
Targeted Advertising... And Privacy Too

Ari Juels

RSA Laboratories
Bedford, MA 01730, USA

E-mail: ajuels@rsasecurity.com

Abstract. The Web presents a rich and powerful tool for aggregation
of consumer information. A flurry of recent articles in the popular press
has documented aggressive manipulation of such information by some
companies for the purposes of targeted advertising. While advertisers
tout the economic and social benefits of such advertising, consumer pri-
vacy groups have expressed grave concerns about its potential abuses,
and called for legislative policies to protect sensitive consumer data. In
this paper, we explore the notion that targeted advertising and privacy
protection need not necessarily be conflicting goals. We describe some
conceptually simple technical schemes that facilitate targeted advertis-
ing, but also offer protection for sensitive consumer data. Some simple
proposals do not even require the use of cryptography. (As an exam-
ple, we mention an existing scheme in commercial deployment.) We also
consider some more sophisticated protocols offering greater assurance of
privacy. These involve cryptographic constructions that may be thought
of as partial, practical PIR (private information retrieval) schemes.

1 Introduction

In February 2000, a major Web advertising firm known as DoubleClick touched
off a furor in the press with the announcement of a more aggressive policy of con-
sumer data aggregation. DoubleClick declared that it would begin to integrate
offline information about consumers into its existing database of online infor-
mation, this latter derived from surveillance of consumer Web surfing [40]. This
announcement came in the midst of a number of articles in the popular press
regarding surreptitious sharing of consumer information. For example, a week
earlier, a report released by the California HealthCare Foundation alleged that
a number of health-related Web sites were violating their own stated privacy
policies and divulging sensitive information about customers to third parties
[21]. Bowing to public pressure, DoubleClick retracted its policy announcement
in early March [8]. A number of companies have recently attempted to allay
consumer concerns by making more explicit claims about their privacy policies.

While consumer and privacy advocacy groups vigorously decry abuses by
firms like DoubleClick, advertisers defend their policy of harvesting and exploit-
ing demographic information by highlighting the benefits of targeted advertising.
Consumers, they maintain, are more likely to find interest in advertising tailored

to their own preferences, and such advertising consequently leads to greater con-
sumer market efficiency. The United States government has addressed the issue
by promoting a policy of industry self-regulation, leading to friction with the Eu-
ropean Union, which has sought more stringent consumer privacy guarantees.

In this paper, we explore the notion that targeted advertising and consumer
privacy need not in fact be conflicting aims. We describe several simple, prac-
tical technical solutions that enable use of detailed consumer profiles for the
purposes of targeting advertisements, but protect these profiles from disclosure
to advertisers or hostile third parties. The most basic schemes described here do
not even require use of cryptography. We mention one näıve variant that even
serves as the basis of a current product offering [2].

The underlying idea is quite simple. Rather than gathering information about
a consumer in order to decide which advertisements to send her, an advertiser
makes use of a client-side agent called a negotiant. The negotiant serves a dual
purpose: It acts as a client-side proxy to protect user information, and it also
directs the targeting of advertisements. The negotiant requests advertisements
from the advertiser that are tailored to the profile provided by the user. The
advertiser can control the palette of advertisements available to the negotiant,
as well as the process by which it decides which ads to request. At the same
time, the advertiser learns no information about the consumer profile beyond
which advertisements the negotiant requested. In more sophisticated variants,
the negotiant is able to participate in a protocol whereby the advertiser does not
even learn what ads a given user has requested, but only sees ad requests in the
aggregate. The end result is that the advertiser is able to target ads with a high
degree of sophistication, and also to gather information on ad display rates, all
without learning significant information about individual consumer profiles.

Some restriction must be placed on advertiser control of negotiants. Other-
wise, the advertiser can manipulate them so as to extract profile information
from individual consumers. The fact that negotiants may be viewed and con-
trolled by users helps offset this vulnerability, as we discuss below.

1.1 Previous Work

A negotiant may be viewed as a client-side software proxy. The related approach
of using server proxies as a means of protecting consumer privacy is a well
established one. For example, for a subscription fee, companies such as Zero-
Knowledge Systems [5] offer customers an encrypted channel to one or more
proxy servers that anonymously reroute requests to destination servers. The
proxy servers thus act as intermediaries, shielding the client from positive iden-
tification. Proxy services may be cryptographically strengthened through the use
of mix networks. A mix network is essentially a distributed cryptographic algo-
rithm for interleaving multiple channels so as to anonymize them. We describe
the idea in more detail in Section 2.1. For on-the-fly communications, however,
the most powerful mix networks are often not practical.

A variant on the idea of proxy servers is the Crowds project at AT&T Labs
[1, 37, 38]. A “crowd” is a group of users, preferably with disparate geographical

and other characteristics, that serve to shield one another’s identities. The ser-
vice requests of a user in a crowd are randomly rerouted through other crowd
members, rendering the identity of the user indistinguishable from those of other
crowd members. In this system, trust is embodied partly in an administrative
server responsible for forming crowds, and partly in other crowd members. The
user trusts other crowd members not to eavesdrop on or tamper with communi-
cations, and, to a lesser extent, not to perform traffic analysis.

