which corresponds to the expected maximum bin loads fovtbhekey distributions.
As a concrete example, let, = (1/2,1/4,1/4), p), = (1/2,1/2,0). Thenp), > pi and thus EL(p},pq)] >
E[L(pk,pq)| because the “fusion” of the two 1/4-weight balls into onel tedhses the expected maximum load
upwards.

Our results will use majorization to shift from a setting kviton-uniform key distributiom,, having max-weight
w to a with uniform key distribution ovelrl /w].

Non-uniform key distributions. We turn now to giving a bound for the case thatias maximum weighty (meaning
pr(M) < w for all M) andpg is uniform. In our examples in the next section we have that b, and so we focus
on results for this case. We start with the following lemmadgse proof is given in Appendix]G).

Lemma 2 Suppose; has maximum weight and p, is such thath = ca for some positive integer. Then for any
positive integer > 2¢/c, wheree is Euler’s constant, it holds that

El L) <u (-0 +2(5) (5))

For cases in whiclh = O(a?), a convenient, somewhat tighter bound op/E, ,,, ] is possible. We observe that in
many cases of interest, the terrr, b) in the bound below will be negligible. Proof of this next lemns given in
AppendixG.




Lemma 3 Supposep;, has maximum weighty and p, is such thatb = ca? for some positive integet. Then
E[Lp,ps] < w1+ 5 +r(c,b)], wheree is Eulers constant and(c,b) = (55) (1 — %)_1.

Non-uniform balls-and-bins. As a final analysis supportive of our examples in the nexti@ectve must analyze
settings in whiclp, is non-uniform. The proof of this lemma is given in Appendix G

Lemma4 Let L denote the maximum load yielded by throwingalls (of weight 1) into a seB of b bins of non-
uniform capacity at mosi < v < 3 — /5. Let Lz~ denote the maximum load yielded by throwirig= 3a balls (of
weight 1) into a se3* of b* = |2/~| bins of uniform capacity. ThelB[Lz] < E[Lj-].

7 Example Applications, Bounds, and Deployment Consider ations

We now draw all of the results of the previous sections tagreth several concrete examples. We investigate in
particular honey encryption of RSA secret keys and of creahitl data. Throughout this section, for concreteness, we
use password-based encryption of these secrets, thougiiaben results are much more general. Appealing again
to Bonneau’s Yahoo! study|[9] in which the most common pasdweas selected by.08% =~ 1/100 of users, we
assume for simplicity that the maximum-weight passwordy/ikeselected with probabilityy = 1/100. Note that at
this level of entropy, prior security results for PBE scheraee not very useful.

7.1 HE for Credit Card Numbers, PINs, and CVVs

We first consider application of HE to credit card numberst demvenience, we evaluate HE as applied to a single
value, e.g., an individual credit-card number. Recallutiig that HE security is unaffected by simultaneous encryp-
tion of multiple, independent messages drawn from the sastebdition. So our security bounds would in principle
apply equally well to encryption of a vault or repository ofiltiple credit-card numbers.

A (Mastercard or Visa) credit card number, known technycall a Primary Account Number (PAN), consists of
sixteen decimal digits. Although structures vary somewt@inmonly nine digits constitute the cardholder’s account
number, and may be regarded as selected uniformly at rangom igsuance. One digit is a (mod 10) checksum
(known as the Luhn formula). A useful result then is the follog theorem, whose proof is given in Appenfik H.

Theorem 4 ConsiderHE[IS-DTE, H| with H modeled as a RO ank$-DTE using an/-bit representation. Lep,,

be a uniform distribution oveb messages angy, be a key-distribution with maximum weight Leta = [1/w].

1+ -1
(A) <w(l+96)+ 2Zawhere5:§—2+%§<1—%‘;) .

mr
Then for any adversaryl, Advyg ,

For many cases of interest,> o?, and thuss will be small. We can also sétappropriately to makél + «)/2°
negligible. Theorerhl4 then yields a simple and useful boaadpr our next two examples.

As cardholder account numbers are uniformly selected digievalues, they induce a uniform distribution over a
space ob = 10° messages. Givem = 1/100, then,a?/b = 10~° and s’ ~ 0. The upper bound on MR advantage
isw = 1/100. Note that this bound is essentially tight, as there existadversary4 achieving advantage = Wlo
Namely, the adversary that decrypts the challenge cipttestéh the most probable key and then outputs the resulting
message. This adversary has advantage atdeast

Often the last four digits of a credit-card number are treaesemi-public information. Itis common, for example,
for receipts and web sites to display them. Another intergdbound to consider, therefore, is the security of the
previous HE scheme here assuming adversarial knowleddeesé tdigits. Three digits form part of the customer
account number and one is a checkdigit. Thus, the effecteesage space is reduced in this scenario to five digits,
i.e.,b=10°. Thusa?/b = 1/10 and Theorerfil4 yields a message recovery bound of ab@ift..

