
Coercion-Resistant Electronic Elections

Ari Juels1 and Dario Catalano2 and Markus Jakobsson3

1 RSA Laboratories
Bedford, MA, USA

e-mail:ajuels@rsasecurity.com
2 CNRS-Ecole Normale Supérieure

75230 Paris Cedex 05 - France, France
e-mail:dario.catalano@ens.fr

3 Indiana University, School of Informatics
Bloomington, IN, USA

e-mail:markus@indiana.edu

Abstract. We introduce a model for electronic election schemes that involves a more powerful adversary than in previous
work. In particular, we allow the adversary to demand of coerced voters that they vote in a particular manner, abstain from
voting, or even disclose their secret keys. We define a scheme to becoercion-resistantif it is infeasible for the adversary to
determine whether a coerced voter complies with the demands.
A first contribution of this paper is to describe and characterize a new and strengthened adversary for coercion in elections.
(In doing so, we additionally present what we believe to be the first formal security definitions for electronic elections of
any type.) A second contribution is to demonstrate a protocol that is secure against this adversary. While it is clear that a
strengthening of attack models is of theoretical relevance, it is important to note that our results lie close to practicality. This
is true both in that we model real-life threats (such as vote-buying and vote-cancelling), and in that our proposed protocol
combines a fair degree of efficiency with an unusual lack of structural complexity. Furthermore, previous schemes have
required use of an untappable channel throughout. Ours only carries the much more practical requirement of an anonymous
channel during the casting of ballots, and an untappable channel during registration (potentially using postal mail).
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1 Introduction

Most voters participating in shareholder elections in the United States have the option of casting ballots via a Web
browser [1]. Some voters near Geneva participating in recent referenda in Switzerland in 2003-4 have been able
to cast binding votes electronically [19]. The UK government has enunciated plans are to allow its citizens to vote
electronically “some time after 2006” [18]. These are just a few instances of a broadening trend toward Internet-based
voting. While voting of this kind appears to encourage higher voter turnout [38] and make accurate accounting for
votes easier, it also carries the potential of making abuse easier to perform, and easier to perform at a large scale. A
number of papers in the cryptographic literature have described ways of achieving robust and verifiableelectronic
elections, i.e., elections in which ballots and processing data are posted to a publicly accessible bulletin board. For
some recent examples (but not by any means an exhaustive list), see [8, 16, 21, 22, 27, 30, 34, 37, 41].

There are two other threats, however, that it is equally crucial to address in a fair and democratic election process:
We speak ofvoter coercionandvote buying. Internet-based voting does not introduce these problems, but it does
have the potential to exacerbate them by extending the reach and data collection abilities of an attacker. This is
highlighted in one way by the presence of a notorious Web site that provides a forum for the auctioning of votes
[2]. Seller compliance was in that case merely voluntary. Conventional Internet voting schemes, however, including
those described in the literature, actually provide an attacker with ready-made tools for verifying voter behavior and
thereby exerting influence or control over voters. Without careful system design, the threats of coercion and vote
buying are potentially far more problematic in Internet voting schemes than in ordinary, physical voting schemes.

One commonly proposed way of achieving secure electronic voting systems is to use a cryptographic system
known as amix network[14]. This is a tool that enables a collection of servers to take as input a collection of
ciphertexts and to output the corresponding plaintexts according to a secret permutation. A straightforward way to
achieve an election system that preserves the privacy of voters, then, is to assign a private digital signing key to
each voter. To cast a ballot, the voter encrypts her choice and signs it, and then posts it to a bulletin board (i.e.,
a publicly accessible memory space). When all ballots have been collected and the corresponding signatures have
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been checked, the ciphertexts are passed through a mix network. The resulting plaintext versions of the voter choices
may then be tallied. Thanks to the privacy preserving property of the mix network, an adversary cannot tell which
vote was cast by which voter. This approach is frequently advocated in the mix-network literature, as in, e.g., [8, 14,
22, 27].