The proxy server and crowd approaches seek to provide a maximum of con-
sumer privacy. While they can be combined with cookies, or other user tracking
devices, they do not aim to accommodate more fine-grained control of Web server
access to user data. The Platform for Privacy Preferences Project, known as P3P
[4], focuses precisely on this latter problem of refined user control of personal
demographic information. The goal of P3P is to enable Web sites to publish
precise specifications of their privacy policies, and to enable users to exercise
control over how and when their private data are divulged in response to these
policies. Under the aegis of the World Wide Web (W3) Consortium, P3P aims
to set forth a standard syntax and body of protocols for general use on the Web.

Another system, described in [9], combines properties of the P3P scheme as
well as a variant of the proxy server approach. This scheme enables users to
perform Web serving using a variety of different “personae”. It offers controls
for the user in the release of information, and also permits merchants to pool
information in a controlled manner. The system aims to accommodate existing
infrastructural elements, and assumes the use of periodic merchant auditing, in
conjunction with consumer control, to achieve privacy assurances.

Underlying the P3P and related approaches is the presumption that media-
tion between consumers and advertisers is a matter of deciding what information
consumers choose to reveal explicitly. Of course, though, once a user reveals a
given piece of information, its dissemination is no longer within his or her control.
As we explain above, we set forth a different approach in which consumers and
advertisers to decide jointly in a privacy-protecting manner what advertisements
consumers should be sent, without explicit revelation of consumer information.
For the more strongly privacy protecting variants of our negotiant scheme, we
consider variants on the idea of private information retrieval (PIR).

A PIR scheme enables a client to request a piece of data from a server – such
as an advertisement – in such a way that the server learns no information about
the client request. Let Bob represent a user, and let Alice represent a server
that maintains a database containing bits B = {b1, b2, . . . , bn}. Alice might be
an advertiser, and B might represent the collection of advertisements held by
Alice. The aim of a PIR scheme is to enable Bob to retrive a bit br ∈ B (or,
by extension, multiple bits) of his choice from Alice in such a way that Alice
learns no information about r. Of course, this may be accomplished trivially
by having Alice send all of B to Bob. Following early work in [13, 33], it was
shown in [28] that a single-server PIR scheme may in fact be designed with o(n)
communication, in particular, O(nǫ) communication for any ǫ > 0 under the
quadratic residuosity assumption. This was recently improved to O(polylog(n))

communication overhead under the so-called Φ-hiding assumption [10]. A number
of variant PIR schemes have been proposed in the literature, such as symmetric
PIR (SPIR) schemes, which include the additional property that the client sees
only the data it has requested [20], and a variant with auxiliary servers [19]. None
of these proposed PIR schemes, however, is practical for wide scale deployment.
Even the scheme in [10] requires on average roughly n/2 exponentiations by the
server per transmitted bit. For example, to service 100 users requesting ads from
a (small) database consisting of, say, 10 ads of size 1k bytes, the server needs to
perform roughly 4,000,000 exponentiations.

In this paper, we consider a practical alternative to these proposed PIR
schemes. To obtain improved communications and computational efficiency, we
consider two relaxations of the common security model. First, in lieu of a single
server (Alice), or auxilliary servers, we assume a collection of communicating
servers among which a majority behave in an honest fashion. We refer to this as
a threshold PIR scheme. In principle, it is possible to achieve a threshold PIR (or
even SPIR) scheme with optimal client-to-server communication using general
secure multiparty computation, as introduced in [22]. In this paper, we demon-
strate a threshold PIR scheme that does not require this very costly general ap-
paratus, and instead achieves greater efficiency through reliance a mix network.
Our threshold PIR scheme is capable of achieving server-to-client communica-
tion overhead of O(1) per consumer request under appropriate cryptographic
assumptions. (This is optimal, of course.) As a second, additional relaxation,
we consider a scenario in which requests from a large number of users may be
batched. In this case, it is acceptable for servers to learn what has been requested,
but not by whom. In other words, in consonance with the Crowds principle, we
permit full disclosure of aggregate information, but hide information regarding
the requests of individual users. We refer to a threshold PIR scheme with this
latter property as a semi-private PIR scheme. A semi-private PIR scheme, in
addition to achieving communication overhead of O(1), is computationally quite
efficient, involving O(1) basic cryptographic operations per item per server.1

The negotiant approach we propose in this paper is not necessarily meant
as a substitute for proxy servers, Crowds, or P3P. It may instead be viewed as
a complementary technology, deployable in conjunction with any of these other
ideas. Moreover, any of a range of tradeoffs between efficiency and security may
be used in the construction of a negotiant function. We show this by presenting
in this paper not one, but four different negotiant schemes.

1.2 Organization

In Section 2, we describe the cryptographic primitives used in our more ad-
vanced negotiant protocols. We also formalize the model in which we propose
our schemes, and set forth basic definitions regarding privacy. In Section 3, we

1 It is worth noting that both the threshold PIR scheme and the semi-private PIR
scheme proposed here are in fact SPIR schemes. We do not make use of the special
SPIR property in our schemes, however.

propose some negotiant function constructions. We consider some practical im-
plementation issues in Section 4, and conclude in Section 5 with a brief discussion
of some future avenues of investigation.

2 Preliminaries

2.1 Building blocks

Let us begin by introducing some of the cryptographic primitives used in the
more advanced variants of our protocol. Readers familiar with the basic cryp-
tographic literature may wish to skip to Section 2.2. Most of the protocols we
describe are (t,m)-threshold protocols. These are protocols executed by a collec-
tion of servers S1, S2, . . . , Sm, where m ≥ 1, such that protocol privacy and the
correctness of the output are ensured given an honest coalition of any t servers.
In such protocols, servers hold a private key x in an appropriate distributed
fashion, with a corresponding published public key y = gx. It is common to use
the Pedersen protocol [35, 34] as a basis for distributed key generation, although
see [18] for a caveat. We do not discuss key generation or related details here.