Finally, consider encrypting both 5-digits of the crediird / debit-card account number (the last 4 digits still
considered public) along with the user’s PIN number. (Grealid PINs are used for cash withdrawals and to authorize
debit-card transactions.) A detailed examination of a asrpf 3.4 million user-selected PINs is given lin [6], and
gives in particular a CDF that can be used to define an invensgling DTE. The most common user-selected PIN
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is ‘1234’; it has an observed frequency of 10.713%. Thus,sHiBve very little minimum entropy (roughly 3 bits).
Combining a PIN with a five-digit effective account numbedues anon-uniformmessage space, with maximum
message probability = 1.0713 x 10~%. Consequently, Theorem 4 is not applicable to this example.

A variant of the proof of Theorei 4, however, that makes udeeaimd 4 for non-uniform bin sizes, establishes
the following corollary.

Corallary 1 ConsiderHE[IS-DTE, H] with H modeled as a RO an&-DTE using an/-bit representation. Lep,,

be a non-uniform distribution with maximum message prdiigbi < 3 — /5, andp;, be a key-distribution with

(1+a)

maximum weightv. Leto = [1/w]. Then for any adversaryl, Adv{g A) <w(l+96)+ 57 where

,Pm,Pk(

@ | eat AN — 7
6=%+ I, (1 - 5—2> anda = [3/w] andb = [2/~].
Corollary(1 yields a bound defined by the expected maximum &da balls-and-bins experiment wisid0 balls

(of weightw = 1/100) and [2/v] = 1,866,890 uniform-capacity bins, withe = @*/b = 1/20.74. The final MR
bound is therefore about02%. This is slightly better than the bound of the previous exantat 1.05%). It shows,
significantly, that Corollar{/]1 is tight enough to give impeal bounds despite the scant minimum entropy in a PIN.
Credit cards often have an associated three- or four-dagd verification valuga secret used to conduct trans-
actions. As a final case we investigate encrypting a thrgi-diniformly random CVV under a password. Here
a = 100 andb = 1000, which means that? /b = 10. Applying Theoreni# yields a loose bound of ab®6135%.
For a tighter bound, we offer the following corollary, a i of Theorenh}4 whose proof makes use of Lerhima 2:

Corollary 2 ConsiderHE[IS-DTE, H] with H modeled as a RO an&-DTE using an/-bit representation. Lep,,

be a uniform distribution oveb messages and Igf, be a key-distribution with maximum weight Leta = [1/w]

andc = b/«a. Then for any positive integer> 2ea/b, wheree is Euler’'s constant, and for any adversa#y it holds
(%

that Advit - (A) <w <(s —1)+2 (C:l> G)) + (14 a)/2".

Application of Corollany2 to our CVV example here with= 10 ands = 5 yields the considerably improved bound
of approximatelyt.094%.

In cases with relatively small andb, simulation yields a considerably better estimate of esggbmaximum loads
than some of our upper bounds suggest. For the example of @eiy@ion, a simulation over 100,000 runs yields a
mean expected maximum load 214% (mean number of balls = 2.14, min = 1, max = 5, std. dev. = 0,3%Rjch
makes our analytical upper bound4694% appear to be loose. Future work might therefore seek imgrbeends.

7.2 HE for RSA Secret Keys

We now show how to apply HE to RSA secret keys using the DT®dhitced for this purpose in Sectibh 4.

In some settings, RSA is used without making a user’s puldic deadily available to attackers. A common
example is RSA-based client authentication to authorizeseto a remote service using HTTPS or SSH. The client
stores an RSA secret / private key and registers the comdsmp public key with the remote service.

Practitioners recommend encrypting the client’s secrgtlgeler a password, as this provides defense-in-depth
should the client’s system be passively compromisedking traditional password-based encryption, though,maea
that an attacker can mount an offline brute-force attacknagahe encrypted secret key. Use of straightforward
unauthenticated encryption wouldn’t help here: as theeté@y is usually stored as a pair of constituent primes
andq (to facilitate use of the Chinese Remainder Theorem), ackatt can quickly test the correctness of a candidate
secret key by applying a primality test to its factors. Samlil, given the kinds of passwords used in practice (e.g.,
for w = 1/100), key-hardening mechanisms (e.g., iterative hashing)algrovide an effective slowdown against
brute-force attack. Cracking a password-encrypted RSfeskey remains fairly easy.

HE is an attractive option in this setting. To build an HE suokeor 2/-bit RSA secret keys we can use the DTE
from SectiorL #. We have the following theorem.

Obviously an active attacker can sniff the keyboard or atie capture the secret key. We also are ignoring the rolewfark attackers
that may also gain access to transcripts dependent on thedouet key. See [24] for discussion.
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Theorem 5 ConsiderHE[RSA-REJ-DTE, H| with H modeled as a RO andSA-REJ-DTE the 2/-bit RSA DTE
using seed space vectors of sizé&etp,, be uniform over primes i2~¢~!, 2) and letp;, be a key-distribution with
maximum weightv. Leta = [1/w]. Then for any adversary it holds that

Advig

»PmsPk (

t—1
A) < w(l+6)+(1+a) (u%)

h ) o’ eat ea” -
wWhereo = g7 + (27(2“/412) ' (1 B W) '

The proof is much like that of Theorenh 4 (Appenfik H): applyedheni2; plug in the advantage upper bound
for the RSA rejection sampling DTE (Theoréin 1); apply Leniita fet independent ball tosses; majorize to get
uniform-weighted balls (Theorem 3); apply a union bound twvenfromp, back to uniform bin selection; and then
finally apply the balls-and-bins analysis for uniform biheifhma3).