In an ordinary mix-based scheme of this kind, an adversary can coerce a voter straightforwardly. The adversary
can simply furnish the voter with a ciphertext on a particular candidate, and then verify that the voter posted a ballot
containing that ciphertext. Alternatively, the adversary can demand the private signing key of the voter and verify
its correctness against the corresponding public key. An adversary attempting to buy votes can use the same means.
Other types of cryptographic voting schemes, namely homomorphic schemes [5, 16] and schemes based on blind
signatures [20, 37], suffer from similar vulnerabilities.

1.1 Previous work

Previous investigations of coercion-resistant voting have been confined to a property known asreceipt-freeness.
Roughly stated, receipt-freeness is the inability of a voter to prove to an attacker that she voted in a particular
manner, even if the voter wishes to do so. For a more formal definition, see [37]. The property of receipt-freeness
ensures that an attacker cannot determine exact voter behavior and therefore cannot coerce a voter by dictating her
choice of candidate. It also protects against vote-buying by preventing a potential vote buyer from obtaining proof
of the behavior of voters; voters can therebypretendto sell their votes, but defraud the vote buyer. The notion of
receipt-freeness first appeared in work by Benaloh and Tuinstra [5]; their scheme, based on homomorphic encryption,
was shown in [25] not to possess receipt-freeness as postulated. An independent introduction of the idea appeared
in Niemi and Renvall [35]. Okamoto [36] proposed a voting scheme which he himself later showed to lack the
postulated receipt-freeness; a repaired version by the same author, making use of blind signatures, appears in [37].
Sako and Kilian [39] proposed a multi-authority scheme employing a mix network to conceal candidate choices, and
a homomorphic encryption scheme for production of the final tally. The modelling of their scheme was clarified and
refined by Michels and Horster [33]. The Sako and Kilian scheme served as a conceptual basis for the later work
of Hirt and Sako [25], followed by the more efficient approach of [3]; these two are the most efficient (and correct)
receipt-free voting schemes to date. A recenly proposed scheme by Magkoset al. [32] distinguishes itself by an
approach relying on tamper-resistant hardware, but is flawed.1

All of these receipt-free voting schemes include somewhat impractical assumptions. For example, these schemes
assume the availability of anuntappable channelbetween the voter and the authorities, that is, a channel that provides
perfect secrecy in an information-theoretic sense. (I.e., even encryptiondoes not provide an untappable channel.) The
scheme in [37] makes the even stronger assumption of ananonymousuntappable channel. (It is also not very practical
in that it requires voter interaction with the system three times in the course of an election.) Moreover, all of these
schemes (excepting [37]) lose the property of coercion-resistance if the attacker is able to corrupt even one of the
tallying authorities in a distributed setting. The scheme of Hirt and Sako still retains coercion-resistance when such
corruption takes place, but only under the strong assumption that the voter knowswhich tallying authorities have
been corrupted; the proposal of Baudronet al.has a similar property.

A still more serious problem with of all of the receipt-free voting schemes described in the literature, however, is
the fact that the property of receipt-freeness alone fails to protect an election system against several forms of serious,
real-world attack, which we enumerate here:

Randomization attack: This attack was noted by Schoenmakers in 2000 [42]; he described its applicability to
the scheme of Hirt and Sako. The idea is for an attacker to coerce a voter by requiring that she submit randomly
composed balloting material. In this attack, the attacker (and perhaps even the voter) is unable to learn what candidate

1 We are unaware of any mention of a break of this scheme in the literature, and therefore briefly describe one here. The Magkoset al.system
employs an interactive honest-verifier ZK proof made by a smartcard to the voter. Presumably because of the simulability of this proof, the
authors describe the proof as being “non-transferable”. This is not true. In particular, an adversary can stipulate that the voter engage in the
proof using a challenge that the adversary has pre-selected. The proof then becomes transferable, yielding a means of receipt construction
by the adversary. As noted in [25], this type of attack also explains whydeniable encryption[13] does not solve the problem of coercion in
a voting system.
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the voter cast a ballot for. The effect of the attack, however, is to nullify the choice of the voter with a large probability.
For example, an attacker favoring the Republican party in a United States election would benefit from mounting a
randomization attack against voters in a heavily Democratic district.