El Gamal cryptosystem: Where we require public-key cryptography, we employ
the El Gamal cryptosystem [15, 17]. Encryption in this scheme takes place over
a group Gq of prime order q. Typically, Gq is taken to be a subgroup of Z∗

p ,
where q | (p − 1). Alternatives are possible; for example, Gq may be the group
of points of an elliptic curve over a finite field.2

Let g be a generator of Gq. This generator is typically regarded as a system
parameter, since it may be used in multiple key pairs. The private encryption key
consists of an integer x ∈U Zq, where ∈U denotes uniform random selection. The
corresponding public key is defined to be y = gx. To encrypt a message M ∈ Gq,
the sender selects z ∈U Zq, and computes the ciphertext (α, β) = (Myz, gz),
where it may be seen that α, β ∈ Gq. To decrypt this ciphertext using the
private key x, the receiver computes α/βx = Myz/(gz)x = M . The El Gamal
cryptosystem is semantically secure under the Decision Diffie-Hellman (DDH)
assumption over Gq [41].

Let (α0, β0)⊗ (α1, β1) ≡ (α0α1, β0β1). A useful feature of the El Gamal cryp-
tosystem is its homomorphism under the operator ⊗. If (α0, β0) and (α1, β1) rep-
resent ciphertexts for plaintexts M0 and M1 respectively, then (α0, β0)⊗ (α1, β1)
represents an encryption of the plaintext M0M1. It is also possible, using knowl-
edge of the public key alone, to derive a random re-encryption (α′, β′) of a given
ciphertext (α, β). This is accomplished by computing (α′, β′) = (α, β) ⊗ (γ, δ),
where (γ, δ) represents an encryption of the plaintext value 1. It is possible
to prove quite efficiently in zero-knowledge that (α′, β′) represents a valid re-
encryption of (α, β) using, e.g., a variant of the Schnorr proof-of-knowledge pro-
tocol [39]. This proof may also be made non-interactive using the Fiat-Shamir

2 Most commonly, we let p = 2q + 1, and we let Gq be the set of quadratic residues
in Z∗

p . Plaintexts not in Gq can be mapped onto Gq by appropriate forcing of the
Legendre symbol, e.g., by multiplication with a predetermined non-residue.

heuristic [16]. In this latter case, soundness depends on the random oracle model,
while communication costs are O(1) group elements and computational costs are
O(1) modular exponentiations. See, e.g., [11] for an overview.

Quorum-controlled asymmetric proxy re-encryption: This is a threshold algo-
rithm enabling an El Gamal ciphertext encrypted under public key y to be
re-encrypted under a new public key y′. Input to the protocol is an El Gamal
public key y′, as well as a ciphertext (α, β) = Ey[M]. The output of the protocol
is (α′, β′) = Ey′ [M]. While is assumed that the servers share the private key
corresponding to y, they do not necessarily have any knowledge of the private
key for y′. Jakobsson [25] proposes a protocol that is computationally secure
in the sense that it is robust against any adversary controlling any minority
coalition of cheating servers, and also preserves the privacy against such an ad-
versary. Additionally, the protocol is efficient in a practical sense. Assuming use
of non-interactive proofs, robustness depends on the random oracle model, while
privacy depends only on the DDH assumption for the underlying cipher. Compu-
tational costs are O(m) modular exponentiations per server, while the broadcast
communication complexity is O(m) group elements.

Distributed plaintext equality test: This is a threshold protocol described in [27].
Given El Gamal ciphertexts (α, β) and (α′, β′), a collection of servers determines
whether the underlying plaintexts are identical. Each server in turn commits
to a blinding of the publicly computable ciphertext (γ, δ) = (α/α′, β/β′) by
raising both integers in the pair to a common random exponent. All servers
then decommit and prove their blindings correct non-interactively. The resulting
combined, blinded ciphertext is jointly decrypted by the servers, yielding the
value 1 if the underlying plaintexts are equivalent, and a random value otherwise.
We write (α, β) ≈ (α′, β′) to denote equality of underlying plaintexts in the
two ciphertexts (α, β) and (α′, β′). The scheme is robust against any minority
coalition in the random oracle model. Computational costs are O(m) modular
exponentiations per server; the broadcast complexity is O(m) group elements.

Bulletin Board: Our proposed schemes with multiple players or servers assume
the availability of a bulletin board. This may be viewed as a piece of memory
which any player may view or add a new entry to, but which no player may edit
or erase any portion of. A bulletin board may be realized as a public broadcast
channel, or is achievable through Byzantine agreement (under the assumption
that an attacker controls at most ⌊m/3⌋ servers) [29], or some appropriate phys-
ical assumption. Postings to a bulletin board may be made authenticable, i.e.,
their source may be securely validated, through use of such mechanisms as digital
signatures. In many cases, our proposed algorithms only require bulletin board
access by servers, not by other players.

Mix networks: A critical building block in our protocols is a threshold algorithm
known as a mix network. Let Ey[M] represent the encryption under public key
y of message M in a probabilistic public-key cryptosystem, typically El Gamal.

This notation is informal, in the sense that it does not take into account the
random encryption exponent that causes two encryptions of the same plaintext
to appear different from one another. While we retain this notation for simplicity,
the reader must bear it in mind, particularly with regard to the fact that mix
networks involve re-encryption of ciphertexts.