The termé is small when—log w < ¢. For example, witlf = 1024 andw = 1/100 and setting = 35,393, we
have thaty ~ 0 and the overall MR advantage is upper bounded f§%. The ciphertext size will still be somewhat
large, at about 4.5 megabytes; one might use instead the BiF&sssed in AppendIxID for which similar MR bounds
can be derived yet ciphertext size ends up short.

7.3 Deployment considerations

A number of considerations and design options arise in th@ementation and use of HE. To give some flavor of
such issues, we briefly mention a couple involving the usénetksums.

Typo-safety. Decryption of an HE ciphertex@* under an incorrect password / kéyyields a fake but valid-looking
messagé//. This is good for security, but can be bad for usability if keflaintext appears valid to a legitimate user.
One possible remedy, proposed|inl[25], is the use of errmetiag codes or checksums, such as those for ISBN
book codes. For example, a checksum on the password KKRegnight be stored with the ciphertext*. Such
checksums would reduce the size of the key spg@@nd cause some security degradation, and thus requirailcaref
construction and application. Another option in some casesline verification of plaintexts. For example, if a cttedi
card number is rejected by an online service after decmyptiee user might be prompted to re-enter her password.

Honeytokens without explicit sharing. In[8], it is suggested that fake passwords / honeytokensiéeed explicitly
between password vault applications and service providgsplication of error-correcting codes to plaintexts in HE
can creatdnoneytokens without explicit sharings a naive example (and crude error-correcting code),Easdheme

for credit-card numbers might explicitly store the first taigits of the credit-card account number. If a service
provider then receives an invalid credit-card number incllthese digits are correct, it gains evidence of a decnyptio
attempt on the HE ciphertext by an adversary. This approagtedes security slightly by reducing the message space,
and must be applied with care. But it offers an interesting wfecoupling HE security with online security checks.

8 Conclusion

Low-entropy secrets such as passwords are likely to pémsisimputer systems for many years. Their use in encryp-
tion leaves resources vulnerable to offline attack. Honeyygtion can offer valuable additional protection in such
scenarios. HE yields plausible looking plaintexts undaryglation with invalid keys (passwords), so that offline de-
cryption attempts alone are insufficient to discover theesrplaintext. HE also offers a gracefully degrading hedge
against partial disclosure of high min-entropy keys, andsimultaneously meeting standard PBE security notions
should keys be high entropy, HE never provides worse sgdhiain existing PBE schemes.

We showed applications in which HE security upper boundsegrel to an adversary’s conditional knowledge
of the key distribution, i.e., they min-entropy of keys. $hesettings have message space entropy greater than the
entropy of keys, but our framework can also be used to analimr settings.

A key challenge for HE—as with all schemes involving decoys-the generation of plausible honey messages
through good DTE construction. We have described good D®Esdveral natural problems. For the case where
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plaintexts consist of passwords, e.g., password vaulesrafationship between password-cracking and DTE con-
struction mentioned above deserves further exploratiomE®offer an intriguing way of potentially repurposing
improvements in cracking technology to achieve improvemanencryption security by way of HE.

More generally, for human-generated messages (passwaltd, \&@mail, etc.), estimation of message distributions
via DTEs is interesting as a natural language processingero Similarly, the reduction of security bounds in HE
to the expected maximum load for balls-and-bins problerfer®fin interesting connection with combinatorics. The
concrete bounds we present can undoubtedly be tightenedviemiety of cases. Finally, a natural question to pursue
is what kinds of HE bounds can be realized in the standard hvimlee.g.,k-wise independent hashing.
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A Unsatisfying Approachesto HE

Here we discuss in more detail why existing or simple medmsifail to provide good HE schemes. Recall we
want both (1) semantic security from our schemes when kepgnis high as well as (2) unpredictability of a target
message even when keys have exhaustible entropy. (We absuenthaip,, has some amount of uncertainty.)

Existing AE or PBE schemes. The first possible HE solution would be existing passworseldaencryption schemeés [4,
[30], which certainly satisfy criteria (1) but fail for god); To see why, consider mounting a brute-force attack again
a ciphertextC* resulting from encrypting a messagé* under a target key<*. Should a typical authenticated-
encryption schem&E have been used to generaté (e.g., Encrypt-then-MAC [3], OCE[32], GCM [27], etc.), the
brute-force attacks can proceed as follows. Enumeratetimniey of all potential keyd), meaningK™* € D, and
then, for each’ € D, executedec(K,C*) and see if the result id. If not, meaning a message was produced,
then with all but negligible probabiIiE/the message is the targéf*. This highlights how the strong authenticity
guarantees of AE schembenefitan attacker whe is small enough to enumerate because the attacker canyuickl
discard incorrect keys.

