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Abstract

We introducehoney encryption(HE), a simple, general approach to encrypting messages using low min-entropy
keys such as passwords. HE is designed to produce a ciphertext which, when decrypted with any of a number of
incorrectkeys, yields plausible-looking but bogus plaintexts called honey messages. A key benefit of HE is that it
provides security in cases where too little entropy is available to withstand brute-force attacks that try every key;
in this sense, HE provides security beyond conventional brute-force bounds. HE can also provide a hedge against
partial disclosure of high min-entropy keys.

HE significantly improves security in a number of practical settings. To showcase this improvement, we build
concrete HE schemes for password-based encryption of RSA secret keys and credit card numbers. The key chal-
lenges are development of appropriate instances of a new type of randomized message encoding scheme called a
distribution-transforming encoder(DTE), and analyses of the expected maximum loading of bins in various kinds
of balls-and-bins games.

1 Introduction

Many real-world systems rely for encryption on low-entropyor weak secrets, most commonly user-chosen passwords.
Password-based encryption (PBE), however, has a fundamental limitation: users routinely pick poor passwords. Ex-
isting PBE mechanisms attempt to strengthen bad passwords via salting, which slows attacks against multiple users,
and iterated application of one-way functions, which slowsdecryption and thus attacks by a constant factorc (e.g.,
c = 10,000). Recent results [4] prove that for conventional PBE schemes (e.g., [30]), workq suffices to crack a single
ciphertext with probabilityq/c2µ for passwords selected from a distribution with min-entropy µ. This brute-force
boundis the best possible for in-use schemes.

Unfortunately empirical studies show this level of security to frequently be insufficient. A recent study [9] reports
µ < 7 for passwords observed in a real-world population of 69+ million users. (1.08% of users chose the same
password.) For any slowdownc small enough to support timely decryption in normal use, thesecurity offered by
conventional PBE is clearly too small to prevent message-recovery (MR) attacks.

We explore a new approach to PBE that provides security beyond the brute-force bound. The idea is to build
schemes for which attackers areunable to succeed in message recovery even after trying every possible password /
key. We formalize this approach by way of a new cryptographic primitive calledhoney encryption(HE). We provide a
framework for realizing HE schemes and show scenarios useful in practice in which even computationally unbounded
attackers can provably recover an HE-encrypted plaintext with probability at most2−µ+ǫ for negligibleǫ. Since there
exists a trivial, fast attack that succeeds with probability 2−µ (guess the most probable password), we thus demonstrate
that HE can yield optimal security.

While HE is particularly useful for password-based encryption (PBE), we emphasize that “password” here is meant
very loosely. HE is applicable toanydistribution of low min-entropy keys, including passwords, PINs, biometrically
extracted keys, etc. It can also serve usefully as a hedge against partial compromise of high min-entropy keys.

Background. Stepping back, let us review briefly how brute-force message-recovery attacks work. Given an en-
cryptionC = enc(K,M) of messageM , whereK andM are drawn from known distributions, an attacker’s goal
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is to recoverM . The attacker decryptsC under as many candidate keys as she can, resulting in a set of messages
M1, . . . ,Mq. Should one of the candidate keys be correct (i.e.,K is from a low-entropy distribution),M is guaranteed
to appear in this list, and at this stage the attacker wins with probability equal to her ability to pick outM from theq
candidates. Conventional PBE schemes make this easy in almost all settings. As just one example, ifM is a 16-digit
credit card number encoded via ASCII and the PBE scheme behaves like an ideal cipher, the probability that any
Mi 6= M is a valid ASCII encoding of a 16-digit string is negligible,at (10/256)16 < 2−74. An attacker can thus
reject incorrect messages and recoverM with overwhelming probability. In fact, cryptographers generally ignore the
problem of identifying valid plaintexts and assume conservatively that ifM appears in the list, the attacker wins.

Prior theoretical frameworks for analyzing PBE schemes have focused on showing strong security bounds for
sufficiently unpredictable keys. A result for the PKCS#5 PBEschemes due to Bellare, Ristenpart, and Tessaro [4]
proves that no attacker can break semantic security (learn any partial information about plaintexts) with probability
greater thanq/(c2µ); here,c is the time to perform a single decryption,µ is the min-entropy of the distribution of the
keys, and negligible terms are ignored. As mentioned above,though, whenµ = 7, such a result provides unsatisfying
security guarantees, and the formalisms and proof techniques of [4] cannot offer better results. It may seem that this
is the best one can do and that providing security beyond this“brute-force barrier” remains out of reach.

Perhaps unintuitively (at least to the authors of the present paper), the bounds above are actuallynot tight for all
settings, as they do not take into account the distribution of the challenge messageM . ShouldM be a uniformly
chosen bit-string of length longer thanµ, for instance, then the best possible message recovery attack would appear
to work with probability at most1/2µ. This is because for typical PBE schemes an attacker will have a hard time, in
practice, distinguishing the result ofdec(K,C) for anyK from a uniform bit string. Said another way, the candidate
messagesM1, . . . ,Mq would all appear to be equally valid as plaintexts. Thus an adversary would seem to maximize
her probability of message recovery simply by decryptingC using the key with the highest probability, which is at
most1/2µ.

Previously proposed security tools have exploited exactlythis intuition for special cases. Hoover and Kausik [24]
consider the problem of encrypting a (uniformly-chosen) RSA or DSA secret exponent for authenticating a user to a
remote system. Only the remote system holds the associated public key. To hedge against compromise of the user’s
machine, they suggest encrypting the secret exponent undera PIN (a short decimal-string password). They informally
argue that brute-force attacks will only result in a set of valid-looking exponents, and so the best an attacker can do is
use each candidate exponent to attempt login to the remote system, effectively requiring an online brute-force attack.
Their work led to a commercially deployed system [26]. Othersystems similarly seek to foil offline brute-force attacks,
but mainly by means of hiding valid authentication credentials in anexplicitly stored listof plausible-looking fake ones
(often called “decoys” or “honeywords”) [8, 25]. Similarly, detection of system breaches using “honeytokens,” such
as fake credit-card numbers, is a common industry practice [37].

Honey encryption (HE). Inspired by such decoy systems, we set out to build HE schemesthat provide security
beyond the brute-force barrier, in particular yielding candidate messages during brute-force attacks that are indistin-
guishable from the attacker’s perspective. We refer to the incorrect plaintext candidates in HE ashoney messages,
following the long tradition of this sweet substance’s rolein computer security terminology.

We provide a formal treatment of HE. Functionally, an HE scheme is exactly like a PBE scheme: it takes arbitrary
strings as passwords and uses them to perform randomized encryption of a message. We ask that HE schemes simulta-
neously target two security goals: message recovery (MR) security, as parameterized by a distribution over messages,
and the more (multi-instance) semantic-security style goals of [4]. As we noted, the latter can only be achieved up
to the brute-force barrier, and is thus meaningful only for high min-entropy keys; our HR schemes achieve the goals
of [4] using standard techniques. The bulk of our efforts in this paper will be on MR security, where we target security
better thanq/c2µ. Our schemes will, in fact, achieve security bounds close to1/2µ for unbounded attackers when
messages are sufficiently unpredictable.

HE schemes also produce compact ciphertexts (unlike explicitly stored decoys). While lengths vary by construc-
tion, an HE ciphertext onM is typically a small constant multiple (e.g., 2) of the length of a conventional PBE
ciphertext onM .

Framework for HE schemes. We provide a general methodology for building HE schemes. Its cornerstone is a new
kind of (randomized) message encoding that we call adistribution-transforming encoder (DTE). A DTE is designed
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with an estimate of the message distributionpm in mind, making it conceptually similar to arithmetic/Huffman cod-
ing [16]. The message space handled by a DTE is exactly the support of pm (messages with non-zero probability).
Encoding a message sampled frompm yields a “seed” value distributed (approximately) uniformly. It is convenient
in many cases for seeds to be binary strings. A DTE must have anefficient decoder that, given a seed, obtains the
corresponding message. Applying the decoder to a uniformlysampled seed produces a message distributed (approxi-
mately) underpm. A good (secure) DTE is such that no attacker can distinguishwith significant probability between
these two distributions: (1) a pair(M,S) generated by selectingM from pm and encoding it to obtain seedS, and (2)
a pair(M,S) generated by selecting a seedS uniformly at random and decoding it to obtain messageM . Building
DTEs is non-trivial in many cases, for example whenpm is non-uniform.

Encrypting a messageM under HE involves a two-step procedure that we callDTE-then-encrypt. First, the DTE
is applied toM to obtain a seedS. Second, the seedS is encrypted under a conventional encryption schemeenc using
the keyK, yielding an HE ciphertextC. This conventional encryption schemeenc must have message space equal
to the seed space and all ciphertexts must decrypt under any key to a valid seed. Typical PBE schemes operating on
bitstrings provide all of this (but authenticated encryption schemes do not). Appropriate care must be taken, however,
to craft a DTE whose outputs require no padding (e.g., for CBC-mode encryption).

We prove a general theorem (Theorem 2) that upper bounds the MR security of any DTE-then-encrypt scheme by
the DTE’s security and a scheme-specific value that we call the expected maximum load. Informally, the expected
maximum load measures the worst-case ability of an unbounded attacker to output the right message; we relate it
to the expected maximum load of a bin in a kind of balls-and-bins game. Analyzing an HE scheme built with our
approach (and a good DTE) therefore reduces to analyzing theballs-and-bins game that arises for the particular key
and message distribution. Assuming the random oracle modelor ideal cipher model for the underlying conventional
encryption scheme enables us to assume balls are thrown independently in these games. (We conjecture thatk-wise
independent hashing, and thusk-wise independent ball placement, may achieve strong security in many cases as well.)

A DTE is designed using an estimate of the target message distributionpm. If the DTE is only approximately right,
we can nevertheless prove message-recovery security far beyond the brute-force-barrier. If the DTE is bad, i.e., based
on a poor estimate ofpm, we fall back to normal security (up to the brute-force barrier), at least provably achieving
the semantic security goals in [4]. This means we never do worse than prior PBE schemes, and, in particular, attackers
must always first perform the work of offline brute-force attacks before HE security becomes relevant.