A mix network takes as input a vector of ciphertexts denoted by V =
{Ey[M1], Ey[M2], . . . , Ey[Mn]}. Output from the mix network is the vector V ′ =
{Ey[Mσ(1)], Ey[Mσ(2)], . . . , Ey[Mσ(n)]}, where σ is a random permutation on n
elements. A mix scheme is said to be robust if, given a static adversary with
active control of a minority coalition of servers, V ′ represents a valid permuta-
tion and re-encryption of ciphertexts in V with overwhelming probability. A mix
scheme is said to be private if, given valid output V ′, for any i ∈ {1, 2, . . . , n},
an adversary with active control of a minority coalition and passive control of
at most m− 1 servers cannot determine σ−1(i) with probability non-negligibly
larger than 1/n (assuming unique plaintexts). It should be noted that to prevent
attacks in which some players post re-encryptions of other players’ inputs, it is
often a requirement that input be encrypted in a manner that is plaintext aware.
For this, it suffices that a player presenting El Gamal ciphertext (α, β) also pro-
vide a zero-knowledge proof of knowledge of logg β, and that servers check the
correctness of this proof. See, e.g., [24] for further details.

Mix servers were introduced by Chaum [12] as a basic primitive for privacy.
In his simple formulation, each server Si takes the output Vi of the previous
server and simply permutes and re-encrypts the ciphertexts therein. A security
caveat for this scheme was noted in [36]. While the Chaum scheme and related
proposals are private, they are not robust. A number of robust, threshold mix
networks have appeared in the literature [6, 7, 14, 23, 24, 26, 30, 31]. The most
efficient to date is the flash mixing proposal of Jakobsson [24]. Mitomo and
Kurosawa [30] recently discovered a security flaw, for which they propose a very
efficient remedy.

Robustness is in general not of critical importance in the schemes proposed
here, as a server corrupting the computation can at best insert a false or incor-
rect advertisement, something likely to be detected if widespread. On the other
hand, our scheme has two additional requirements. First, we must make use of a
mix network that converts plaintexts into ciphertexts, not the reverse, as is usual
in the literature. Second, input elements in our scheme, namely ads, are likely
to be long. Robust mix networks are typically inefficient in such cases. (A recent
scheme of Ohkubo and Abe [32] may be viewed as an exception, although that
scheme requires a number of servers quadratic in the number of tolerable mali-
cious servers.) For these two reasons, we propose a special plaintext-to-ciphertext
variant on the basic Chaumian mix network in Section 4.2.

There are many variations on mix networks. For example, there are efficient
mix networks in which V is a vector of tuples of ciphertexts. Additionally, a mix
network may take ciphertexts and/or plaintexts as inputs and likewise output
a combination of plaintexts and ciphertexts as desired. We employ a variety of
such operations in our protocols, and omit implementation details.

2.2 Model and definitions for our scheme

Let C1, C2, . . . , Ck be a collection of consumers toward whom advertisements are
to be directed. Let P1, P2, . . . , Pk be the respective profiles of these consumers.
These profiles may contain a variety of information on the consumer, including
standard demographic information such as age, sex, annual income, etc., as well
as other information such as recently visited URLs and search engine queries.
Let us designate the set of possible consumer profiles by P . We denote the
advertiser by A, and let AD = {ad1, ad2, . . . , adn} be the set of advertisements
that A seeks to distribute. The advertiser chooses a negotiant function fAD : P →
{1, 2, . . . , n}, which may be either deterministic or probabilistic. This function
takes the profile of a consumer as input and outputs a choice of advertisement
from AD to direct at the consumer. It is important to note that fAD need not
take AD explicitly as input, even if its output is indirectly dependent on AD.
As an example, fAD might derive a list of the most common words in URLs
visited by the user and seek to match these to text descriptors associated with
the ads in AD. We assume that the set AD is consistent from user to user (an
assumption we revisit later in the paper). Thus, in most cases, we write f for
clarity of notation, leaving the subscript implicit. Of course, it is possible to
extend our definition of f to include inputs other than user profiles, such as
the current date, or the list of advertisements already sent to the consumer; we
do not consider such extensions in this paper, however. We assume that A is
represented by a set of servers S1, S2, . . . , Sm, for m ≥ 1. These servers share
a bulletin board, to which all consumers post their ad requests. When enough
ads have accumulated or some other triggering criterion occurs (as discussed
in Section 4.2), servers perform any necessary computation and then initiate
communication with consumers and dispense ads to them.

Let l be an appropriately defined security parameter. We say that a function
q(l) is negligible if for any polynomial p, there exists a value d such that for l ≥ d,
we have q(l) < 1/|p(l)|. Otherwise, we say that q is non-negligible. We say that
probability q(l) is overwhelming if 1− q(l) is negligible.

Let A1 be a static polynomial-time adversary that actively controls a set of
t servers and has knowledge of f and AD. Consider the following experiment.
Assume that A1 does not control consumer Ci. A1 chooses a pair of profiles
(P̃0, P̃1) ∈ P2. A bit b ∈U {0, 1} is selected at random and Pi is set to P̃b.
Now the protocol is executed, and A1 outputs a guess for b. We say that the
protocol has (t,m)-privacy if for any such adversary A1, it is the case that
pr[A1 outputs b]− 1/2 is negligible, where the probability is taken over the coin
flips of all participants. This definition states informally that the protocol tran-
script reveals no significant information about Pi, even if all other consumers
are in the control of A1.