Forced-abstention attack: This is an attack related to the previous one based on randomization. In this case, the
attacker coerces a voter by demanding that she refrain from voting. All of the schemes cited above are vulnerable
to this simple attack. This is because the schemes authenticate voters directly in order to demonstrate that they are
authorized to participate in the election. Thus, an attacker can see who has voted, and use this information to threaten
and effectively bar voters from participation.2

Simulation attack: The receipt-free schemes described above assume that the attacker cannot coerce a voter by
causing her to divulge her private keying material after the registration process but prior to the election process.
Such an attack, however, is a real and viable one in previously proposed schemes, because these permit an attacker
to verify the correctness of private keying material. For example, in [37], the voter provides a digital signature which,
if correct, results in the authority furnishing a blind digital signature. In [25], the voter, when casting a ballot, proves
knowledge of a private key relative to a publicly committed or published value. In general, receipt-freeness does
not prevent an attacker from coercing voters into divulging private keys or buying private keys from voters and then
simulatingthese voters at will, i.e., voting on their behalf.

1.2 Our contribution

Our contribution in this paper is twofold. First, we investigate a stronger and broader notion of coercive attacks than
receipt-freeness. This notion, which we refer to ascoercion-resistance, captures what we believe to be the fullest
possible range of adversarial behavior in a real-world, Internet-based voting scheme. A coercion-resistant scheme
offers not only receipt-freeness, but also defense against randomization, forced-abstention, and simulation attacks
– all potentially in the face of corruption of a minority of tallying authorities. We propose a formal definition of
coercion-freeness in the body of this paper. Two other properties are essential for any voting scheme, whether or not
it is coercion-resistant. These arecorrectnessandverifiability. As formal definitions for these properties seem to be
lacking in the literature, we provide them as well in the paper appendix; we thus provide what we believe to be the
first formal security framework for electronic elections in general.

To demonstrate the practical realizabilityof our definitions, we describe a voting scheme that possesses the strong
property of coercion-resistance proposed in this paper – and also the properties of correctness and verifiability. Our
scheme does not require untappable channels during the voting process, but instead assumes voter access to an
anonymous channel at some point during the voting process. (Registration does involve an untappable channel,
but may be achieved via, e.g., postal mail.) The assumption of anonymous channels in an election can be realized
in a practical way. (Exactly how practical is subject to some debate.) For example, an adversary may be able to
view communications on the Internet, but not trace IP addresses to identities effectively. Or voters may achieve
anonymity by using public terminals in Internet caf´es, libraries, workplaces, or physical polling places to participate
in an otherwise electronic election. Popular use of mixnets would similarly help, e.g., [22, 34]; broadcast channels
are another possible mechanism for anonymity. Anonymous channels are, of course, a strictly weaker assumption
than untappable ones. Thus our scheme can make use of untappable channels too. The assumption of untappable
channels may be reasonable in some limited cases: It is not a straightforward matter for an unsophisticated attacker
to tap point-to-point communications on the Internet, for example.

Anonymous channels are in fact a minimal requirement foranycoercion-resistant schemes: An attacker that can
identify which voters have participated can obviously mount a forced-abstention attack.

A drawback of our scheme is that, even with use of asymptotically efficient mix networks as in [22, 34], the
overhead for tallying authorities is quadratic in the number of voters. Thus the scheme is only practical for small

2 An exception is the scheme in [37], which does not appear to be vulnerable to a forced-abstention attack. This is because the scheme
seems to assume that the authority checks voter enrollment privately. In other words, the scheme does not permit public verification that
participating voters are present on a published voter roll. This is potentially a problem in its own right.
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elections. Our hope and belief, however, is that our proposed scheme might serve as the basis for refinements with a
higher degree of practical application. We provide a security proof for our proposed scheme in the paper appendix.