HE instantiations. We offer as examples several concrete instantiations of ourgeneral DTE-then-encrypt construc-
tion. We build HE schemes that work for RSA secret keys by crafting a DTE for uniformly chosen pairs of prime
numbers. This enables us to apply HE to RSA secret keys as generated and stored by common tools such as OpenSSL.
This improves on the scheme of Hoover and Kausik, which requires that RSA secret exponents be generated in a non-
standard manner [24]. Interestingly, simple encoding strategies here fail. For example, encoding the secret keys
directly as binary integers (in the appropriate range) would enable an attacker to rule out candidate messages resulting
from decryption by running primality tests. Indeed, the DTEwe design has decode (essentially) implement a prime
number generation algorithm. (This approach slows down decryption significantly, but as noted above, in PBE settings
we want decryption to not be very fast anyway.)

We also build HE schemes for password-based encryption of credit card numbers, their associated Card Veri-
fication Values (CVVs), and (user-selected) PINs. Encryption of PINs requires a DTE that handles a non-uniform
distribution over messages, as empirical studies show a heavy user bias in PIN selection [6]. The resulting analy-
sis consequently involves a balls-and-bins game with non-uniform bin capacities, a somewhat unusual setup in the
literature.

In each of the cases above we are able to prove close to optimalMR security.

Limitations of HE. The security guarantees offered by HE come with some stringsattached. First, HE security
does not hold when the adversary has some side information about the target message. As a concrete example, the
RSA secret key HE scheme will only provide the strong MR guarantees when the attacker does not already have the
public key associated with the encrypted secret key. Thus the HE guarantees are not typically going to help protect
normal HTTPS certificate keys. (The intended application for this HE scheme is client authorization, where the public
key is stored only at the remote server, a typical setting forSSH users. Refer to [24] for more detailed deployment
discussion.) Second, because decryption of an HE ciphertext under a wrong key produces fake but valid-looking
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messages, typos in passwords might confuse legitimate users in some settings. We address this issue of “typo-safety”
in Section 7. Third and finally, we assume in our HE analyses that the key and message distributions are independent.
If they are correlated, an attacker may be able to identify a correct message by comparing it with the decryption
key that produced it. Similarly, encrypting two correlatedmessages under the same key may enable an adversary to
identify correct messages. (Encrypting independent messages under the same key is fine.) We however emphasize
that, should any of these assumptions fail, HE security falls back to normal PBE security: there is never any harm in
using HE.

2 Related Work

Our HE schemes (though not all HE schemes) provide a form of information-theoretic encryption, as their MR security
does not rely on any computational hardness assumption. Information-theoretic encryption schemes, starting with the
one-time pad [34], have seen extensive study. Most closely related is entropic security [18, 33], where the idea is to
exploit high-entropy messages to perform encryption that leaks no predicate on the plaintext even against unbounded
attackers (and hence beyond the brute-force bound). Their goal was to enable use of uniform, smaller (than one-
time pads) keys yet achieve information-theoretic security. HE similarly exploits the entropy of messages, but also
provides useful bounds (by targeting MR security) even whenthe combined entropy of messages and keys goes below
the threshold needed to achieve entropic security. See alsothe discussion in Appendix A.

In natural applications of HE, the message spaceM must encompass messages of special format, rather than
just bitstrings. In this sense, HE is somewhat related to format-preserving encryption (FPE) [2], although HE is
randomized and has no preservation requirement (our ciphertexts are unstructured bit strings). An implication of
our approach, however, is that some FPE constructions (e.g., for credit-card encryption) can be shown to achieve
HE-like security guarantees when message distributions are uniform. HE is also conceptually related to collisionful
hashing [7], the idea of creating password hashes for which it is relatively easy to find inverses and thus hard to identify
the original, correct password (as opposed to identifying acorrect message).

(Non-interactive) non-committing encryption [14, 29] areschemes for which a ciphertext can be “opened” to an
arbitrary message by finding an appropriate key to do so. (Forexample, a one-time-pad is non-committing.) HE has
no such requirement, rather HE schemes seek to ensure that decrypting a fixed ciphertext under different keys gives
rise to independent-looking samples of the message space. Note that unlike non-committing encryption [29], HE is
achievable in the non-programmable random oracle model. Deniable encryption [15] also allows opening a ciphertext
to a chosen message; HE schemes do not in general provide deniability.

Canetti, Halevi, and Steiner [13] propose a protocol in which a password specifies a subset of CAPTCHAs that
must be solved to decrypt a credential store. Their scheme creates ambiguity around where human effort can be most
effectively invested, rather than around the correctness of the contents of the credential store, as HE would.

Perhaps most closely related to HE is a wealth of literature on deception and decoys in computer security. Hon-
eypots, fake computer systems intended to attract and studyattacks, are a stock-in-trade of computer security re-
search [36]. Researchers have proposed honeytokens [17,37], which are data objects whose use signals a compromise,
and honeywords [25], a system encompassing the use of passwords as honeytokens. Additional proposals include false
documents [11], false network traffic [10], and many variants.

The Kamouflage system [8] is particularly relevant. It conceals a true password vault encrypted under a true master
password amongN bogus vaults encrypted under bogus master passwords. Kamouflage requiresO(N) storage. With
a suitable DTE, HE offers the possibility of realizing similar functionality and security withO(1) storage. Decoy
deployment in Kamouflage and related systems requires the construction of plausible decoys. This problem has seen
study specifically for protection of passwords in, e.g., [8,25], but to the best of our knowledge, we are the first to
formalize it with the concept of DTEs.

3 HE Overview

HE schemes. An HE scheme has syntax and semantics equivalent to that of a symmetric encryption scheme. En-
cryption maps a key and message to a ciphertext, and in our schemes encryption will be randomized. Decryption
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recovers messages from ciphertexts. The departure from conventional symmetric encryption schemes will be in how
HE decryption behaves when one uses the wrong key in attempting to decrypt a ciphertext. Instead of giving rise to
some error, decryption will emit a plaintext that “looks” plausible.

Formally, letK andM be sets, the key space and message space. For generality, we assume thatK consists
of variable-length bit strings. (This supports, in particular, varying length passwords.) An HE schemeHE =
(HEnc,HDec) is a a pair of algorithms. EncryptionHEnc takes input a keyK ∈ K, messageM ∈ M, some
uniform random bits, and outputs a ciphertextC. We write this asC←$ HEncK(M), where←$ denotes thatHEnc
may use some number of uniform random bits. DecryptionHDec takes as input a keyK ∈ K, ciphertextC, and
outputs a messageM ∈M. Decryption, always deterministic, is written asM ← HDecK(C).

We require that decryption works, formally thatPr[HDecK(HEncK(M)) = M ] = 1 for all K ∈ K, all M ∈ M,
and where the event is defined over the randomness used byHEnc.

We will write SE = (enc,dec) to denote a conventional symmetric encryption scheme, but note that the syntax
and semantics match those of an HE scheme.

Message and key distributions. We denote a distribution on setS by a mapp : S → [0, 1] and require that
∑

s∈S p(s) = 1. The min-entropy of a distribution is− log maxs∈S p(s). Sampling according to such a distribu-
tion is writtens←p S, and we assume all sampling is efficient. We usepm to denote a message distribution over
M andpk for a key distribution overK. Thus sampling according to these distributions is denotedM ←pmM and
K←pk K. Note that we assume that draws frompm andpk are independent, which is not always the case but will
be in our example applications; see Section 7. Whether HE schemes can provide security for any kind of dependent
distributions is an interesting question for future work.

Message recovery security. To formalize our security goals, we use the notion of security against message recovery
attacks. Normally, one aims that, given the encryption of a message, the probability of any adversary recovering the
correct message is negligible. But this is only possible when both messages and keys have high entropy, and here we
may have neither. Nevertheless, we can measure the message recovery advantage of any adversary concretely, and
will do so to show (say) that attackers cannot achieve advantage better than1/2µ whereµ is the min-entropy of the
key distributionpk.

MRA
HE,pm,pk

K∗←pk
K ; M∗←pm

M
C∗←$ HEnc(K∗,M∗)

M ←$A(C∗)

returnM = M∗

Figure 1: Game defining MR security.

Formally, we define the MR security game as shown in Figure 1
and define advantage for an adversaryA against a schemeHE by
Adv

mr
HE,pm,pk

(A) = Pr[MRA
HE,pm,pk

⇒ true]. When working in the ran-
dom oracle (RO) model, the MR game additionally has a procedure im-
plementing a random function thatA may query. For our schemes, we
allowA to run for an unbounded amount of time and make an unbounded
number of queries to the RO. For simplicity we assumepm and pk are
independent of the RO.

Semantic security. In the case that keys are sufficiently unpredictable and
adversaries are computationally bounded, our HE schemes will achieve
semantic security [21]. Our schemes will therefore never provide worse confidentiality than conventional encryption,
and in particular the MR advantage in this case equals the min-entropy of the message distributionpm plus the
(assumed) negligible semantic security term.

When combined with a suitable password-based key-derivation function [30], our schemes will also achieve the
multi-instance security guarantees often desired for password-based encryption [4]. Note that the results in [4] still
hold only for attackers that cannot exhaust the min-entropyof the key space.

In Appendix A we discuss why existing or naive approaches, such as conventional encryption or hiding the true
plaintext in a list of fake ones, fail to be satisfactory HE schemes.

4 Distribution-Transforming Encoders

We introduce a new type of message encoding scheme that we refer to as adistribution-transforming encoder(DTE).
Formally, it is a pairDTE = (encode,decode) of algorithms. The usually randomized algorithmencode takes as
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input a messageM ∈ M and outputs a value in a setS. We call the rangeS the seed spacefor reasons that will
become clear in a moment. The deterministic algorithmdecode takes as input a valueS ∈ S and outputs a message
M ∈ M. We call a DTE schemecorrect if for anyM ∈ M, Pr[decode(encode(M)) = M ] = 1.

A DTE encodes a priori knowledge of the message distributionpm. One goal in constructing a DTE is that
decode applied to uniform points provides sampling close to that ofa target distributionpm. For a given DTE
(that will later always be clear from context), we definepd to be the distribution overM defined bypd(M) =
Pr [M ′ = M : U ←$ S ; M ′ ← decode(S) ]. We will often refer topd as the DTE distribution. Intuitively, in a
good or secure DTE, the distributionspm andpd are “close.”