Now let us modify the experiment slightly and consider a polynomial-time
adversary A1 that controls t servers, but no consumers. This adversary selects a
pair of distinct profile assignments (P 0,P 1) ∈ (Pk)2 for the k players such that
both profile assignments yield the same set of ad requests. A bit b ∈U {0, 1} is
selected at random, and the profile set P b is assigned to the players. We say

that a negotiant protocol has (t,m)-group privacy if for any such adversary A1,
it is the case that pr[A1 outputs b] − 1/2 is negligible. The property of group
privacy means, roughly stated, that an advertiser can learn only the aggregate
ad requests of a group of consumers, but no further information about individual
profiles. We refer to the special case of (1, 1)-group privacy as profile privacy.
This limited but still valuable form of privacy means that an advertiser learns
the ad request of a given consumer Ci, but no additional information about Pi.

We say that a negotiant protocol is aggregate transparent if any server can
determine the set {f(P1), f(P2), . . . , f(Pk)} – in an unknown, random order
– with overwhelming probability. In real-world advertising scenarios, it is im-
portant that a protocol be aggregate transparent, as the clients of advertisers
typically wish to know how many times their ads have been displayed.

The final property we consider is that of robustness. Roughly stated, we
say that a targeted advertising protocol is robust if, given a static, polynomial-
time adversary that controls a minority coalition of servers, every consumer Ci

receives f(Pi) with overwhelming probability. In other words, the adversary is
incapable of altering or making substitutions for the ads requested by consumers.

3 Some Negotiant Schemes

We now present several schemes representing a small spectrum of tradeoffs be-
tween security properties and resource costs. In measuring asymptotic commu-
nication costs, we regard a single ad as the basic unit of communication, and
assume that ciphertext lengths and security parameter l are O(|q|).

3.1 Scheme 1: Näıve PIR scheme

We present this simple scheme as a conceptual introduction. Here, requests are
directed from a single consumer C with profile P to a single server S. (Thus the
scheme may be modeled by m = k = 1.) The scheme is this: The server sends
all of AD to C, who then views adf(P).

Clearly, this scheme enjoys full privacy, that is, (m,m)-privacy, and is robust.
The chief drawback is the Θ(n) communication cost. Another drawback is the
fact that the scheme is not aggregate transparent. Nonetheless, given a limited
base of advertisements and good bandwidth, and if advertisers are satisfied with
recording click-through rates, this scheme may be useable in certain practical
scenarios. In fact, more or less exactly this scheme serves as the basis of product
known as an Illuminated StatementTM offered by a company called Encirq [2].

3.2 Scheme 2: Direct request scheme

This is another conceptually simple scheme involving a one-on-one consumer and
server interaction. In this scheme, C simply sends f(P) to S, who returns adf(P).
This scheme enjoys profile privacy and has communication and computation
overhead O(1). It is also robust. Despite (or because of) its simplicity, it may in

many cases be appealing from a practical standpoint. Recall that profile privacy
may be regarded as a form of (1, 1)-group privacy. In the next scheme, we show
how to achieve stronger group privacy.

3.3 Scheme 3: Semi-private PIR scheme

We now show how to invoke some of the cryptographic apparatus described above
in order to achieve a semi-private PIR scheme useable as the basis for a negotiant
scheme. Given database AD = {ad1, ad2, . . . , adn}, the goal is for a collection
of consumers C1, C2, . . . , Ck to retrieve respective elements adr1 , adr2 , . . . , adrk
in such a way that the database servers learn requests only in the aggregate. Of
course, our aim here is to apply this scheme to the retrieval of advertisements,
and we shall present it in this context. In other words, we assume that ri =
f(Pi). As above, we assume a public/private El Gamal key pair (y, x) held in an
appropriate distributed manner by servers S1, S2, . . . , Sm. We also assume that
each consumer Ci has a public/private El Gamal key pair (yCi

, xCi
). Finally,

for simplicity of presentation, we assume that an ad may be encrypted as a
single El Gamal ciphertext. (In a real-world setting, an ad would have to be
encrypted across multiple ciphertexts. We treat this issue further and propose a
more practical alternative in Section 4.2.) The scheme is as follows.

1. Each consumer Ci computes ri = f(Pi) and posts the pair (Ey [ri], i) to the
bulletin board. Let V1 = {Ey[ri], i}

k
i=1 be a vector of ciphertext/plaintext

pairs accumulated when all consumers have posted their requests.
2. Servers apply a mix network to V1 to obtain V2. This mix network encrypts

first column elements and simultaneously decrypts second column elements.
Thus V2 is a vector of pairs {(rσ1(i), Ey[σ1(i)])}

k
i=1 for random, secret per-

mutation σ1.
3. Servers replace each integer rj in V2 with adrj . Call the resulting vector V ′

2 .
4. Servers apply a mix network to V ′

2 to obtain a vector V3, where V3 is a vector
of pairs {(Ey[adrσ2(i)

], σ2(i))}
k
i=1, and σ2 is an random, secret permutation.

5. Let (Ey [adri], i) be an element in V3. For each pair, the servers apply quorum-
controlled asymmetric proxy re-encryption to obtain (EyCi

[adri], i). Let the
resulting vector be V4.

6. For each element (EyCi
[adri], i) in V4, the servers send EyCi

[adri] to Ci.
7. Consumers decrypt their respective ciphertexts to obtain their ads.