If, instead, encryption was performed using a sch&gesuch as CTR-mode or CBC-mode (that are not AE-
secure), then the above brute-force strategy does not veeiklzecause with these schemes decrypfitigvith any
key returns a possible plaintext. This means attackers smmsehow distinguish the true plaintekt* from the set
of d = |D| messaged/,, ..., M, that result from the trial decryptions. Cryptographergofuggest that/* can be
picked out easily and programmatically, so that this is nptablem for the attacker. In the example of CTR-mode
or CBC-mode, trial decryptions for the wrong key result insseges distributed uniformly (assuming the underlying
block cipher is ideal). Thus if an attacker has partial kremgle of the structure af/*, for example that the first few
bytes are a fixed value, then the attacker can with reasopadibability pick out)M *.

Schemes with entropic security. Russell and Wand [33] and Dodis and Smith|[18] offer symroegricryption
schemes with security against unbounded attackers foragessvith some entropy, but they target the (stronger)
goal that no partial information about plaintexts is leakdd very low-entropy settings, their schemes suffer from
the same brute-force attacks as other symmetric encryptibemes. For example, the scheme by Dodis and Smith
encrypts by choosing a key for an xor-universal hash, and then outpfitg(K) @ M. In the spirit of our RSA HE
example, assum&’ is sampled from a distribution with max-weiglat= 1/100 (min-entropyu = — log w) and M

is a uniformly selected-bit prime number trivially encoded as @it integer. Then a brute-force message recovery
attack will succeed with probability close to one (by chegkprimality). This is just a concrete example showing
how, as Dodis and Smith discuss, security for this schemdshmily wheny + 1 > |M| + 2log(1/¢€) + 2 wherery

is the min-entropy op,,,. The problem is that in this examplex ¢ — log ¢ while | M| = ¢, and soy + x comes up
short, and security up to a boundf* (as HE is able to achieve for MR) cannot be achieved usingtteehniques.
That said, they target a stronger notion than MR, and appliirir techniques to HE could provide a middle ground
security between full semantic security and MR security.

Explicitly stored decoy lists. Another possible approach would be to base HE schemes oifi¢faeof generating
decoys, for example by storing multiple fake plaintextglavith the legitimate one. The use of decoys is not new in
security, and there exist several examples of schemesghdianey messages to attempt to limit the effect of offline
brute-force attacks [8,25,P26]. The simplest idea, siniilapirit to prior approaches, would be to build an HE scheme
for some target message distributipp using the following “Hide-in-a-List” scheme. LétiaL = (HEnc, HDec) be
parameterized by,,, and a security parameterlt uses a hash functioff : {0,1}* — [0,¢ — 1] as shown below:

HENc(K, M) HDec(K, My, ..., M;)
1+ H(K) 1+ H(K)
(My,...,M;—1,Miy1,... M) <p, M™! returnM;

MZ' — M

returnM, ..., M

5This holds for all typical AE schemes, though does not neségsold for all schemes since the distribution of keydlris adversarially
specified.
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The MR security of this scheme is upper-boundiby, regardless of how high the entropy of the key distributign
Beyond giving poorer bounds than the schemes we will evéintbaild, it also means that (quite obviously) the
scheme never achieves semantic security regardless otitieyapf keys. Second, the space requirements are going
to be high. The scheme therefore does not satisfy goal (1palydvery poorly helps in achieving goal (2).

One might attempt to fix the first issue by combining with areosymmetric scheme. The merged construction
would split the password( into two parts somehow, use the first part to chofysend use the second part to do
password-based encryption of the list of messages. (RgéSacross the two steps enables an attacker to completely
win via offline-brute force attacks when keys have low entrppThis approach, however, degrades the entropy
available to both the outer encryption (reducing brutedattack effort) and the inner hide-in-a-list (possiblgueing
the message uncertainty to be lower thdr). It also does not rectify the space issue.

Our schemes will do better, achieving semantic securitynafey distributions have high entropy. When not,
attackers will have to mount an offline brute-force attadkagdp the entropy of the key, and even then have uncertainty
about the actual message that is approximately equal tatiéer of messages returned during the brute-force attack.

B Detailsof the Inverse Sampling DTE

The following DTE schemdS-DTE = (is-encode, is-decode) realizes inverse sampling using fixed-point arith-
metic. Letg be the greatest common divisor (GCD) of the fractions in thage of the CDF, and assume use 6ftat
fixed-point representation with > « whereu = 2~¢. The seed space & = {0, 1} and a fractioru € [0, 1] is rep-
resented by the valuesuch thatep,, (a) = argmin, |a — b - u/, i.e. we round to the nearest multiplew&nd store the
multiple. (Rounding ties are broken arbitrarily, e.g., byays rounding up.) The requirement that the GCD is larger
thanu ensure@thatrepu is unambiguous. Thes-encode(M;) selectsS «—s [rep,,(F, (Mi—1)),rep,, (Fn(M;))—1]
and outputsS. Finally is-decode(S) determines the valug/; such thatep,, (F,,(M;—1)) < S < rep,(Fn(M;)).
Computation ofiS-DTE is possible in timdog |M| and space) (M) (binary search over a table of precomputed
CDF values), and often faster. For examplg,jf is the uniform distribution over a set of integetd, then encoding
and decoding can be made fast. For decoding, simply confputend find the nearest integer factorlgf M |.