Formally, we define this notion of DTE security or goodness, as follows. LetA be an adversary attempting
to distinguish between the two games shown in Figure 2. We define advantage of an adversaryA for a message
distributionpm and encoding schemeDTE = (encode,decode) by

Adv
dte
DTE,pm(A) =

∣

∣

∣
Pr

[

SAMP1ADTE,pm ⇒ 1
]

− Pr
[

SAMP0ADTE ⇒ 1
]

∣

∣

∣
.

While we focus mostly on adversaries with unbounded runningtimes, we note that these measures can capture
computationally-good DTEs as well. A perfectly secure DTE is a scheme for which the indistinguishability ad-
vantage is zero for even unbounded adversaries. In AppendixC we explore another way of measuring DTE goodness
that, while more complex, sometimes provides slightly better bounds.

SAMP1BDTE,pm

M∗←pm
M

S∗←$ encode(M∗)

b←$ B(S∗,M∗)

returnb

SAMP0BDTE

S∗←$ S
M∗ ← decode(S∗)

b←$ B(S∗,M∗)

returnb

Figure 2: Games defining DTE goodness.

The inverse sampling DTE. We first build a broadly
useful DTE based on inverse sampling, the well-known
technique for converting uniform random variables into
ones from some other distribution. LetFm be the cu-
mulative distribution function (CDF) associated with a
known message distributionpm according to some or-
dering ofM = {M1, . . . ,M|M|}. DefineFm(M0) = 0.
Let the seed space beS = [0, 1). Inverse sampling
picks a value according topm by selectingS←$ [0, 1)
and outputsMi such thatFm(Mi−1) ≤ S < Fm(Mi);
this amounts to computing the inverse CDF functionM = F−1

m (S). The associated DTE schemeIS-DTE =
(is-encode, is-decode) encodes by picking uniformly from the range[Fm(Mi−1), Fm(Mi)) for input messageMi,
and decodes by computingF−1

m (S).
All that remains is to fix a suitably granular representationof the reals between[0, 1). The representation error

gives an upper bound on the DTE security of the scheme. We defer the details and analysis to Appendix B. The
scheme works in timeO(log |M|) using a tables of sizeO(|M|), though its performance can easily be improved for
many special cases (e.g., uniform distributions).

DTEs for RSA secret keys. We turn to building a DTE for RSA secret keys. Recall that a popular key generation
algorithm (used in, e.g., OpenSSL) generates an RSA key of bit-length2ℓ via rejection sampling of random values
p, q ∈ [2ℓ−1, 2ℓ). The rejection criterion for eitherp or q is failure of a Miller-Rabin primality test [28, 31]; the
resulting distribution of primes is (essentially) uniformover the range. The private exponent is computed asd =
e−1 mod (p − 1)(q − 1) for some fixede (typically 65537), yielding secret key(N, d) and public key(N, e). Most
often, however, the key as stored includesp, q, and some ancillary values (not efficiently recoverable from d) to speed
up exponentiation via the Chinese Remainder Theorem. Sincefor fixed e, the secret key is fully defined byp, q, we
now focus on building DTEs that take as input primesp, q ∈ [2ℓ−1, 2ℓ) for someℓ and aim to match the message
distributionpm that is uniformly distributed over the primes in[2ℓ−1, 2ℓ).

One strawman approach is just to encode the inputp, q as a pair of(ℓ − 2)-bit strings (the leading ‘1’ bit left
implicit), but this gives a poor DTE. The prime number theorem indicates that anℓ-bit integer will be prime with
probability about1/ℓ; thus an adversaryA that applies primality tests to a candidate plaintext has a (very high) DTE
advantage of about1− 1/ℓ2.

We can instead adapt the rejection-sampling approach to prime generation itself as a DTE,RSA-REJ-DTE =
(rsa-rej-encode, rsa-rej-decode), which works as follows. Encoding (rsa-rej-encode) takes a pair of primes(p, q),
constructs a vector oft bitstrings selected uniformly at random from the range[2ℓ−1, 2ℓ), replaces the first (resp. sec-
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ond) prime integer in the list byp (resp.q), and outputs the modified vector oft integers (each encoded usingℓ − 2
bits). (If there’s one prime and it’s not the last integer in the vector, then that prime is replaced byp and the last integer
is replaced byq. Should there be no primes in the vector, or one prime in the last position, then the last two integers
in the vector are replaced by(p, q).) Decoding (rsa-rej-decode) takes as input a vector of thet integers, and outputs
its first two primes. If there do not exist two primes, then it outputs some (hard-coded) fixed primes.1 For simplicity,
we assume a perfect primality testing algorithm; it is not hard to generalize to probabilistic ones.2 We obtain the
following security bound.

Theorem 1 Letpm be uniform over primes in[2ℓ−1, 2ℓ) for someℓ ≥ 2 andRSA-REJ-DTE be the scheme described
above. ThenAdv

dte
RSA-REJ-DTE,pm(A) ≤ (1− 1/(3ℓ))t−1 for any adversaryA.

Proof: Let π(x) be the number of primes less than or equal tox. Then Bertrand’s postulate (c.f., [35]) states that
π(2ℓ)−π(2ℓ−1) > 2ℓ−1

3ℓ for ℓ > 2. Thus the probability of each sample from{0, 1}ℓ being a prime is at least1/3ℓ. One
can verify that the SAMP1RSA-REJ-DTE,pm and SAMP0RSA-REJ-DTE,pm have identical distributions assuming at least
two primes are chosen amongst thet. A standard argument gives that the advantage is bounded by(1− 1/(3ℓ))t−1.

This scheme is simple, but a small adversarial advantage does translate into a large encoding. For example with
ℓ = 1024 (2048-bit RSA), to achieveAdv

dte
RSA-REJ-DTE,pm(A) < 10−5 requirest ≥ 35,361, resulting in an encoding

of about 4.5 megabytes. (Assuming keys of low entropy,10−5 is small enough to contribute insignificantly to security
bounds on the order of those in Section 7.) It may be tempting to try to save on space by treatingS as a seed for a
pseudorandom generator (PRG) that is then used to generate the t values during decoding. Encoding, though, would
then need to identify seed values that map to particular messages (prime pairs), effectively inverting the PRG, which
is infeasible.

Some RSA key generators do not use rejection-sampling, but instead use the classic algorithm that picks a random
integer in [2ℓ−1, 2ℓ) and increments it by two until a prime is found (c.f., [12, 22]). In this case, a DTE can be
constructed (see Appendix D for details) that requires only2(ℓ − 2)-bit seeds, and so is space-optimal. Other, more
randomness-efficient rejection-sampling techniques [20]may also be used to obtain smaller encodings.

In some special settings it may be possible to hook existing key-generation software, extract the PRG key / seed
κ used for the initial generation of an RSA key pair, and apply HE directly toκ. A good DTE (and thus HE scheme)
can then be constructed trivially, asκ is just a short (e.g., 256-bit) uniformly random bitstring.

5 DTE-then-Encrypt Constructions

We now present a general construction for HE schemes for a target distributionpm. Intuitively, the goal of any HE
scheme is to ensure that the plaintext resulting from decrypting a ciphertext string under a key is indistinguishable
from freshly sampling a plaintext according topm. Let DTE = (encode,decode) be a DTE scheme whose outputs
are in the spaceS = {0, 1}s. Let SE = (enc,dec) be a conventional symmetric encryption scheme with message
spaceS and some ciphertext spaceC.

HEncH(K,M)

S←$ encode(M)

R←$ {0, 1}n
C2←$ H(R,K)⊕ S

return(R,C2)

HDecH(K, (R,C2))

S ← C2 ⊕H(R,K)

M ← decode(S)
returnM

Figure 3: A particularly simple instantiation of DTE-then-Encrypt us-
ing a hash-functionH to implement the symmetric encryption.

Then DTE-then-EncryptHE[DTE,SE] =
(HEnc,HDec) applies the DTE encoding
first, and then performs encryption under the
key. Decryption works in the natural way. It
is easy to see that the resulting scheme is se-
cure in the sense of semantic security (when
keys are drawn from a large enough space)
shouldSE enjoy the same property.

We fix a simple instantiation using a hash
functionH : {0, 1}n × K → S to perform

1We could also output bottom, but this would require allowingerrors in decoding and HE decryption.
2Doing so would also require our definition of DTE correctnessto allow errors.
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symmetric encryption, see Figure 3. It is de-
noted asHE[DTE,H]. Of course, one should apply a password-based key-derivation function toK first, as per [30];
we omit this for simplicity.

To analyze security, we use the following approach. First weestablish a general theorem (Theorem 2) that uses
the goodness of the DTE scheme to move to a setting where, intuitively, the attacker’s best bet is to always output
the messageM which maximizes the probability (over choice of key) ofM being the result of decrypting a random
challenge ciphertext. The attacker wins, then, with exactly the sum of the probabilities of the keys that map the
ciphertext to that message. Second, we define a weighted balls-and-bins game with non-uniform bin sizes in a way
that makes the expected load of the maximally loaded bin at the end of the game exactly the winning probability of
the attacker. We can then analyze these balls-and-bins games for various message and key distributions combinations
(in the random oracle model). We put all of this together to derive bounds for some concrete applications in Section 7,
but emphasize that the results here provide a general framework for analyzing HE constructions that applies more
broadly.

Applying DTE goodness. Let KM,C = {K : K ∈ K ∧M = HDec(K,C)} be the set of keys that decrypt a
specific ciphertext to a specific message and (overloading notation slightly) letpk(KM,C) =

∑

K∈KM,C
pk(K) be

the aggregate probability of selecting a key that falls in any such set. Then for anyC ∈ C we defineLHE,pk(C) =
maxM pk(KM,C). Let LHE,pk represent the random variableLHE,pk(C) defined overC uniformly chosen fromC
and any coins used to defineHDec. (For example in the hash-based scheme, we take this over thecoins used to
defineH when modeled as a random oracle.) We will later show, for specific message/key distributions and using
balls-and-bins-style arguments, bounds on E

[

LHE,pk

]

. We call this value the expected maximum load, following the
terminology from the balls-and-bins literature.