The security of the scheme is predicated on that of the underlying mix network. If
we use a threshold mix network such that proposed in [24] (with the caveat from
[30]), it may be shown that this is a semi-private PIR scheme, with (⌊m/2⌋,m)-
group privacy, relative to the DDH assumption. In other words, the scheme
retains group privacy against an adversary controlling a minority coalition of
servers. Scheme 3 may also be shown to be robust in this case relative to the
discrete log problem in the random oracle model. As exponentiation in Gq incurs
cost O(l3), the computational costs of the scheme are O(ml3) per element per
server. The communication overhead of the scheme is O(1). With appropriate

implementation enhancements, some of which we discuss in Section 4, we believe
that this scheme may be deployed in a highly practical manner. For instance,
to draw again on our example above, for 100 users requesting one of 10 ads,
each of size 1k bytes, and with three servers, the total per-server computational
cost would be very roughly 50,000 exponentiations in our scheme, as opposed to
4,000,000 exponentiations for the single server in [10]. (This estimate assumes
use of the mix network proposed in [7, 26], as is best for small groups of users.
With use of the mix network described in [24], the per-server computational
cost is substantially lower for large groups of users. By using our proposal in
Section 4.2, we can do much better still.)

3.4 Scheme 4: Threshold PIR

The semi-private PIR scheme described above can be converted into a threshold
PIR scheme with a few extra steps, and at the expense of additional computa-
tional overhead. The idea is to perform a blind lookup of consumer ad requests.
This is accomplished by mixing ads and then invoking the distributed plaintext
equality test described in Section 2.1. The construction is such that processing
consumer requests one at a time is no less efficient as processing many simultane-
ously. We therefore present the protocol as applied to a single consumer C with
profile P and private/public key pair (yC , xC). Consumer C computes r = f(P)
and posts Ey[r] to the bulletin board. The protocol is then as follows.

1. Servers construct a vector U1 of ads, in particular, of pairs {(j, Ey[adj])}
n
j=1.

2. Servers mix U1 to obtain a vector U2 of the form (Ey [σ(j)], Ey [adσ(j)]) for a
random, secret permutation σ.

3. For each j, the servers perform a distributed plaintext equality test to see
whether Ey[j] ≈ Ey[r]. Assuming correct protocol execution, when a match
is found, this indicates the ciphertext pair (Ey [r], Ey [adr]).

4. The servers apply quorum-controlled asymmetric proxy re-encryption to ob-
tain EyC

[adr]. They send this to C.
5. C decrypts EyC

[adr] to obtain adr.

Assuming use of a threshold mix network, this scheme enjoys (⌊m/2⌋,m)-privacy
under the DDH assumption. It is also in this case robust given the discrete log
assumption and the random oracle model. The communication overhead is O(1).
The computational complexity for each server is is O(mnl3) with use of the [24]
construction, while the computational complexity for the client is O(l3). Note
that the bulk of the computational effort in this scheme occurs in step 2, in which
a vector of ads must be mixed for every user. This step is not consumer-specific,
and may be performed offline, or even by a different set of servers than that
responsible for executing steps 3 and 4.

Perhaps the most suitable basis in the literature for comparison is the single-
server, computationally secure scheme proposed in [10]. That scheme has com-
munication complexity O(polylog n), server complexity proportional to n log q
times a polynomial in l. (The multiplicative factor of log q as opposed to m im-
poses high overhead in practice, and the polynomial in l is Ω(l3).) The per-client
computational complexity is polynomial in l (again Ω(l3)), logn, and log q.

4 Security and Implementation Issues

4.1 Attacks outside the model

We have offered cryptographically based characterizations of the security of our
schemes according to the definitions in Section 2.2. We see that for Schemes 2
and 3, an attacker in control of a minority coalition of servers can learn little
beyond individual or aggregate ad requests. As mentioned above, however, even
with these security guarantees an advertiser with full control of the negotiant
function f can manipulate it so as to extract detailed profile information from
individual users. Let us suppose, for example, that an advertiser wishes, through
Scheme 2, to learn the approximate annual household income in dollars of a given
consumer C with profile P . The advertiser can construct a function f such that
f(P) = ⌊I/10, 000⌋, where I is the annual household income of the consumer.
In fact, given enough latitutude in the distribution of the negotiant function to
consumers, an advertiser can even defeat the aggregate security of Scheme 3.
She may do this by distributing a function f that encodes the ID of a consumer
in the output f(P), or by distributing a different function f to each consumer.
We propose several potentially complementary safeguards against such abuses.

– Open source negotiant function: The idea here is to allow easy reverse
engineering of f by consumers or watchdog organizations. This may be done
by requiring that f be encoded in a high level language such as Java, or
even by providing user-friendly software tools for viewing the behavior of
f . Consumers or organizations that deem f unduly invasive may refuse to
receive ads or may lodge complaints. P3P mechanisms for mediation between
consumers and Web sites might also come into play here.

– Seal of approval: The problem of verifying that f does not threaten con-
sumer privacy is somewhat similar to the problem of verifying that exe-
cutable code is not malicious. Thus, we may adopt an approach similar to
the ActiveX system, which is used for verification of the safety of executable
code [3]. An organization that believes a given piece of code to be safe applies
a digital signature to it prior to distribution. If a user trusts the holder of the
certificate supporting the signature, then she has some assurance about the
safety of the code. We may adopt a similar approach to negotiant functions,
allowing watchdog organizations to provide authenticable seals of approval.