1.3 Intuition behind our scheme

In a conventional voting scheme, and also in receipt-free schemes like [25], the voterVi identifies herself at the time
she casts her ballot. This may be accomplished by means of a digital signature on the ballot, or by an interactive
authentication protocol. The key idea behind our scheme is for the identity of a voter to remain hidden during the
election process, and for the validity of ballots instead to be checked blindly against a voter roll. When casting a
ballot, a voter incorporates a concealed credential. This takes the form of a ciphertext on a secret valueσ that is
unique to the voter. The secretσ is a kind ofanonymous credential, quite similar in spirit to, e.g., [9, 10]. To ensure
that ballots are cast by legitimate voters, the tallying authorityT performs a blind comparison between hidden
credentials and a listL of encrypted credentials published by an election registrarR alongside the plaintext names
of registered voters.

By means of mixing and blind comparison of ciphertext values, it is possible to check whether a concealed
credential is in the listL or not, without revealing which voter the credential has been assigned to. In consequence,
an attacker who is given a fake credentialσ̃ by a coerced voter cannot tell whether or not the credential is valid.
(The attacker will learn how many ballots were posted with bad credentials. Provided, however, that some spurious
ones are injected by honest players, authorities, or even outsiders, the individuals associated with bad ballots will
remain concealed.) Moreover, the attacker cannot mount randomization or forced-abstention attacks, since there is
no feasible way to determine whether an individual voter has posted a ballot or not. In particular, after divulging fake
credential̃σ, a voter can go and vote again using her real credentialσ.

1.4 Organization

In section 2, we describe our setup and attack models and sketch a few of the major adversarial strategies. We
provide formal definitions for the security property of coercion-resistance in section 3. We describe the particulars
of our proposed scheme in section 4, prefaced by a summary of the underlying cryptographic building blocks. In
the appendices to the paper, we offer formal definitions for the correctness and verifiability of election schemes, a
detailed security-proof outline, and details on our choice of primitives for realizing our proposed scheme.

2 Modelling

An election system consists of several sets of entities:

1. Registrars:Denoted byR = {R1, R2, . . . , RnR
}, this is a set ofnR entities responsible for jointly issuing

keying material, i.e., credentials to voters.
2. Authorities (Talliers):Denoted byT = {T1, T2, . . . , TnT

}, authorities are responsible for processing ballots
and jointly counting votes and publishing a final tally.

3. Voters:The set ofnV voters, denoted byV = {V1, V2, . . . , VnV
}, are the entities participating in a given election

administered byR. We leti be a public identifier forVi.

We make use of abulletin board, denoted byBB. This is a piece of universally accessible memory to which all
players have appendive-write access. In other words, any player can write data toBB, but cannot overwrite or erase
existing data. Moreover, voters will be able to read the contents ofBB once the vote casting phase has ended. For
notational convenience, we assume that data are written toBB in µ-bit blocks for an appropriate choice ofµ. Shorter
data segments may be padded appropriately. For simplicity of exposition, we assume no ordering on the contents of
BB.
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2.1 Functions

We define acandidate slateC to be an ordered set ofnC distinct identifiers{c1, c2, . . . , cnC
}, each of which

corresponds to a voter choice, typically a candidate or party name. In an election, choicecj may be identified
according to its indexj. Thus, for cryptographic purposes the candidate slate consists of the integers{1, 2, . . . , nC}
and may be specified bynC alone. We define atally on an election under slateC to be a vectorX of nC positive
integersx1, x2, . . . , xnC

such thatxj indicates the number of votes cast for choicecj . The protocols composing an
election system are then as follows:

– Registering: The functionregister(SKR, i, k1) → (ski, pki) takes as input the private registrar keySKR, a
(voter) identifieri and a security parameterk1, and outputs a key pair(ski, pki). This is computed jointly by
players inR, possibly in interaction with voterVi.