For the following theorem we require fromSE only that encrypting uniform messages gives uniform ciphertexts.
More precisely, thatS←$ S ; C←$ enc(K,S) andC←$ C ; S ← dec(K,C) define identical distributions for any
key K ∈ K. This is true for many conventional schemes, including the hash-based scheme used in Figure 3, CTR
mode over a block-cipher, and CBC-mode over a block cipher (assuming the DTE is designed so thatS includes only
bit strings of length a multiple of the block size). The proofof the following theorem is given in Appendix G.

Theorem 2 Fix distributionspm, pk, an encoding schemeDTE for pm, and a symmetric encryption schemeSE =
(enc,dec). LetA be an MR adversary againstHE[DTE,SE]. Then we give a specific adversaryB in the proof such
that Adv

mr
HE,pm,pk

(A) ≤ Adv
dte
DTE,pm(B) + E

[

LHE,pk

]

. AdversaryB runs in time that ofA plus the time of one
enc operation.

The balls-and-bins interpretation. What remains is to bound E
[

LHE,pk

]

. To do so, we use the following equivalent
description of the probability space as a type of balls-and-bins game. Uniformly pick a ciphertextC←$ C. Each ball
represents one keyK and has weight equal topk(K). We leta = |K| be the number of balls. Each bin represents a
messageM andb = |M| is the number of bins.3 A ball is placed in a particular bin shouldC decrypt underK to the
message labeling that bin. ThenLHE,pk as defined above is exactly the random variable defined as the maximum, over
bins, sum of weights of all balls thrown into that bin. In thisballs-and-bins game the balls are weighted, the bins have
varying capacities, and the (in)dependence of ball throws depends on the details of the symmetric encryption scheme
used.

To derive bounds, then, we must analyze the expected maximumload for various balls-and-bins games. For brevity
in the following sections we focus on the hash-based HE scheme shown in Figure 3. By modelingH as a random
oracle,4 we get that all the ball throws are independent. At this stagewe can also abstract away the details of the DTE,
instead focusing on the distributionpd defined overM. The balls-and-bins game is now completely characterized
by pk andpd, and we define the random variableLpk,pd as the load of the maximally loaded bin at the end of the
balls-and-bins game that throws|K| balls with weights described bypk independently into|M| bins, choosing a bin
according topd. The following lemma formalizes this transition.

3Convention is to havem balls andn bins, but we usea balls andb bins to avoid confusion sincem connotes messages.
4Technically speaking we only require the non-programmablerandom oracle [19,29].
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Lemma 1 ConsiderHE[DTE,H] for H modeled as a RO andDTE having distributionpd. For any key distribu-
tion pk, E[LHE,pk ] ≤ E[Lpk,pd ].

We give similar lemmas for block-cipher based modes (in the ideal cipher model) in Appendix E. Thus we
can interchange the hash-based symmetric encryption scheme for other ones in the final results of Section 7 with
essentially the same security bounds.

6 Balls-and-Bins Analyses

In this section we will derive bounds for various special cases of the balls-and-bins games , these cases motivated and
used by the example applications of HE given in the next section. These cases are by no means exhaustive, and rather
we strive only to illustrate the power of our general HE analysis framework. Treatingpk andpd as vectors, we can
write their dimension as|pk| = a and|pd| = b.

In the special case ofa = b and bothpk andpd uniform, the balls-and-bins game becomes the standard one.
One can use the classic proof to show that E[Lpk,pd ] ≤ 1

b +
3 ln b
b ln ln b . HE schemes for real applications, however, are

unlikely to coincide with this special case, and so we seek other bounds.

Majorization. To analyze more general settings, we exploit a result due to Berenrink, Friedetzky, Hu, and Martin [5]
that builds on a technique called “majorization” earlier used for the balls-and-bins setting by Azar, Broder, Karlin, and
Upfal [1].

Distributions such aspk andpd can be viewed as vectors of appropriate dimension overR. In the below we assume
that vectors have their components in decreasing order, e.g. thatpk(i) ≥ pk(j) for i < j. Let m be a number and
pk, p

′
k ∈ R

a. Thenp′k majorizespk, denotedp′k ≻ pk, if
∑a

i=1 p
′
k[i] =

∑a
i=1 pk[i] and

∑j
i=1 p

′
k[i] ≥

∑j
i=1 pk[i] for

all 1 ≤ j ≤ a.
Majorization intuitively states thatp′k is more “concentrated” thanpk: a prefix of any length ofp′k has cumulative

weight at least as large as the cumulative weight of the same-length prefix ofpk. We have the following theorem
from [5, Cor. 3.5], slightly recast to use our terminology. We also extend our definition of load to include thei highest
loaded bins: letLi

pk,pd
be the random variable which is the total weight in thei highest-loaded bins at the end of the

balls-and-bins game.

Theorem 3 (BFHM08) Letpk, p′k, pd be distributions. Ifp′k ≻ pk, thenE[Li
p′
k
,pd

] ≥ E[Li
pk,pd

] for all i ∈ [1, b].

Consider the case thati = 1, which corresponds to the expected maximum bin loads for thetwo key distributions.
As a concrete example, letpk = (1/2, 1/4, 1/4), p′k = (1/2, 1/2, 0). Thenp′k ≻ pk and thus E[L(p′k, pd) ] ≥
E [L(pk, pd) ] because the “fusion” of the two 1/4-weight balls into one ball biases the expected maximum load
upwards.

Our results will use majorization to shift from a setting with non-uniform key distributionpk having max-weight
w to a with uniform key distribution over⌈1/w⌉.
Non-uniform key distributions. We turn now to giving a bound for the case thatpk has maximum weightw (meaning
pk(M) ≤ w for all M ) andpd is uniform. In our examples in the next section we have thata ≪ b, and so we focus
on results for this case. We start with the following lemma (whose proof is given in Appendix G).

Lemma 2 Supposepk has maximum weightw andpd is such thatb = ca for some positive integerc. Then for any
positive integers > 2e/c, wheree is Euler’s constant, it holds that

E [Lpk,pd ] ≤ w

(

(s− 1) + 2

(

a2

cs−1

)

(e

s

)s
)

.

For cases in whichb = O(a2), a convenient, somewhat tighter bound on E[Lpk,pd ] is possible. We observe that in
many cases of interest, the termr(c, b) in the bound below will be negligible. Proof of this next lemma is given in
Appendix G.
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Lemma 3 Supposepk has maximum weightw and pd is such thatb = ca2 for some positive integerc. Then
E [Lpk,pd ] ≤ w

[

1 + 1
2c + r(c, b)

]

, wheree is Euler’s constant andr(c, b) =
(

e
27c2

) (

1− e
cb

)−1
.

Non-uniform balls-and-bins. As a final analysis supportive of our examples in the next section, we must analyze
settings in whichpd is non-uniform. The proof of this lemma is given in Appendix G.

Lemma 4 LetLB denote the maximum load yielded by throwinga balls (of weight 1) into a setB of b bins of non-
uniform capacity at most0 ≤ γ ≤ 3 −

√
5. LetLB∗ denote the maximum load yielded by throwinga∗ = 3a balls (of

weight 1) into a setB∗ of b∗ = ⌊2/γ⌋ bins of uniform capacity. ThenE[LB] ≤ E[LB∗ ].

7 Example Applications, Bounds, and Deployment Considerations

We now draw all of the results of the previous sections together in several concrete examples. We investigate in
particular honey encryption of RSA secret keys and of creditcard data. Throughout this section, for concreteness, we
use password-based encryption of these secrets, though theproven results are much more general. Appealing again
to Bonneau’s Yahoo! study [9] in which the most common password was selected by1.08% ≈ 1/100 of users, we
assume for simplicity that the maximum-weight password / key is selected with probabilityw = 1/100. Note that at
this level of entropy, prior security results for PBE schemes are not very useful.

7.1 HE for Credit Card Numbers, PINs, and CVVs

We first consider application of HE to credit card numbers. For convenience, we evaluate HE as applied to a single
value, e.g., an individual credit-card number. Recall, though, that HE security is unaffected by simultaneous encryp-
tion of multiple, independent messages drawn from the same distribution. So our security bounds would in principle
apply equally well to encryption of a vault or repository of multiple credit-card numbers.

A (Mastercard or Visa) credit card number, known technically as a Primary Account Number (PAN), consists of
sixteen decimal digits. Although structures vary somewhat, commonly nine digits constitute the cardholder’s account
number, and may be regarded as selected uniformly at random upon issuance. One digit is a (mod 10) checksum
(known as the Luhn formula). A useful result then is the following theorem, whose proof is given in Appendix H.

Theorem 4 ConsiderHE[IS-DTE,H] with H modeled as a RO andIS-DTE using anℓ-bit representation. Letpm
be a uniform distribution overb messages andpk be a key-distribution with maximum weightw. Letα = ⌈1/w⌉.
Then for any adversaryA, Adv

mr
HE,pm,pk

(A) ≤ w(1 + δ) +
1 + α

2ℓ
whereδ = α2

2b + eα4

27b2

(

1− eα2

b2

)−1
.

For many cases of interest,b ≫ α2, and thusδ will be small. We can also setℓ appropriately to make(1 + α)/2ℓ

negligible. Theorem 4 then yields a simple and useful bound,as for our next two examples.
As cardholder account numbers are uniformly selected nine-digit values, they induce a uniform distribution over a

space ofb = 109 messages. Givenw = 1/100, then,α2/b = 10−5 and soδ ≈ 0. The upper bound on MR advantage
is w = 1/100. Note that this bound is essentially tight, as there exists an adversaryA achieving advantagew = 1

100 .
Namely, the adversary that decrypts the challenge ciphertext with the most probable key and then outputs the resulting
message. This adversary has advantage at leastw.

Often the last four digits of a credit-card number are treated as semi-public information. It is common, for example,
for receipts and web sites to display them. Another interesting bound to consider, therefore, is the security of the
previous HE scheme here assuming adversarial knowledge of these digits. Three digits form part of the customer
account number and one is a checkdigit. Thus, the effective message space is reduced in this scenario to five digits,
i.e.,b = 105. Thusα2/b = 1/10 and Theorem 4 yields a message recovery bound of about1.05%.