– Restricted negotiant language: Another approach to protecting clients
against malicious code is the so-called sandbox approach, adopted to some
extent in Java virtual machines. The sandbox idea dictates that code be
executable only in a protected environment, i.e., that the permissible set of
instructions be restricted so as to guarantee safety to the client. In a loosely
analogous fashion, we can create a “privacy safe” language for f . That is,
we constrain f to execute on a virtual machine that restricts the forms of
access it may gain to consumer profiles, so as to ensure against unfair data
extraction by advertisers.

– Consumer profile control: The idea here is to permit the consumer to
choose what portion of his or her profile to divulge to or conceal from f .
P3P seems a natural platform to support this form of consumer control.

– Controlled distribution of negotiant function: To ensure against the
advertiser extracting user data by customizing f , we wish to ensure that f
is employed in a homogeneous fashion during a given time period or dis-

tribution epoch. One possible means of enforcement is to have a signed and
time-stamped hash of f publicly posted by the advertiser, with some legal
assurance of homogeneous distribution. Alternatively, f might be distributed
by a semi-trusted site not directly associated with the advertiser. Of course,
even if distribution of f is uniform, some users may not update their copies.
Given distribution epochs of reasonably large duration, say, a week or a
month, this should not be problematic.

Another possible attack by the advertiser involves collusion with consumers in
Scheme 3 or creation of fictitious users. If, for example, the advertiser has access
to {f(P2), f(P3), . . . , f(Pk)}, then she can deduce f(P1) from the aggregated set
of requests. The Crowds system suffers from a similar problem. The inventors
of Crowds propose several countermeasures, for details of which we refer the
reader to [1, 37, 38]. Since user anonymity is not required for privacy in our
system, we can attach a substantial cost to the creation of fictitious users by,
e.g., requiring that a consumer register by presenting a valid credit card or Social
Security number. We should note, however, that the cost and trouble of mounting
attacks involving widespread collusion or fraud, coupled with the small amount
of information that such attacks are likely to reveal to the advertiser, should in
most cases act as sufficient deterrents in and of themselves.

4.2 Practical implementation issues for Schemes 3 and 4

Aggregation and offline mixing: As mentioned above, mix networks involve com-
putationally intensive cryptographic operations, and as such are not typically
practical for applications in which mixing results must be produced on the fly.
With the right type of setup, however, we can schedule the mixing operations
in Schemes 3 and 4 so that execution may take place offline. The idea is that
the first time a consumer Ci visits a Web site controlled by the advertiser, she
submits f(Pi). On this first visit, she does not receive the targeted ad adf(Pi);
she may instead receive a generic ad. In the interval of time between her first
and second visits, however, her request f(Pi) is aggregated with those of other
consumers, and the ad servers perform the necessary mixing operations. On the
second visit of Ci, then, her requested ad adf(Pi) will be ready for her. She may
at this point request another ad, to be ready on her third visit, and so on. In
short, consumer ad requests may be pipelined in such a way that aggregation
and processing takes place between visits, rather than during visits. Of course,
it is possible to define an ad distribution epoch in any way that is convenient.
For example, it may be that a consumer does receive a requested ad until the
next day, with server mixing of ad requests taking place overnight.

This scheme for offline mixing may not work in the absence of multiple visits
by a single user to the same site or to associated sites, or with the inability
to recognize repeat visitors. In practice, however, most users frequently visit
the same groups of sites repeatedly and do not shield their identities. This is
reflected by, e.g., the still pervasive use of cookies on the Web, not to mention
the extensive presence of DoubleClick.

Bulk encryption: We assume in our descriptions of Schemes 3 and 4 above that
an advertisement may be represented as a single ciphertext. Of course, in reality,
it is impractical to use ads small enough or a group Gq large enough to support
this assumption. We may represent an advertisement as a sequence of associated
ciphertexts, but this becomes computationally intensive for long ads. An alter-
native is to encrypt ads using an enveloping scheme involving both asymmetric
and symmetric encryption. We describe a simple mix network of this type here,
essentially a plaintext-to-ciphertext variant on the initial proposal of Chaum
[12]. An important distinction, however, is that what we propose here involves
use of the El Gamal cryptosystem and its re-encryption properties.

Let ǫκ[M] represent a symmetric-key encryption of plaintext M , where κ ∈U

K is a key drawn from keyspace K. We represent a full encryption of M for
the mix network as Ẽy[M] = (γ, δ), where γ = {Ey[κ1], Ey[κ2], . . . , Ey[κz]} and

δ = ǫκz
ǫκz−1 . . . ǫ1[M] for some integer z. To re-encrypt Ẽy[M] as (γ′, δ′), a server

does the following:

1. Re-encrypt all ciphertexts in γ.
2. Select κz+1 ∈U K.
3. Append Ey[κz+1] to γ to obtain γ′.
4. Compute δ′ as ǫκz+1[δ].

We leave further details of the mix network to the reader. There are two
potential drawbacks to this scheme. First, the size of a ciphertext, as well as
the computational cost of re-encryption, grows linearly in z, the number of re-
encryptions. In practice, however, the performance is likely to be quite good,
particularly when the number of mix servers m is small and ad sizes are large.
A second drawback is the lack of robustness. As discussed above, however, ro-
bustness is a much less important consideration than privacy in our negotiant
schemes. The incentive for a server to corrupt ads or substitute new ads is small,
as such misbehavior would almost certainly become quickly apparent. Nonethe-
less, detection of tampering may be achieved by having servers include encrypted
signatures of the symmetric keys they have generated, and formatting plaintexts
such that it is easy to identify a correct decryption.