The representation error of this encoder is the maximunr, @eeImg(F,, ), of the valuela — b - u|. Denote this
maximal error byjs. We have that

a 1
- (2-3)-

whereround is the rounding function. We can therefore makerbitrarily small, at the cost of encoding output size,
by choosingu small (making/ large). The representation error gives that (M) — pg(M)| < 2¢s = u for all M.
More formally we have the following theorem.

a
€is = max ‘a — round (—) ‘u| < max
aclmg(Fy,) U aclmg(Fy,)

VI

Theorem 6 Letp,, be a message distribution an8-DTE = (is-encode, is-decode) be the inverse sampling DTE
described above usingbits. LetA be any sampling adversary, th@(dv%f’DTEvpm(A) <1/2%

Proof: We below write SAMR for SAMPlpe ,,, and SAMR) for SAMPOpre ,,,. We first observe that
Pr[SAMPI* = 1| M*=M] =Pr[SAMP0" = 1 | M* = M|
where the event¥* = M” is defined appropriately for each game. To see why the dguadids, note that for any

particular messag#/ we have thats-encode(M) by construction picks uniformly from the set of seed valSder
which is-decode(S) = M. In SAMP0 conditioning on a particular messagé fixes the choice of to be uniform

"Consider otherwise, that two poinis# a’ are such thatep, (a) = rep, (a’). This implies that — o’ = |mg — ng| = |m —nlg < u
for appropriaten, n. But sinceg > w it holds thatu/g < 1 and we arrive at a contradiction.
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over the same set. Then we have that

Pr[SAMPIA = true] = ) Pr[SAMPI! = true | M* =M | - p, (M)
MeM
< ) Pr[SAMP* = true | M* = M- (u+ py(M))
MeM

= Pr[SAMPO* = true] +u .

C A Ratio-based Advantage Measure for DTE Goodness

In Sectior # we defined DTE goodness using a standard inglissinability advantage measure. Another approach is
a ratio-based measure, defined for a message distribpfjipencoding schemBTE = (encode, decode), and any
adversary4 by the equation

AQVEF(A) = Pr [ SAMPIZre ,, = 1] / Pr[ SAMPOZre = 1]

whenPr [ SAMPOZ = 1] # 0 and defined to bAdv}{z2"°(A) = 1 otherwise. The closer the advantage is to
one, the better the DTE, and the further from one, the worse.

We can prove an analogue of Theoriem 2 using the above adeamtegsure for DTE goodness. The statement is
below.

Theorem 7 Letp,, be a message distributiop;, be a key distribution, antlE|DTE, SE| be the DTE-then-Encrypt
scheme using a suitabiE. Let.A be an MR adversary againkiE. Then we can give an explicit adversasysuch
that AdviE | (A) < Advgreedt® (B)-E[L(pk.pa)] - AdversaryB runs in time that of4 plus the time of one
enc operation.

The proof proceeds as in the proof of Theofdm 2, except thanwhoving from game~, to G using the
adversary3 we use instead thatr[Gg' = 1] < Pr[G{' = 1]- Advgiesdt® (B). Comparing with Theoreid 2, this
leads to slightly stronger bound for some DTE schemes, ssitheainverse sampling one of Sectidn 4 (detailed in

Appendix(B). For example, we have the following for the imesampling DTE scheme.

Theorem 8 Letp,, be a message distribution an8-DTE = (is-encode, is-decode) be the inverse sampling DTE
described above using dkbit representation. Le#l be any sampling adversary, the(dvﬁst?g,?g‘;m (A) <1+1/25

Proof: We below write SAMR for SAMPlpe ,,, and SAMR) for SAMPOpre 5, ,. We first observe that
Pr[SAMPIA = 1| M* =M | =Pr[SAMPO* =1 | M* = M |

where the eventN/* = M” is defined appropriately for each game. To see why the aguatids, note that for any

particular messag#/ we have thats-encode (M) by construction picks uniformly from the set of seed valSesr

whichis-decode(S) = M. In SAMP0 conditioning on a particular messadé fixes the choice of to be uniform
over the same set. Let= miny; pg(M)/pm(M). Then we have that

r-Pr[SAMPI! = true] = r ) Pr[SAMPI! = true | M* = M | - py (M)
MeM
< Z p A % pa(M)
< r [ SAMP1” = true | M* =M | - p(M) -
=, pm(M)
- Z Pr [ SAMPO* = true | M* = M | - pg(M)
MeM

= Pr[SAMPO* = true]|
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rsa-rej-encode(p, q) rsa-rej-decode(pi, ..., pt) rsa-inc-encode(p, q) rsa-inc-decode(c1, c2)
(p1,...,pe) s [271,290 | i1 p’ < PrevPrime(p) i,j <0
Fori=1tot— 1do while —IsPrime(p;) q' < PrevPrime(p) (p,q) « (c1,c2)
If IsPrime(p;) thenbreak | @+ i+1 p" « max(p’ + 1,p — ¢) while —IsPrime(p) do
pi < p If i =t — 1then q" + max(q' +1,q —c) pp+2
Forj =i+ 1totdo Pi 4 Pfix c1 +s [p”, pl i—i+1
If IsPrime(p;) then break | p < pi c2 s q”, q] If i > cthen
pj < q while —IsPrime(p;) Ret(c1, c2) P 4 Prix
return(pi, ..., pt) i+ i+1 while —IsPrime(q) do
If i =t then g qg+2
Pi < giix j—i+1
q < pi If i > cthen
Ret(p, q) q < qiix
Ret(p, q)