Finally, consider encrypting both 5-digits of the credit-card / debit-card account number (the last 4 digits still
considered public) along with the user’s PIN number. (Credit card PINs are used for cash withdrawals and to authorize
debit-card transactions.) A detailed examination of a corpus of 3.4 million user-selected PINs is given in [6], and
gives in particular a CDF that can be used to define an inverse sampling DTE. The most common user-selected PIN
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is ‘1234’; it has an observed frequency of 10.713%. Thus, PINs have very little minimum entropy (roughly 3 bits).
Combining a PIN with a five-digit effective account number induces anon-uniformmessage space, with maximum
message probabilityγ = 1.0713 × 10−6. Consequently, Theorem 4 is not applicable to this example.

A variant of the proof of Theorem 4, however, that makes use ofLemma 4 for non-uniform bin sizes, establishes
the following corollary.

Corollary 1 ConsiderHE[IS-DTE,H] with H modeled as a RO andIS-DTE using anℓ-bit representation. Letpm
be a non-uniform distribution with maximum message probability γ ≤ 3 −

√
5, andpk be a key-distribution with

maximum weightw. Letα = ⌈1/w⌉. Then for any adversaryA, Adv
mr
HE,pm,pk

(A) ≤ w(1 + δ) +
(1 + α)

2ℓ
where

δ = α2

2b
+ eα4

27b
2

(

1− eα2

b
2

)−1
andα = ⌈3/w⌉ andb = ⌊2/γ⌋.

Corollary 1 yields a bound defined by the expected maximum load of a balls-and-bins experiment with300 balls
(of weightw = 1/100) and⌊2/γ⌋ = 1,866,890 uniform-capacity bins, withc = α2/b = 1/20.74. The final MR
bound is therefore about1.02%. This is slightly better than the bound of the previous example (at1.05%). It shows,
significantly, that Corollary 1 is tight enough to give improved bounds despite the scant minimum entropy in a PIN.

Credit cards often have an associated three- or four-digitcard verification value, a secret used to conduct trans-
actions. As a final case we investigate encrypting a three-digit, uniformly random CVV under a password. Here
α = 100 andb = 1000, which means thatα2/b = 10. Applying Theorem 4 yields a loose bound of about16.35%.
For a tighter bound, we offer the following corollary, a variant of Theorem 4 whose proof makes use of Lemma 2:

Corollary 2 ConsiderHE[IS-DTE,H] with H modeled as a RO andIS-DTE using anℓ-bit representation. Letpm
be a uniform distribution overb messages and letpk be a key-distribution with maximum weightw. Letα = ⌈1/w⌉
andc = b/α. Then for any positive integers > 2eα/b, wheree is Euler’s constant, and for any adversaryA, it holds

thatAdv
mr
HE,pm,pk

(A) ≤ w

(

(s − 1) + 2

(

α2

cs−1

)

(e

s

)s
)

+ (1 + α)/2ℓ.

Application of Corollary 2 to our CVV example here withc = 10 ands = 5 yields the considerably improved bound
of approximately4.094%.

In cases with relatively smalla andb, simulation yields a considerably better estimate of expected maximum loads
than some of our upper bounds suggest. For the example of CVV encryption, a simulation over 100,000 runs yields a
mean expected maximum load of2.14% (mean number of balls = 2.14, min = 1, max = 5, std. dev. = 0.372), which
makes our analytical upper bound of4.094% appear to be loose. Future work might therefore seek improved bounds.

7.2 HE for RSA Secret Keys

We now show how to apply HE to RSA secret keys using the DTE introduced for this purpose in Section 4.
In some settings, RSA is used without making a user’s public key readily available to attackers. A common

example is RSA-based client authentication to authorize access to a remote service using HTTPS or SSH. The client
stores an RSA secret / private key and registers the corresponding public key with the remote service.

Practitioners recommend encrypting the client’s secret key under a password, as this provides defense-in-depth
should the client’s system be passively compromised.5 Using traditional password-based encryption, though, means
that an attacker can mount an offline brute-force attack against the encrypted secret key. Use of straightforward
unauthenticated encryption wouldn’t help here: as the secret key is usually stored as a pair of constituent primesp
andq (to facilitate use of the Chinese Remainder Theorem), an attacker can quickly test the correctness of a candidate
secret key by applying a primality test to its factors. Similarly, given the kinds of passwords used in practice (e.g.,
for w = 1/100), key-hardening mechanisms (e.g., iterative hashing) do not provide an effective slowdown against
brute-force attack. Cracking a password-encrypted RSA secret key remains fairly easy.

HE is an attractive option in this setting. To build an HE scheme for2ℓ-bit RSA secret keys we can use the DTE
from Section 4. We have the following theorem.

5Obviously an active attacker can sniff the keyboard or otherwise capture the secret key. We also are ignoring the role of network attackers
that may also gain access to transcripts dependent on the true secret key. See [24] for discussion.
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Theorem 5 ConsiderHE[RSA-REJ-DTE,H] with H modeled as a RO andRSA-REJ-DTE the 2ℓ-bit RSA DTE
using seed space vectors of sizet. Letpm be uniform over primes in[2−ℓ−1, 2ℓ) and letpk be a key-distribution with
maximum weightw. Letα = ⌈1/w⌉. Then for any adversaryA it holds that

Adv
mr
HE,pm,pk

(A) ≤ w(1 + δ) + (1 + α)

(

1− 1

3ℓ

)t−1

whereδ = α2

2⌈2ℓ−1/ℓ⌉
+
(

eα4

27⌈2ℓ−1/ℓ⌉2

)

·
(

1− eα2

⌈2ℓ−1/ℓ⌉2

)−1
.

The proof is much like that of Theorem 4 (Appendix H): apply Theorem 2; plug in the advantage upper bound
for the RSA rejection sampling DTE (Theorem 1); apply Lemma 1to get independent ball tosses; majorize to get
uniform-weighted balls (Theorem 3); apply a union bound to move frompd back to uniform bin selection; and then
finally apply the balls-and-bins analysis for uniform bins (Lemma 3).

The termδ is small when− logw ≪ ℓ. For example, withℓ = 1024 andw = 1/100 and settingt = 35,393, we
have thatδ ≈ 0 and the overall MR advantage is upper bounded by1.1%. The ciphertext size will still be somewhat
large, at about 4.5 megabytes; one might use instead the DTEsdiscussed in Appendix D for which similar MR bounds
can be derived yet ciphertext size ends up short.

7.3 Deployment considerations

A number of considerations and design options arise in the implementation and use of HE. To give some flavor of
such issues, we briefly mention a couple involving the use of checksums.

Typo-safety. Decryption of an HE ciphertextC∗ under an incorrect password / keyK yields a fake but valid-looking
messageM . This is good for security, but can be bad for usability if a fake plaintext appears valid to a legitimate user.

One possible remedy, proposed in [25], is the use of error-detecting codes or checksums, such as those for ISBN
book codes. For example, a checksum on the password / keyK∗ might be stored with the ciphertextC∗. Such
checksums would reduce the size of the key spaceK and cause some security degradation, and thus require careful
construction and application. Another option in some casesis online verification of plaintexts. For example, if a credit-
card number is rejected by an online service after decryption, the user might be prompted to re-enter her password.

Honeytokens without explicit sharing. In [8], it is suggested that fake passwords / honeytokens be shared explicitly
between password vault applications and service providers. Application of error-correcting codes to plaintexts in HE
can createhoneytokens without explicit sharing. As a naı̈ve example (and crude error-correcting code), an HE scheme
for credit-card numbers might explicitly store the first twodigits of the credit-card account number. If a service
provider then receives an invalid credit-card number in which these digits are correct, it gains evidence of a decryption
attempt on the HE ciphertext by an adversary. This approach degrades security slightly by reducing the message space,
and must be applied with care. But it offers an interesting way of coupling HE security with online security checks.

8 Conclusion

Low-entropy secrets such as passwords are likely to persistin computer systems for many years. Their use in encryp-
tion leaves resources vulnerable to offline attack. Honey encryption can offer valuable additional protection in such
scenarios. HE yields plausible looking plaintexts under decryption with invalid keys (passwords), so that offline de-
cryption attempts alone are insufficient to discover the correct plaintext. HE also offers a gracefully degrading hedge
against partial disclosure of high min-entropy keys, and, by simultaneously meeting standard PBE security notions
should keys be high entropy, HE never provides worse security than existing PBE schemes.

We showed applications in which HE security upper bounds areequal to an adversary’s conditional knowledge
of the key distribution, i.e., they min-entropy of keys. These settings have message space entropy greater than the
entropy of keys, but our framework can also be used to analyzeother settings.

A key challenge for HE—as with all schemes involving decoys—is the generation of plausible honey messages
through good DTE construction. We have described good DTEs for several natural problems. For the case where
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plaintexts consist of passwords, e.g., password vaults, the relationship between password-cracking and DTE con-
struction mentioned above deserves further exploration. DTEs offer an intriguing way of potentially repurposing
improvements in cracking technology to achieve improvements in encryption security by way of HE.

More generally, for human-generated messages (password vaults, e-mail, etc.), estimation of message distributions
via DTEs is interesting as a natural language processing problem. Similarly, the reduction of security bounds in HE
to the expected maximum load for balls-and-bins problems offers an interesting connection with combinatorics. The
concrete bounds we present can undoubtedly be tightened fora variety of cases. Finally, a natural question to pursue
is what kinds of HE bounds can be realized in the standard model via, e.g.,k-wise independent hashing.
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A Unsatisfying Approaches to HE

Here we discuss in more detail why existing or simple mechanisms fail to provide good HE schemes. Recall we
want both (1) semantic security from our schemes when key entropy is high as well as (2) unpredictability of a target
message even when keys have exhaustible entropy. (We assumehere thatpm has some amount of uncertainty.)