5 Conclusion

This paper seeks to convey two ideas, the first cryptographic and the second
sociological. On the cryptographic side, we observe that by relaxing the conven-
tional PIR model to allow for threshold and aggregate security properties, we

are able to achieve considerable practical improvements in terms of both com-
munication and computational complexity. On the sociological side, we consider
a new perspective on the contention between online advertisers and consumer
privacy advocates. We explore some conceptually simple technical approaches to
advertising that bring the objectives of both camps into closer alignment.

One of the main issues left unaddressed in this paper is how the negotiant
function f should be constructed. Determining what features will be most effec-
tive in targeting advertisements is, of course, largely an advertising issue, and as
such outside the scope of our investigations. The Encirq [2] system would seem to
demonstrate that negotiant functions can be constructed that are effective and
practical. The problem of formulating effective, adequately privacy-preserving
negotiant functions f presents an open problem with interesting sociological
and technical facets.

Acknowledgments

The author wishes to thank Markus Jakobsson and Burt Kaliski for their detailed
comments and suggestions, as well as the anonymous referees of the paper.

References

1. Crowds homepage. AT&T Labs. http://www.research.att.com/projects/crowds.
2. Encirq, Inc. http://www.encirq.com.

3. Microsoft ActiveX resource page. Microsoft Corporation.
http://www.microsoft.com/com/tech/ActiveX.asp.

4. Platform for privacy preferences (P3P) project. World Wide Web Consortium
(W3C). http://www.w3.org/p3p.

5. Zero-Knowledge Systems, Inc. http://www.zeroknowledge.com.
6. M. Abe. Universally verifiable mix-net with verification work independent of the

number of mix-servers. In EUROCRYPT ’98, pages 437–447, 1998.
7. M. Abe. A mix-network on permutation networks. In ASIACRYPT ’99, pages

258–273, 1999.

8. Reuters News Agency. DoubleClick awaits FTC OK: CEO says Web ad firm will
wait for privacy policy before it uses ad tracking. 2 March 2000.

9. R.M. Arlien, B. Jai, M. Jakobsson, F. Monrose, and M. K. Reiter. Privacy-
preserving global customization. In ACM E-Commerce ’00, 2000. To appear.

10. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In EUROCRYPT ’99, pages 402–414, 1999.

11. J. Camenisch and M. Michels. Proving that a number is the product of two safe
primes. In EUROCRYPT ’99, pages 107–122, 1999.

12. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, 1981.

13. B. Chor, E. Kushilevitz, O. Goldreich, and M .Sudan. Private information retrieval.
JACM, 45(6):965–981, 1998.

14. Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new
one. In EUROCRYPT ’00, pages 557–572, 2000.

15. W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, (22):644–654, 1976.
16. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In EUROCRYPT ’86, pages 186–194, 1986.
17. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.
18. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gener-

ation for d-log based cryptosystems. In EUROCRYPT ’99, pages 295–310, 1999.
19. Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for PIR. In

RANDOM ’98, pages 200–217, 1998.
20. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in

private information retrieval schemes. In STOC ’98, pages 151–160, 1998.
21. J. Goldman, Z. Hudson, and R.M. Smith. Report on the privacy policies and

practices of health Web sites, 2000.
22. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

STOC ’87, pages 218–229, 1987.
23. M. Jakobsson. A practical mix. In EUROCRYPT ’98, pages 448–461, 1998.
24. M. Jakobsson. Flash mixing. In PODC ’99, pages 83–89, 1999.
25. M. Jakobsson. On quorum controlled asymmetric proxy re-encryption. In PKC

’99, pages 112–121, 1999.
26. M. Jakobsson and A. Juels. Millimix: Mixing in small batches, 1999. DIMACS

Technical Report 99-33.
27. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-

texts. In ASIACRYPT ’00, 2000. To appear.
28. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In FOCS ’97, pages 364–373, 1997.
29. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.
30. M. Mitomo and K. Kurosawa. Attack for flash mix. In ASIACRYPT ’00, 2000.

To appear.
31. W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous

channel. In ICICS ’97, pages 440–444, 1997.
32. M. Ohkubo and M. Abe. A length-invariant hybrid mix. In ASIACRYPT ’00,

2000. To appear.
33. R. Ostrovsky and V. Shoup. Private information storage. In STOC ’97, pages

294–303, 1997.
34. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In CRYPTO ’91, pages 129–140, 1991.
35. T. Pedersen. A threshold cryptosystem without a trusted third party. In EURO-

CRYPT ’91, pages 522–526, 1991.
36. A. Pfitzmann and B. Pfitzmann. How to break the direct RSA-implementation of

MIXes. In EUROCRYPT ’89, pages 373–381, 1989.
37. M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web transactions. ACM

Transactions on Information and System Security, 1(1):66–92, 1998.
38. M. K. Reiter and A. D. Rubin. Anonymous Web transactions with Crowds. Com-

munications of the ACM, 42(2):32–38, 1999.
39. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

4:161–174, 1991.
40. B. Tedeschi. E-commerce report; Critics press legal assault on tracking of Web

users. New York Times. 7 February 2000.
41. Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption. In PKC

’98, pages 117–134, 1998.