Figure 4: DTE schemeRSA-REJ-DTE (left) andRSA-INC-DTE (right) for pairs of uniform primes if2~!, 2¢).
Both decoding algorithms output some a priori fixed primesdese normal decoding failRSA-REJ-DTE is suit-
able for uniformly selected RSA primes, WhiRSA-INC-DTE is suitable for keys generated using the PRIMEINC
algorithm.PrevPrime(z) returns the maximial primg’ < x.

where recall thap, is the DTE distribution. Lets = 2% andeis = u/2. Let M = {My,..., M} and let
a; = F,,,(M;) andb; = argminy |a; — b - u|. Letag = by = 0. Rearranging the final inequality in the sequence above
yields that
biu — bj_1u + 2¢is
biu — bi_lu

S 1 +26is

Advifgao(4) < max
which uses thap,(M;) = (b; —

Combining Theorerfl7 with Theorem 8 leads to a final MR bound [ @y, pg) | + 27 -E [ L(px, pg) | @s com-
pared to the final bound & ¢ + E[ L(px, pa) | using the indistinguishability-based approach (Thedrirorbined
with TheoreniB). The former will be tighter, though the impement admittedly may not matter much in many
situations. The difference for the credit-card number i@pgibn from Sectiofi]7, for example, is tiny.

bi—1)u andpm, (M;) = a; — a;—1. |

D MoreCompact RSA DTEsS

The rejection-sampling DTRSA-REJ-DTE, whose pseudocode is shown in Figre 4, is not particulgphcs ef-
ficient. An alternative, with optimal compactness, ariségemwthe pairp, ¢ is generated by the classic PRIMENC
algorithm [12[22]. A DTE schemBSA-INC-DTE is given for primes generated in this manner in Fidgdre 4. The
subroutinePrevPrime can be implemented by linearly scanning backwards at mestps, checking primes, and
outputing the last value checked if no prime is found. Decgdutputs some a priori fixed primes should the list
of integers input as seed not have enough primes. (We cosddaddort in other ways.) UnlikRSA-REJ-DTE,
RSA-INC-DTE requires jusR(¢ — 2) bits for encoding and hence is optimal. Observe that it issgecritical to use
the most compadt’ — 2)-bit representation of integers (for both schemes), andiset — 1 bits and include a leading
bit that is always 1. The error probability of this scheme bamnalyzed using the results of Brandt and Damgard [12]
which assume the Hardy-Littlewood primeuples conjecture [23]; it is exponentially vanishing:in

Unfortunately, it is not clear whether one can use the coinpatemeRSA-INC-DTE for primes generated by
rejection sampling, as PRIMEINC does not output primesdhasstatistically close to uniforrh [20]. To see why, note
that the larger of two twin primes (ones that are separatad/byis very unlikely to be selected by PRIMEINC, while
it is as likely as any other prime to be selected by rejectmm@@ing. Fouque and Tibouchi show that, in fact, one
can give a lower bound @f.86 on the statistical distance between uniform primes and geesrated by PRIMEINC,
suggesting this approach is unlikely to work.

Another approach is to use a construction due to Fouque dwidhi [20], whose rejection-sampling algorithm
uses fewer bits of randomness than the standard rejectigplisg approach, yet enjoys upper bounds on the statistical
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HEnc™ ¥ (K, M) HDec”* (K, (R, Cy))
S +sencode(M) K'+ H(R| K)
R<+s{0,1}" P+«
K' + H(R| K) Fori = 1to [|S]/n]
P+« P+ P| E(K',q)
Fori=1to [|S]/n] Cy+ P[1.|S||® S
P« P|E(K',i) S« Cy @ P[1..|5]]
Cy«+ P[1..|S]|® S M <« decode(S)
return(R, Cs) returnM

Figure 5: DTE-then-Encrypt using a CTR mode encryption. fibetion P[1..|.S|] signifies taking the firstS| bits
of P.

distance of generated primes from uniform.

E HE Using Block Cipher M odes

We focus on showing on a variant of CTR mode encryption; sinahalyses for other modes (e.g., CBC) are possible.
The schem&IE[DTE, CTR] is shown in Figur&l5. It uses a hash functiéin {0,1}* — {0, 1}* to derive a one-time
key for CTR mode encryption using a block ciphgr {0, 1}* x {0,1}" — {0, 1}".

The following lemma shows that the balls-and-bins analf@ishis CTR-mode based mechanism (in the random
oracle and ideal cipher model) can be reduced to that of thle-based schent¢E[DTE, H] which was described in
Sectior{b.

Lemmab LetHE1 = HE[DTE, CTR] andHE2 = HE[DTE, H] and modeld as a random oracle and’ as an ideal
cipher. Letp, be the DTE distribution foDTE and fix a key distributiom; over key spac&. Then

K?