– Voting: The functionvote(sk, PKT , nC , β, k2) → ballot takes as input a private voting key, the public key of
the authoritiesT , the candidate-slate specificationnC , a candidate selectionβ, and a security parameterk2, and
yields a ballot of bit length at mostµ. The form of the ballot will vary depending on the design of the election
system, but is in essence a digitally signed vote choice encrypted underPKT .

– Tallying: The functiontally(SKT ,BB, nC , {pki}nV
i=1, k3) → (X, P ) takes as input the private key of the au-

thority T , the full contents of the bulletin board, the candidate-slate size, all public voting keys, and a security
parameterk3 and outputs a vote tallyX, along with a non-interactive proofP that the tally was correctly
computed.

– Verifying: The functionverify(PKT ,BB, nC , X, P )→ {0, 1} takes as input the public key of the authorities,
the contents of the bulletin board, the candidate-slate size, the voting tally, and a non-interactive proof of correct
tallying. It outputs a ‘0’ if the tally is incorrect and a ‘1’ otherwise. (We characterize the behavior ofverify more
formally in the paper appendix.)

We define an election schemeES as the collection of these functions. ThusES = {register, vote, tally, verify}.

Remark: There are many election models in use throughout the world. The model we propose here excludes
important variants. In some systems, for example, voters are asked to rank candidate choices, rather than just listing
those they favor. Many systems permit the use ofwrite-in votes, i.e., the casting of a ballot in favor of a candidate not
listed on the slate for the election. We exclude write-in voting from our model because it undermines the possibility
of coercion resistance in any scheme where an observer can see a complete election tally including write-in votes.
An attacker may, for example, require coerced voters to cast write-in ballots for candidate names consisting of
random strings pre-specified by the attacker. This way, the attacker can: (1) Verify that coerced voters complied with
instructions, by looking for the random strings the attacker furnished, and (2) Ensure that the votes of coerced voters
are not counted, since random strings will most likely not correspond to real election choices. (Thus, this would
combine the forced abstentation attack and the randomization attack.)

2.2 Summary of the attack model

We consider the process for a single election as proceeding in these phases, corresponding largely with the functions
enumerated in section 2.1:

1. Setup: If not already available, key pairs are generated for or byR andT . The candidate slateC for the election
is published byR with appropriate integrity protection.

2. Registration: The identities and eligibility of would-be voters are verified byR. Given successful verification,
an individual becomes a registered voter, receiving fromR a credential permitting participation in the election.
Previously registered voters may be able to re-use their credentials.R publishes a voter rollL.

3. Voting: Referring to the candidate slateC, registered voters use their credentials to cast ballots.
4. Tallying: The authorityT processes the contents of the bulletin boardBB so as to produce a tally vectorX

specifying the outcome of the election, along with a proof of correctnessP of the tally.
5. Verification: Any player, whether or not a participant in the election, can refer toBB, P andL to verify the

correctness of the tally produced byT in the previous phase.
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Assumptions in setup phase:Our security definitions permit the possibility of static, active corruption by the
adversary of a minority of players inT in the setup phase. The security of our construction then relies on generation
of the key pair(SKT , PKT ) by a trusted third party, or, alternatively, on an interactive, computationally secure
key-generation protocol such as [24] between the players inT .

Assumptions prior to registration: The adversary may coerce a voter prior to the registration phase in the sense of
requesting in advance that the voter retain transcripts of the registration process, or by providing data in an attempt
to dictate voter interaction with the registrar.

Assumptions in registration phase: We assume that this phase is trustworthy. Strong integrity of the registrarR
is of course critical for any secure election system. To evade coercion, a voter must be able to receive a credential
without adversarial interference. An adversary capable of corrupting and seizing the credentials of a voter in this
initial phase can mount a full simulation attack. An adversary capable of preventing a voter from registering can
mount a forced-abstention attack.