Existing AE or PBE schemes. The first possible HE solution would be existing password-based encryption schemes [4,
30], which certainly satisfy criteria (1) but fail for goal (2). To see why, consider mounting a brute-force attack against
a ciphertextC∗ resulting from encrypting a messageM∗ under a target keyK∗. Should a typical authenticated-
encryption schemeSE have been used to generateC∗ (e.g., Encrypt-then-MAC [3], OCB [32], GCM [27], etc.), then
brute-force attacks can proceed as follows. Enumerate a dictionary of all potential keysD, meaningK∗ ∈ D, and
then, for eachK ∈ D, executedec(K,C∗) and see if the result is⊥. If not, meaning a message was produced,
then with all but negligible probability6 the message is the targetM∗. This highlights how the strong authenticity
guarantees of AE schemesbenefitan attacker whenD is small enough to enumerate because the attacker can quickly
discard incorrect keys.

If, instead, encryption was performed using a schemeSE such as CTR-mode or CBC-mode (that are not AE-
secure), then the above brute-force strategy does not work as-is because with these schemes decryptingC∗ with any
key returns a possible plaintext. This means attackers mustsomehow distinguish the true plaintextM∗ from the set
of d = |D|messagesM1, . . . ,Md that result from the trial decryptions. Cryptographers often suggest thatM∗ can be
picked out easily and programmatically, so that this is not aproblem for the attacker. In the example of CTR-mode
or CBC-mode, trial decryptions for the wrong key result in messages distributed uniformly (assuming the underlying
block cipher is ideal). Thus if an attacker has partial knowledge of the structure ofM∗, for example that the first few
bytes are a fixed value, then the attacker can with reasonableprobability pick outM∗.

Schemes with entropic security. Russell and Wang [33] and Dodis and Smith [18] offer symmetric encryption
schemes with security against unbounded attackers for messages with some entropy, but they target the (stronger)
goal that no partial information about plaintexts is leaked. In very low-entropy settings, their schemes suffer from
the same brute-force attacks as other symmetric encryptionschemes. For example, the scheme by Dodis and Smith
encrypts by choosing a keyR for an xor-universal hash, and then outputsHR(K) ⊕M . In the spirit of our RSA HE
example, assumeK is sampled from a distribution with max-weightw = 1/100 (min-entropyµ = − logw) andM
is a uniformly selectedℓ-bit prime number trivially encoded as anℓ-bit integer. Then a brute-force message recovery
attack will succeed with probability close to one (by checking primality). This is just a concrete example showing
how, as Dodis and Smith discuss, security for this scheme holds only whenγ + µ ≥ |M | + 2 log(1/ǫ) + 2 whereγ
is the min-entropy ofpm. The problem is that in this exampleγ ≈ ℓ − log ℓ while |M | = ℓ, and soγ + µ comes up
short, and security up to a bound of2−µ (as HE is able to achieve for MR) cannot be achieved using these techniques.
That said, they target a stronger notion than MR, and applying their techniques to HE could provide a middle ground
security between full semantic security and MR security.

Explicitly stored decoy lists. Another possible approach would be to base HE schemes off theidea of generating
decoys, for example by storing multiple fake plaintexts along with the legitimate one. The use of decoys is not new in
security, and there exist several examples of schemes that use honey messages to attempt to limit the effect of offline
brute-force attacks [8,25,26]. The simplest idea, similarin spirit to prior approaches, would be to build an HE scheme
for some target message distributionpm using the following “Hide-in-a-List” scheme. LetHiaL = (HEnc,HDec) be
parameterized bypm and a security parametert. It uses a hash functionH : {0, 1}∗ → [0, t− 1] as shown below:

HEnc(K,M)

i← H(K)

(M1, . . . ,Mi−1,Mi+1, . . .Mt)←pm M
t−1

Mi ←M

returnM1, . . . ,Mt

HDec(K,M1, . . . ,Mt)

i← H(K)

returnMi

6This holds for all typical AE schemes, though does not necessarily hold for all schemes since the distribution of keys inD is adversarially
specified.
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The MR security of this scheme is upper-bound by1/t, regardless of how high the entropy of the key distributionpk.
Beyond giving poorer bounds than the schemes we will eventually build, it also means that (quite obviously) the
scheme never achieves semantic security regardless of the quality of keys. Second, the space requirements are going
to be high. The scheme therefore does not satisfy goal (1) andonly very poorly helps in achieving goal (2).

One might attempt to fix the first issue by combining with an outer symmetric scheme. The merged construction
would split the passwordK into two parts somehow, use the first part to choosei, and use the second part to do
password-based encryption of the list of messages. (ReusingK across the two steps enables an attacker to completely
win via offline-brute force attacks when keys have low entropy.) This approach, however, degrades the entropy
available to both the outer encryption (reducing brute-force attack effort) and the inner hide-in-a-list (possibly reducing
the message uncertainty to be lower than1/t). It also does not rectify the space issue.

Our schemes will do better, achieving semantic security when key distributions have high entropy. When not,
attackers will have to mount an offline brute-force attack equal to the entropy of the key, and even then have uncertainty
about the actual message that is approximately equal to the number of messages returned during the brute-force attack.

B Details of the Inverse Sampling DTE

The following DTE schemeIS-DTE = (is-encode, is-decode) realizes inverse sampling using fixed-point arith-
metic. Letg be the greatest common divisor (GCD) of the fractions in the image of the CDF, and assume use of aℓ-bit
fixed-point representation withg ≥ u whereu = 2−ℓ. The seed space isS = {0, 1}ℓ and a fractiona ∈ [0, 1] is rep-
resented by the valueb such thatrepu(a) = argminb |a− b ·u|, i.e. we round to the nearest multiple ofu and store the
multiple. (Rounding ties are broken arbitrarily, e.g., by always rounding up.) The requirement that the GCD is larger
thanu ensures7 thatrepu is unambiguous. Thenis-encode(Mi) selectsS←$ [repu(Fm(Mi−1)), repu(Fm(Mi))−1]
and outputsS. Finally is-decode(S) determines the valueMi such thatrepu(Fm(Mi−1)) ≤ S < repu(Fm(Mi)).
Computation ofIS-DTE is possible in timelog |M| and spaceO(M) (binary search over a table of precomputed
CDF values), and often faster. For example ifpm is the uniform distribution over a set of integersM, then encoding
and decoding can be made fast. For decoding, simply computeS ·u and find the nearest integer factor of1/|M|.

The representation error of this encoder is the maximum, over a ∈ Img(Fm), of the value|a− b · u|. Denote this
maximal error byǫis. We have that

ǫis = max
a∈Img(Fm)

∣

∣

∣
a− round

(a

u

)

·u
∣

∣

∣
≤ max

a∈Img(Fm)

∣

∣

∣

∣

a−
(

a

u
− 1

2

)

·u
∣

∣

∣

∣

=
u

2

whereround is the rounding function. We can therefore makeǫis arbitrarily small, at the cost of encoding output size,
by choosingu small (makingℓ large). The representation error gives that|pm(M) − pd(M)| ≤ 2ǫis = u for all M .
More formally we have the following theorem.

Theorem 6 Let pm be a message distribution andIS-DTE = (is-encode, is-decode) be the inverse sampling DTE
described above usingℓ bits. LetA be any sampling adversary, thenAdv

dte
IS-DTE,pm(A) ≤ 1/2ℓ.

Proof: We below write SAMP1 for SAMP1DTE,pm and SAMP0 for SAMP0DTE,pm. We first observe that

Pr
[

SAMP1A ⇒ 1 | M∗ = M
]

= Pr
[

SAMP0A ⇒ 1 | M∗ = M
]

where the event “M∗ = M ” is defined appropriately for each game. To see why the equality holds, note that for any
particular messageM we have thatis-encode(M) by construction picks uniformly from the set of seed valuesS for
which is-decode(S) = M . In SAMP0 conditioning on a particular messageM fixes the choice ofS to be uniform

7Consider otherwise, that two pointsa 6= a′ are such thatrepu(a) = repu(a
′). This implies thata − a′ = |mg − ng| = |m − n|g ≤ u

for appropriatem,n. But sinceg ≥ u it holds thatu/g ≤ 1 and we arrive at a contradiction.
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over the same set. Then we have that

Pr
[

SAMP1A ⇒ true
]

=
∑

M∈M

Pr
[

SAMP1A ⇒ true | M∗ = M
]

· pm(M)

≤
∑

M∈M

Pr
[

SAMP0A ⇒ true | M∗ = M
]

· (u+ pd(M))

= Pr
[

SAMP0A ⇒ true
]

+ u .

C A Ratio-based Advantage Measure for DTE Goodness

In Section 4 we defined DTE goodness using a standard indistinguishability advantage measure. Another approach is
a ratio-based measure, defined for a message distributionpm, encoding schemeDTE = (encode,decode), and any
adversaryA by the equation

Adv
dte-ratio
DTE,pm (A) = Pr

[

SAMP1ADTE,pm ⇒ 1
]

/ Pr
[

SAMP0ADTE ⇒ 1
]

whenPr
[

SAMP0ADTE ⇒ 1
]

6= 0 and defined to beAdv
dte-ratio
DTE,pm (A) = 1 otherwise. The closer the advantage is to

one, the better the DTE, and the further from one, the worse.
We can prove an analogue of Theorem 2 using the above advantage measure for DTE goodness. The statement is

below.

Theorem 7 Let pm be a message distribution,pk be a key distribution, andHE[DTE,SE] be the DTE-then-Encrypt
scheme using a suitableSE. LetA be an MR adversary againstHE. Then we can give an explicit adversaryB such
thatAdv

mr
HE,pm,pk

(A) ≤ Adv
dte-ratio
encode,pm(B) ·E [L(pk, pd) ] . AdversaryB runs in time that ofA plus the time of one

enc operation.

The proof proceeds as in the proof of Theorem 2, except that when moving from gameG0 to G1 using the
adversaryB we use instead thatPr[GA

0 ⇒ 1] ≤ Pr[GA
1 ⇒ 1] ·Adv

dte-ratio
encode,pm(B). Comparing with Theorem 2, this

leads to slightly stronger bound for some DTE schemes, such as the inverse sampling one of Section 4 (detailed in
Appendix B). For example, we have the following for the inverse sampling DTE scheme.

Theorem 8 Let pm be a message distribution andIS-DTE = (is-encode, is-decode) be the inverse sampling DTE
described above using anℓ-bit representation. LetA be any sampling adversary, thenAdv

dte-ratio
IS-DTE,pm(A) ≤ 1+1/2ℓ.