2k

Proof: (Sketch) Note that itHE2 the pad values xord into the fixed ciphert&X are uniform and independent. For
HE1 there is the chance that a collision in the outputobccurs, which would give rise to repeatdsalues. For the
fixed R value of interest (in the challenge ciphertext), a stand@mtiday-bound argument gives that the probability
of H(R,K') = H(R, K") for any two keysk’, K € K is at mostx|? /2* (the probability being over coins df).
Conditioned on there being no collisions, the pad valbese selectedly independently and uniformly (over the coins
of the ideal cipher)l

E[Lugip, ] <E[Lhg2y, | +

Interestingly, the result above could get by without maugl{ as a random oracle, and instead rely only on it
being collision resistant (though would still need to be ideal). This approach would lead toa@pof MR security
for computationally bounded attackers.

F Proof of Theorem2

We use a sequence of games to move from the message recaitieny weone in which the adversary can, at best,
simply guess the message the challenge ciphertext dedoyptish highest probability. The gamés,, G1, andG»
are shown in Figurgl6. Gant&, is equivalent to the MR game, and so

Advig,  (A)=Pr[Gy = true] .

GameG; picks a uniform pointS and then setd/* = decode(Y"). We bound this transition using the goodness of
the DTE. Namely, we build an adversafyagainst the DTE scheme. This adversary takes as {iffyt\/*) and uses
these values to simulate the MR game.forShouldA win the MR game, thes outputs 1 and otherwise it outputs 0.
Then we have thabr[Gg' = true] = Pr[SAMP1Z = 1] and thatPr[G{' = true] = Pr[SAMPOZ = 1].

encode encode

Thus,Pr [Gy! = true | < Advife, (B) +Pr[G{' = true].
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GameGy

K* ¢+, K

M* =y M

S* +—s encode(M™)
C* <senc(K*,S*)
M +s A(C*)

GameG,

K* ¢+, K
S*¢sS

M* + decode(S*)
C* «senc(K*,S*)
M +s A(C*)
retM = M*

GameGsy

C*«sC

M s A(C*)

K* <), K

S* + dec(K*,C*)
M* < decode(S*)
retM = M*

retM = M~

Figure 6: Games used in the proof of Theofdm 2.

In gameG,, the ciphertextC* is chosen uniformly, and™* is then computed adec(K*, C*). By our assumption
on SE that decrypting a uniformly chosen ciphertext gives a unif@laintext, we have that this modification does
not change the distribution of any of the variables in the gascompared t6¢';. We have also delayed computation
of K*, S*, andM™ until after A executes; the execution gf being independent of those values. Note, however, that
the choice of\/* is not independent af/, since the coins underlying the choicedf* are, in part, known tod.

In gameG,, we see thafd wins exactly when it wins the game in which a ciphertext stimisampled uniformly,
given to.A, and the message output Bymatches the decryption of that ciphertext under a fresh kethis game,
A maximizes its probability of success by choosing the messgatih highest probability of being decrypted by .
Recall thatLyg p, (C) = maxy 3 gex,, o Pr(K). We now argue thabr [ G3' = true ] < E[Lug,y, |. We have
that

Pr[Gs=true] = Y Pr[M=M"|C*=C]-Pr[C*=C]

cec
= Y Pr[M =decode(K*,C) | C*=C] %
= ]
1
< ZLHE,pk(C)'ﬁ = E[Luep, ]
cec

where the events are defined in the straightforward way ¢necoins used in the execution @'

G Balls-and-Bins Proofs

In Section Sectioh]6, we present a series of results bourtdagxpected maximum load for various balls-into-bins
experiments. The first Lemmas 2 and 3 give bounds for casel/ing uniform-capacity bins. Lemma 4 treats the
case of bins with non-uniform capacity.

Lemma?2 Suppose; has maximum weight and p, is such thath = ca for some positive integer. Then for any
positive integer > 2e/c, wheree is Euler’s constant, it holds that

E[Ly p,] <w <(s )42 (;:) G)) .

Proof: Let g, ; denote the probability that bincontains exactly balls. Then

a\ [1\° 1\*° be\® [1\° 1\*° ae\ s 1\*° ae\ s
wo=()G) (=3) =(5) G) 0-3) -G (-5) <G
Thus, a bound on the probabiliy that at least one bin contains at leastalls is
- %L saeni ae\ s ae ae\ 2 ae\ s ae\ —1
qsfbgpw<b§<a) <b(3) <1+E+(E) +~'>:b<g) (1-%)

This last step is achieved by letting= 3¢ and using the well-known equality = 1+ A+ A2+ . =1/(1-A) for
A € [0,1). By assumption in the lemma,> 2¢/c, which impliesA = 3¢ < 1/2, and thusA < [0, 1). Additionally,
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s > 2e/c implies that(1 — %)~ < 2. Thus,q, < 2b(4¢)°. For anys, we can obtain a bound on[&,, ,,] by
assuming pessimistically that: (1) At least one bin corgain- 1 balls; (2) If there is a bin that at leastballs, it
contains allz balls; and (3) All balls have weight. The resulting bound is:

ae\ s
E[Lp,p,) Sw((s—1)+ags) =w ((s — 1)+ 2ab <E) > )
Plugging inb = ca yields the lemma. |

Lemma 3 Supposep;, has maximum weighty and p, is such thatb = ca® for some positive integer. Then
E[Lpyp.] Sw[l+ 5 +r(c,b)], wheree is Euler's constant and(c, b) = (%) (1 — %)—1