We assume therefore that the voter receives her credential fromR via an untappable channel. We are helped
here by the fact that registration is generally an offline procedure. For example, a voter might receive her registra-
tion through the postal service. We must then assume that mail in the postal system is not subject to compromise.
Alternatively, registration could be performed by voters in person.

It is further necessary to assume that an attacker cannot obtain registration transcript data after the fact. Where
registration is electronic, for example, erasure of data from voter interaction withR must be compulsory by voters
(e.g., enforced by smartcards). In a postal system, we must assume that the adversary cannot feasibly gather and
validate registration letters from targeted voters (at least not many of them).

Finally, we must assume the integrity of the registration procedure on the inside, i.e., we must assume thatR is
trustworthy and does not leak credentials to the adversary.3

It may or may not be entirely feasible to achieve all of these assumptions around the registration process in
real-world systems. We note, however, that if the registration process doesnot have the integrity we require here,
then coercion-resistance is the least of our problems: Votes can then be tampered with.

Assumptions on voting, tallying and verification phases:Subsequent to the registration phase, we assume that
the adversary may seize control of a minority of players inT and any number of voters in a static, active manner.
(SinceR does not participate in the process subsequent to registration, we need not consider corruption ofR at this
point.) The adversary may also attempt to coerce voters outside its control by requesting that they divulge private
keying material4 or behave in a prescribed manner in voting. Voters are assumed to be able to cast their ballots
via anonymous channels, i.e., channels such that an attacker cannot determine whether or not a given voter cast a
ballot. We noted some practical underpinnings for this assumption above. As also noted above, this assumption is
a requirement for any election scheme to be fully coercion-resistant: If an attacker can tell whether or not a given
voter cast a ballot, then the attacker can easily mount a forced-abstention attack. We assume that either sessions
are integrity protected (on a per-session basis, since they are anonymous), or that the adversary has only passive
interaction with the network.

Not considered here: We do not treat the problem of denial-of-service attacks. Mechanisms like [29] might help,
but are beyond the scope of our research. We also do not treat the problem of enabling voters to verify that their votes
have been counted. This is in principle possible whilst retaining coercion resistance. Honest voters could submit their
credentials via anonymous channels for verification of proper processing by authorities. Authorities would concoct
appropriate false replies for invalid credentials. We regard this as future work.

3 Some relaxation of this assumption is possible. IfR comprises multiple players, computations byR are distributed, and communication
between players inR are made directly with voters, then even if a minority of players inR is corrupted, coercion-resistance is still possible.
The catch is that voters must knowwhichplayers inR have been corrupted. For details on this idea, see [25].

4 We assume that the coercion takes place remotely. For example, the adversary may not continuously watch over the shoulder of a voter,
monitor her hard-drive, etc. Our proposed protocol does potentially defend against some shoulder-surfing, however, by permitting voters
to use fake keys and/or re-vote.
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3 Formal definitions

We now turn our attention to formal security definitions of the essential properties ofcorrectness, verifiability,
and coercion-resistance, respectively abbreviatedcorr, ver, andc-resist. Our definitions hinge on a set of ex-
periments involving an adversaryA in interaction with components of the election systemES. This adversary is
assumed to retain state throughout the duration of an experiment. We formulate our experiments such that in all
cases, the aim of the adversary is to cause an output value of ‘1’. Thus, for experimentExpE

ES,A(·) on property
E ∈ (ver, corr, c-resist), we defineSuccE

ES,A(·) = Pr[ExpE
ES,A(·) = ‘1’].

According to the standard definition, we say that a quantityf(k) is negligible in k if for every positive integer
c there is somelc such thatf(k) < k−c for k > lc. In most cases, we use the term negligible alone to mean
negligible with respect to the full set of relevant security parameters. Similarly, in saying that an algorithm has
polynomial running time, we mean that its running time is asymptotically bounded by some polynomial in the
relevant security parameters. As the properties of correctness and verifiability are of less relevance to our work than
coercion-resistance, we relegate the first two definitions to appendices A and B.