Proof: We below write SAMP1 for SAMP1DTE,pm and SAMP0 for SAMP0DTE,pm. We first observe that

Pr
[

SAMP1A ⇒ 1 | M∗ = M
]

= Pr
[

SAMP0A ⇒ 1 | M∗ = M
]

where the event “M∗ = M ” is defined appropriately for each game. To see why the equality holds, note that for any
particular messageM we have thatis-encode(M) by construction picks uniformly from the set of seed valuesS for
which is-decode(S) = M . In SAMP0 conditioning on a particular messageM fixes the choice ofS to be uniform
over the same set. Letr = minM pd(M)/pm(M). Then we have that

r · Pr
[

SAMP1A ⇒ true
]

= r
∑

M∈M

Pr
[

SAMP1A ⇒ true | M∗ = M
]

· pm(M)

≤
∑

M∈M

Pr
[

SAMP1A ⇒ true | M∗ = M
]

· pm(M) · pd(M)

pm(M)

=
∑

M∈M

Pr
[

SAMP0A ⇒ true | M∗ = M
]

· pd(M)

= Pr
[

SAMP0A ⇒ true
]
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rsa-rej-encode(p, q)

(p1, . . . , pt)←$ [2ℓ−1, 2ℓ]t

For i = 1 to t− 1 do
If IsPrime(pi) then break

pi ← p

For j = i+ 1 to t do
If IsPrime(pj) then break

pj ← q

return(p1, . . . , pt)

rsa-rej-decode(p1, . . . , pt)
i← 1

while¬IsPrime(pi)
i← i+ 1

If i = t− 1 then
pi ← pfix

p← pi
while¬IsPrime(pi)

i← i+ 1

If i = t then
pi ← qfix

q ← pi
Ret(p, q)

rsa-inc-encode(p, q)
p′ ← PrevPrime(p)
q′ ← PrevPrime(p)
p′′ ← max(p′ + 1, p− c)

q′′ ← max(q′ + 1, q − c)

c1←$ [p′′, p]

c2←$ [q′′, q]

Ret(c1, c2)

rsa-inc-decode(c1, c2)
i, j ← 0

(p, q)← (c1, c2)

while¬IsPrime(p) do
p← p+ 2

i← i+ 1

If i > c then
p← pfix

while¬IsPrime(q) do
q ← q + 2

j ← i+ 1

If i > c then
q ← qfix

Ret(p, q)

Figure 4: DTE schemesRSA-REJ-DTE (left) andRSA-INC-DTE (right) for pairs of uniform primes in[2ℓ−1, 2ℓ).
Both decoding algorithms output some a priori fixed primes incase normal decoding fails.RSA-REJ-DTE is suit-
able for uniformly selected RSA primes, whileRSA-INC-DTE is suitable for keys generated using the PRIMEINC
algorithm.PrevPrime(x) returns the maximial primep′ < x.

where recall thatpd is the DTE distribution. Letu = 2−ℓ and ǫis = u/2. LetM = {M1, . . . ,M|M|} and let
ai = Fm(Mi) andbi = argminb |ai − b · u|. Leta0 = b0 = 0. Rearranging the final inequality in the sequence above
yields that

Adv
dte-ratio
DTE,pm (A) ≤ max

i

pm(Mi)

pd(Mi)
= max

i

ai − ai−1

biu− bi−1u
≤ max

i

biu− bi−1u+ 2ǫis

biu− bi−1u
≤ 1 + 2ǫis

which uses thatpd(Mi) = (bi − bi−1)u andpm(Mi) = ai − ai−1.

Combining Theorem 7 with Theorem 8 leads to a final MR bound of E[L(pk, pd) ] + 2−ℓ ·E [L(pk, pd) ] as com-
pared to the final bound of2−ℓ + E [L(pk, pd) ] using the indistinguishability-based approach (Theorem 2combined
with Theorem 6). The former will be tighter, though the improvement admittedly may not matter much in many
situations. The difference for the credit-card number application from Section 7, for example, is tiny.

D More Compact RSA DTEs

The rejection-sampling DTERSA-REJ-DTE, whose pseudocode is shown in Figure 4, is not particularly space ef-
ficient. An alternative, with optimal compactness, arises when the pairp, q is generated by the classic PRIMENC
algorithm [12, 22]. A DTE schemeRSA-INC-DTE is given for primes generated in this manner in Figure 4. The
subroutinePrevPrime can be implemented by linearly scanning backwards at mostt steps, checking primes, and
outputing the last value checked if no prime is found. Decoding outputs some a priori fixed primes should the list
of integers input as seed not have enough primes. (We could also abort in other ways.) UnlikeRSA-REJ-DTE,
RSA-INC-DTE requires just2(ℓ− 2) bits for encoding and hence is optimal. Observe that it is security-critical to use
the most compact(ℓ−2)-bit representation of integers (for both schemes), and notuseℓ−1 bits and include a leading
bit that is always 1. The error probability of this scheme canbe analyzed using the results of Brandt and Damgård [12]
which assume the Hardy-Littlewood primer-tuples conjecture [23]; it is exponentially vanishing int.

Unfortunately, it is not clear whether one can use the compact schemeRSA-INC-DTE for primes generated by
rejection sampling, as PRIMEINC does not output primes thatare statistically close to uniform [20]. To see why, note
that the larger of two twin primes (ones that are separated bytwo) is very unlikely to be selected by PRIMEINC, while
it is as likely as any other prime to be selected by rejection sampling. Fouque and Tibouchi show that, in fact, one
can give a lower bound of0.86 on the statistical distance between uniform primes and onesgenerated by PRIMEINC,
suggesting this approach is unlikely to work.

Another approach is to use a construction due to Fouque and Tibouchi [20], whose rejection-sampling algorithm
uses fewer bits of randomness than the standard rejection sampling approach, yet enjoys upper bounds on the statistical
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HEncH,E(K,M)

S←$ encode(M)

R←$ {0, 1}r
K ′ ← H(R ‖K)

P ← ε

For i = 1 to ⌈|S|/n⌉
P ← P ‖E(K ′, i)

C2 ← P [1..|S|]⊕ S

return(R,C2)

HDecH,E(K, (R,C2))

K ′ ← H(R ‖K)

P ← ε

For i = 1 to ⌈|S|/n⌉
P ← P ‖E(K ′, i)

C2 ← P [1..|S|]⊕ S

S ← C2 ⊕ P [1..|S|]
M ← decode(S)
returnM

Figure 5: DTE-then-Encrypt using a CTR mode encryption. ThenotationP [1..|S|] signifies taking the first|S| bits
of P .

distance of generated primes from uniform.

E HE Using Block Cipher Modes

We focus on showing on a variant of CTR mode encryption; similar analyses for other modes (e.g., CBC) are possible.
The schemeHE[DTE,CTR] is shown in Figure 5. It uses a hash functionH : {0, 1}∗ → {0, 1}k to derive a one-time
key for CTR mode encryption using a block cipherE : {0, 1}k × {0, 1}n → {0, 1}n.

The following lemma shows that the balls-and-bins analysisfor this CTR-mode based mechanism (in the random
oracle and ideal cipher model) can be reduced to that of the hash-based schemeHE[DTE,H] which was described in
Section 5.

Lemma 5 LetHE1 = HE[DTE,CTR] andHE2 = HE[DTE,H] and modelH as a random oracle andE as an ideal
cipher. Letpd be the DTE distribution forDTE and fix a key distributionpk over key spaceK. Then

E
[

LHE1,pk

]

≤ E
[

LHE2,pk

]

+
|K|2
2k

Proof: (Sketch) Note that inHE2 the pad values xor’d into the fixed ciphertextC2 are uniform and independent. For
HE1 there is the chance that a collision in the output ofH occurs, which would give rise to repeatedP values. For the
fixedR value of interest (in the challenge ciphertext), a standardbirthday-bound argument gives that the probability
of H(R,K ′) = H(R,K ′′) for any two keysK ′,K ′′ ∈ K is at most|K|2/2k (the probability being over coins ofH).
Conditioned on there being no collisions, the pad valuesP are selectedly independently and uniformly (over the coins
of the ideal cipher).

Interestingly, the result above could get by without modeling H as a random oracle, and instead rely only on it
being collision resistant (thoughE would still need to be ideal). This approach would lead to a proof of MR security
for computationally bounded attackers.

F Proof of Theorem 2

We use a sequence of games to move from the message recovery setting to one in which the adversary can, at best,
simply guess the message the challenge ciphertext decryptsto with highest probability. The gamesG0, G1, andG2

are shown in Figure 6. GameG0 is equivalent to the MR game, and so

Adv
mr
HE,pm,pk

(A) = Pr
[

GA
0 ⇒ true

]

.

GameG1 picks a uniform pointS and then setsM∗ = decode(Y ). We bound this transition using the goodness of
the DTE. Namely, we build an adversaryB against the DTE scheme. This adversary takes as input(S∗,M∗) and uses
these values to simulate the MR game forA. ShouldA win the MR game, thenB outputs 1 and otherwise it outputs 0.
Then we have thatPr[GA

0 ⇒ true] = Pr[SAMP1Bencode ⇒ 1] and thatPr[GA
1 ⇒ true] = Pr[SAMP0Bencode ⇒ 1].

Thus,Pr
[

GA
0 ⇒ true

]

≤ Adv
dte
DTE,pm(B) + Pr

[

GA
1 ⇒ true

]

.
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GameG0

K∗←pk
K

M∗←pm
M

S∗←$ encode(M∗)

C∗←$ enc(K∗, S∗)

M ←$A(C∗)

retM = M∗

GameG1

K∗←pk
K

S∗←$ S
M∗ ← decode(S∗)

C∗←$ enc(K∗, S∗)

M ←$A(C∗)

retM = M∗

GameG2

C∗←$ C
M ←$A(C∗)

K∗←pk
K

S∗ ← dec(K∗, C∗)

M∗ ← decode(S∗)

retM = M∗

Figure 6: Games used in the proof of Theorem 2.