Proof: As in the proof of Lemmal2, lej, denote the probability that at least one bin contains at keballs. The
well-known Birthday Bound states th alal) - a 55 = 26 Now g3 denotes the probability of at least one triple
collision, i.e., three balls landing in the same b|n As shamwthe proof of Lemmal2,

ea ae\ 1 ea’ ea\ 1 e e\!
3<b<3b) (1_%) <27b2> (1_%> _<2702> (1_5) '
We have that EL,, ,, ] < ¢1+ g2+ ags, where the last term captures the pessimistic assumptm thiple collision
results in a maximum load ef balls (and thus weighta). This yields the lemma. |

Lemma4 Let L denote the maximum load yielded by throwingalls (of weight 1) into a seB of b bins of non-
uniform capacity at mosi < v < 3 — /5. Let Lz~ denote the maximum load yielded by throwirig= 3a balls (of
weight 1) into a seB* of b* = |2/~ bins of uniform capacity. ThelB[Lz] < E[Lp-+].

Proof: Consider an arbitrary set 6f) bins 30 = {B1 o b(O)} Suppose that two distinct blrﬁﬁbm) L Bé?o)))
are “fused.” This means that there results a sé{6f= 5 — 1 bins 80 = {B{",..., B} } such tha(B") =
e(BV)for 1 < i < bM ande(BY)) = ¢(B,_ ) + C(Bg?g)).

Let X5 be a random variable on bili denoting the number of balls it contains after a ball-thrayvexperiment.
Consider the obvious coupling of ball-throwing events®ff and5") in which X ) = X ;o) for 1 <i < (") and

+ XB(O) As maX(XB(o) XB(O) ) < X we have ELB(O)] < E[LB(l)]-

p(1) b(0) 1 5(0) b(0)_1 5(0) b(1)

Let B = B and, w.l.0.g., let bins be ordered by monotonically dedrepsapacity. Now, starting withi = 0,
repeat the following procedure: Whlk{Bb(J) 1) + c(Bé{J))) < ~, do the following: (1) Fuse?é()) ) and Bé(}),
yielding bin set3U11); (2) Incrementj; and (3) Reorder the bins i8) by monotonically decreasing capacity.

Upon termination aftet iterations, there results a set of biB$) with b = 5(®) —¢. Forl < i < b®, bin BZ.(t)
has capacit;c(B](.t)) > ~/2. (Only the smallest capacity b||Bb<t), may have capacity(Bl&Z)) < ~/2.) Excluding
B{"” andB}),, the total number of bins is at mostL — 7)/(7/2)]. Thus,b® < [(1 —~)/(7/2)] +2 = [2/~].

Let B* be a bin set witth* = |2/~ bins of uniform capacity, i.e., such that b has capacity:(B;) = 1/b*.
Forl <i<b®,c¢(BY) <~yande(By) = 1/b* > 1/|2/7] > v/2; thuse(BF) > ¢(B") /2.

For a binB.(t) with 1 < i < b, given an experiment with a single thrown ba;[ X B0 = 1] < ~. For the
corresponding bil3}, given an experiment in which three balls are throRr{ X g« > 1] > (1—(1—7/2)*) > 3v/2—

7v2/2 ++3/8. Algebralc manipulation shows that for these two ball-#irg events Pr[.X B = = 1] < Pr[Xp: > 1]

for0<y<3—-5~.76. 1

H Proof of Theorem 4

In Section[¥, we gather together our results into comprehendR security bounds for the application of HE to
various practical scenarios. Our main theorem, Thedlerapli¢ated below) treats the case of uniform-capacity bins
and gives the tightest bounds when the number of bins is nargled than the number of balls. (Two corollaries in
SectiorY treat cases of non-uniform bin capacities andsaabkere the number of balls is relatively small.)
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Theorem 4 Let HE[IS-DTE, SE] be an HE scheme with a suitabBE and DTEIS-DTE using an/-bit represen-
tation. Letp,, be a uniform distribution oveb messages angy, be a key-distribution with maximum weight Let
v = [1/w]. Then for any adversary,

1+~
20

Advig

r7pm7pk (

A) <w(l+6)+

heres — 2 eyt ey? -1

Proof: We apply Theorer]2, Theordm 6, and Lenirha 1 to get that

mr 1
AdVHE,pm,pk ('A) < ? +E [ka,pd]

We then apply majorization (Theordm 3) to get thdtlE, ,,,] < E [Lpgwpd} wherep, = (w,w,....,w) with
dimension[w~!]. (Note thatp), need not be a proper probability distribution, becauserttwg represents the number

of balls and their weights.) At this stage, we are analyzaagllover bins selected accordingptg which is (slightly)
non-uniform due to representation error. However, we hasel|[ Lp,, pq] < E[ Lp,, pm |+ “”271 by a union bound
and|p,, (M) — pg(M)| < 1/2¢ for all M (see AppendikB).

Now having uniform bins and balls, we can now apply Leniina 3diirggya = [w='], b = | M|, andc = b/a?
to get the bound

1
E {Lp;wpm} <w <1 + 5 —i—r(c,b)) =w+ wd
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