Coercion resistance:Coercion resistance may be regarded as an extension of the basic property of privacy. Privacy
in an election system is defined in terms of an adversary that cannot interact with voters during the election process.
In particular, we say that an election is private if such an adversary cannot guess the vote of any voter better than an
adversarial algorithm whose only input is the election tally. (Note, for example, in an election where all voters vote
Republican, the system may have the property of privacy, even though the adversary knows how all voters cast their
ballots in that election.)

Coercion resistance is a strong form of privacy in which it is assumed that the adversary may interact with voters.
In particular, the adversary may instruct targeted voters to divulge their private keys subsequent to registration, or
may specify that these voters cast ballots of a particular form. If the adversary can determine whether or not voters
behaved as instructed, then the adversary is capable of blackmail or otherwise exercising undue influence over the
election process. Hence a coercion-resistant voting system is one in which the user can deceive the adversary into
thinking that she has behaved as instructed, when the voter has in fact cast a ballot according to her own intentions.

Our definition of coercion resistance requires addition of a new function to voting systemES:

– The functionfakekey(PKT , sk, pk)→ s̃k takes as input the public key of the authorities, and the private/public
key pair of the voter. It outputs a spurious keỹsk.

Of course, for the functionfakekey to enable coercion resistance, the keys̃k must be indistinguishable by the ad-
versaryA from a valid key, and only distinguishable by a majority of talliersT . This property is captured in our
experiment characterizing coercion resistance. To simplify the formulation of the experiment, we assume implicitly
that tally is computed by an oracle (with knowledge ofSKT ). It suffices, however, forT to be computed via a
protocol that achieves correct output and is computationally simulable by the adversaryA (who, it will be recalled,
may corrupt a minority ofT ).

Our definition of coercion resistance centers on a kind of game between the adversaryA and a voter targeted by
the adversary for coercive attack. A coin is flipped; the outcome is represented by a bitb. If b = 0, then the voter
casts a ballot with a particular choiceβ, and provides the adversary with a false voting keys̃k; in other words, the
voter attempts to evade adversarial coercion. Ifb = 1, on the other hand, then the voter submits to the coercion of
the adversary; she simply furnishes the adversary with her valid voting keysk, and does not cast a ballot. The task of
the adversary is to guess the value of the coinb, that is, to determine whether or not the targeted voter in fact cast a
ballot. We permit the adversary in this definitional game to specify the ballot valueβ. While it is somewhat unnatural
for the adversary thus to specify the intention of the voter, this is a necessary (but not sufficient) condition to achieve
the strongest possible security definition. The adversary could potentially use control of this ballot to improve its
probability of coercion.

We characterize the voting pattern of honest voters in terms of a probability distributionDn,nC
. This distribution

models the state of knowledge of the adversary about the intentions of these voters. Of course, the adversary generally
does not have perfect knowledge of the voting intentions of honest voters. (Indeed, as we explain below, imperfect
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adversarial knowledge is actually a requirement for meaningful coercion-resistance.) For a collection ofn voters
outside the control of the adversary – i.e., voters not subject to coercion – we characterize the view of the adversary
in terms of a probability distributionDn,nC

. We letφ be a symbol denoting a null ballot, i.e., an abstention, and
let λ denote a ballot cast with an invalid credential. ThenDn,nC

is a distribution over vectors(β1, β2, . . . , βn) ∈
(nC

⋃
φ

⋃
λ)n, i.e., over the set of possible ballot choices for an election plus abstentions and invalid ballots. For a

set ofn voting credentials{ski}, we letvote({ski}, PKT , nC , Dn,nC
, k2) denote the casting of ballots according to

distributionDn,nC
. In other words, a vector(β1, β2, . . . , βn) is drawn fromDn,nC

and voteβi is cast using credential
ski.