In gameG2, the ciphertextC∗ is chosen uniformly, andS∗ is then computed asdec(K∗, C∗). By our assumption
on SE that decrypting a uniformly chosen ciphertext gives a uniform plaintext, we have that this modification does
not change the distribution of any of the variables in the game as compared toG1. We have also delayed computation
of K∗, S∗, andM∗ until afterA executes; the execution ofA being independent of those values. Note, however, that
the choice ofM∗ is not independent ofM , since the coins underlying the choice ofM∗ are, in part, known toA.

In gameG2, we see thatA wins exactly when it wins the game in which a ciphertext string is sampled uniformly,
given toA, and the message output byA matches the decryption of that ciphertext under a fresh key.In this game,
A maximizes its probability of success by choosing the message with highest probability of being decrypted byC∗.
Recall thatLHE,pk(C) = maxM

∑

K∈KM,C
pk(K). We now argue thatPr

[

GA
2 ⇒ true

]

≤ E
[

LHE,pk

]

. We have
that

Pr
[

GA
2 ⇒ true

]

=
∑

C∈C

Pr [M = M∗ | C∗ = C ] ·Pr [C∗ = C ]

=
∑

C∈C

Pr [M = decode(K∗, C) | C∗ = C ] · 1|C|

≤
∑

C∈C

LHE,pk(C) · 1|C| = E
[

LHE,pk

]

where the events are defined in the straightforward way over the coins used in the execution ofGA
2 .

G Balls-and-Bins Proofs

In Section Section 6, we present a series of results boundingthe expected maximum load for various balls-into-bins
experiments. The first Lemmas 2 and 3 give bounds for cases involving uniform-capacity bins. Lemma 4 treats the
case of bins with non-uniform capacity.

Lemma 2 Supposepk has maximum weightw andpd is such thatb = ca for some positive integerc. Then for any
positive integers > 2e/c, wheree is Euler’s constant, it holds that

E [Lpk,pd ] ≤ w

(

(s− 1) + 2

(

a2

cs−1

)

(e

s

)s
)

.

Proof: Let qs,j denote the probability that binj contains exactlys balls. Then

qs,j =

(

a

s

)(

1

b

)s(

1− 1

b

)a−s

≤
(

be

s

)s(1

b

)s(

1− 1

b

)a−s

=
(ae

bs

)s
(

1− 1

b

)a−s

<
(ae

bs

)s
.

Thus, a bound on the probabilityqs that at least one bin contains at leasts balls is

qs ≤ b

a
∑

i=s

pi,j < b

a
∑

i=s

(ae

bs

)i
< b

(ae

bs

)s
(

1 +
ae

bs
+

(ae

bs

)2
+ . . .

)

= b
(ae

bs

)s (

1− ae

bs

)−1
.

This last step is achieved by lettingA = ae
bs and using the well-known equalityS = 1+A+A2+ . . . = 1/(1−A) for

A ∈ [0, 1). By assumption in the lemma,s > 2e/c, which impliesA = ae
bs < 1/2, and thusA ∈ [0, 1). Additionally,
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s > 2e/c implies that(1 − ae
bs )

−1 < 2. Thus,qs < 2b
(

ae
bs

)s
. For anys, we can obtain a bound on E[Lpk,pd ] by

assuming pessimistically that: (1) At least one bin contains s − 1 balls; (2) If there is a bin that at leasts balls, it
contains alla balls; and (3) All balls have weightw. The resulting bound is:

E [Lpk,pd ] ≤ w((s − 1) + aqs) = w
(

(s− 1) + 2ab
(ae

bs

)s)

.

Plugging inb = ca yields the lemma.

Lemma 3 Supposepk has maximum weightw and pd is such thatb = ca2 for some positive integerc. Then
E [Lpk,pd ] ≤ w

[

1 + 1
2c + r(c, b)

]

, wheree is Euler’s constant andr(c, b) =
(

e
27c2

) (

1− e
cb

)−1
.

Proof: As in the proof of Lemma 2, letqb denote the probability that at least one bin contains at least b balls. The
well-known Birthday Bound states thatq2 ≤ a(a−1)

2b < a2

2b = 1
2c . Now q3 denotes the probability of at least one triple

collision, i.e., three balls landing in the same bin. As shown in the proof of Lemma 2,

q3 < b
(ea

3b

)3 (

1− ae

3b

)−1
=

(

ea3

27b2

)

(

1− ea

3b

)−1
=

( e

27c2

)(

1− e

cb

)−1
.

We have that E[Lpk,pd ] < q1+q2+aq3, where the last term captures the pessimistic assumption that a triple collision
results in a maximum load ofa balls (and thus weightwa). This yields the lemma.

Lemma 4 LetLB denote the maximum load yielded by throwinga balls (of weight 1) into a setB of b bins of non-
uniform capacity at most0 ≤ γ ≤ 3 −

√
5. LetLB∗ denote the maximum load yielded by throwinga∗ = 3a balls (of

weight 1) into a setB∗ of b∗ = ⌊2/γ⌋ bins of uniform capacity. ThenE[LB] ≤ E[LB∗ ].

Proof: Consider an arbitrary set ofb(0) binsB(0) = {B(0)
1 , . . . , B

(0)

b(0)
}. Suppose that two distinct bins(B(0)

b(0)−1
, B

(0)

b(0)
)

are “fused.” This means that there results a set ofb(1) = b(0) − 1 binsB(1) = {B(1)
1 , . . . , B

(1)

b(1)
} such thatc(B(0)

i ) =

c(B
(1)
i ) for 1 ≤ i < b(1) andc(B(1)

b(1)
) = c(B

(0)

b(0)−1
) + c(B

(0)

b(0)
).

Let XB be a random variable on binB denoting the number of balls it contains after a ball-throwing experiment.
Consider the obvious coupling of ball-throwing events onB(0) andB(1) in whichX

B
(0)
i

= X
B

(1)
i

for 1 ≤ i < b(1) and

X
B

(1)

b(1)

= X
B

(0)

b(0)−1

+X
B

(0)

b(0)

. Asmax(X
B

(0)

b(0)−1

,X
B

(0)

b(0)

) ≤ X
B

(1)

b(1)

, we have E[LB(0) ] ≤ E[LB(1) ].

Let B = B(0) and, w.l.o.g., let bins be ordered by monotonically decreasing capacity. Now, starting withj = 0,
repeat the following procedure: Whilec(B(j)

b(j)−1
) + c(B

(j)

b(j)
) ≤ γ, do the following: (1) FuseB(j)

b(j)−1
andB

(j)

b(j)
,

yielding bin setB(j+1); (2) Incrementj; and (3) Reorder the bins inB(j) by monotonically decreasing capacity.
Upon termination aftert iterations, there results a set of binsB(t) with b(t) = b(0) − t. For1 ≤ i < b(t), binB

(t)
i

has capacityc(B(t)
j ) > γ/2. (Only the smallest capacity bin,B(t)

b(t)
, may have capacityc(B(t)

b(t)
) ≤ γ/2.) Excluding

B
(t)
1 andB(t)

b(t)
, the total number of bins is at most⌊(1− γ)/(γ/2)⌋. Thus,b(t) ≤ ⌊(1 − γ)/(γ/2)⌋ + 2 = ⌊2/γ⌋.

Let B∗ be a bin set withb∗ = ⌊2/γ⌋ bins of uniform capacity, i.e., such that binB∗
i has capacityc(B∗

i ) = 1/b∗.

For1 ≤ i ≤ b(t), c(B(t)
i ) ≤ γ andc(B∗

i ) = 1/b∗ ≥ 1/⌊2/γ⌋ ≥ γ/2; thusc(B∗
i ) ≥ c(B

(t)
i )/2.

For a binB(t)
i , with 1 ≤ i ≤ b(t), given an experiment with a single thrown ball,Pr[X

B
(t)
i

= 1] ≤ γ. For the

corresponding binB∗
i , given an experiment in which three balls are thrown,Pr[XB∗

i
≥ 1] ≥ (1−(1−γ/2)3) ≥ 3γ/2−

γ2/2 + γ3/8. Algebraic manipulation shows that for these two ball-throwing events,Pr[X
B

(t)
i

= 1] ≤ Pr[XB∗

i
≥ 1]

for 0 ≤ γ ≤ 3−
√
5 ≈ .76.

H Proof of Theorem 4

In Section 7, we gather together our results into comprehensive MR security bounds for the application of HE to
various practical scenarios. Our main theorem, Theorem 4 (replicated below) treats the case of uniform-capacity bins
and gives the tightest bounds when the number of bins is much larger than the number of balls. (Two corollaries in
Section 7 treat cases of non-uniform bin capacities and cases where the number of balls is relatively small.)
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Theorem 4 Let HE[IS-DTE,SE] be an HE scheme with a suitableSE and DTEIS-DTE using anℓ-bit represen-
tation. Letpm be a uniform distribution overb messages andpk be a key-distribution with maximum weightw. Let
γ = ⌈1/w⌉. Then for any adversaryA,

Adv
mr
HE,pm,pk

(A) ≤ w(1 + δ) +
1 + γ

2ℓ
,

whereδ = γ2

2b +
eγ4

27b2

(

1− eγ2

b2

)−1
.

Proof: We apply Theorem 2, Theorem 6, and Lemma 1 to get that

Adv
mr
HE,pm,pk

(A) ≤ 1

2ℓ
+ E [Lpk,pd ]

We then apply majorization (Theorem 3) to get that E[Lpk,pd ] ≤ E
[

Lp′
k
,pd

]

wherep′k = (w,w, . . . ., w) with

dimension⌈w−1⌉. (Note thatp′k need not be a proper probability distribution, because thisnow represents the number
of balls and their weights.) At this stage, we are analyzing load over bins selected according topd, which is (slightly)

non-uniform due to representation error. However, we have that E[Lp′k, pd ] ≤ E [Lp′k, pm ]+ ⌈w−1⌉
2ℓ

by a union bound
and|pm(M)− pd(M)| ≤ 1/2ℓ for all M (see Appendix B).

Now having uniform bins and balls, we can now apply Lemma 3 by settinga = ⌈w−1⌉, b = |M|, andc = b/a2

to get the bound

E
[

Lp′
k
,pm

]

≤ w

(

1 +
1

2c
+ r(c, b)

)

= w + wδ

whereδ = a2

2b +
ea4

27b2

(

1− ea2

b2

)−1
.
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