We are now ready to present an experimentc-resist that defines the game described above between an adversary
and a voter targeted for coercion. Recall thatk1, k2, andk3 are security parameters defined above,nV is the total
number of eligible voters for the election, andnC is the number of candidates, i.e., the size of the candidate slate.
We letnA denote the number of voters that may be completely controlled, i.e., corrupted by the adversary. We define
nU = nV − nA − 1. In other words, the number of uncertain votesnU equals the total number of honest votes, i.e.,
the number of possible votes, minus those coming from voters controlled by the attacker, minus the vote coming
from the voter the attacker is trying to coerce (in the experiment).

We consider a static adversary, i.e., one that selects voters to corrupt prior to protocol execution. We assume that
the adversary has a list of “voter names,” i.e., a roll of potential participating voters.

We let← denote assignment and⇐ denote the append operation, while % denotes the beginning of an annotative
comment on the experiment. Our experiment treats the case in which the adversary seeks to coerce a single voter;
extension of the definition to coercion of multiple voters is straightforward. The experiments defined here halt when
an output value is produced.

ExperimentExpc-resist
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A(voter names, “control voters”); %A corrupts voters
{(ski, pki)← register(SKR, i, k2)}nV

i=1; % voters are registered
(j, β)← A({ski}i∈V , “set target voter and vote”); %A sets coercive target
if |V | 6= nA or j 6∈ {1, 2, . . . , nV } − V or

β 6∈ {1, 2, . . . , nC} ∪ φ then % outputs ofA checked for validity
output ‘0’;

b ∈U {0, 1}; % coin is flipped
if b = 0 then % voter evades coercion

s̃k ← fakekey(PKT , skj , pkj);
BB ⇐ vote(skj , PKT , nC , β, k2);

else % voter submits to coercion
s̃k ← skj ;

BB ⇐ vote({ski}i 6=j,i 6∈V , PKT , nC , DnU ,nC
, k2); % ballots posted for honest voters

BB ⇐ A(s̃k,BB, “cast ballots”); %A posts toBB
(X , P )← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % election results are tallied
b′ ← A(X , P, “guessb”); % A guesses coin flip
if b′ = b then % experimental output determined

output ‘1’;
else

output ‘0’;

The adversaryA in the above experiment is quite powerful, being capable (whenb = 1) of complete coercion
of the targeted voter. In order to characterize the success ofA, we must compareA with a second adversaryA′.A′

is capable of coercion only within the framework of an ideal voting experimentc-resist-ideal. In other words,A′

characterizes the type of security against coercion that we would like to achieve inES.
The main feature we are aiming for in our ideal experimentc-resist-ideal is for A′ to learn nothing from the

private keys she acquires from corrupted players and from the coerced player. In particular,A′ cannot use private
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keys to perform active attacks. We causeA′ to express voting choices in a direct, ideal process;A′ cannot cast
ballots, but merely enumerates the choices of players in her control. Additionally,A cannot use private keys to learn
information about the voting behavior of honest players or the coerced player. Theonly information thatA′ gets is
the grand totalX of votes in the election.

One feature of our experiment is counterintuitive. Because this is an ideal experiment,A′ is alwaysgiven s̃k as
the key of the coerced player. This is becauseA′ should be unable to determine, on the basis of keying material,
from the situation in which coercion is successful or unsuccessful.

We require a function for the definition. We include here an ideal functionideal-tally that tallies the ballots posted
toBB in a special way. The functionideal-tally tallies in a normal manner all of the ballots cast by honest voters, i.e.,
prior to adversarial posting. The ballots cast byA′, however, are treated specially. In particular,ideal-tally determines
for each ballotB what the underlying private keyski is. If i 6∈ V , i.e., if the private key is not one assigned to one
of the corrupted players, then the corresponding vote is not counted. Additionally, any double vote is not counted,
i.e., ideal-tally performs the weeding of double votes that normally occurs during the tallying procedure. Finally,
ideal-tally does the following based on the value of the secret bitb. If b = 0, thenideal-tally does not count any
ballot cast (by the adversary) using private keys̃k. If b = 1, thenideal-tally does include in the final tally a ballot
cast usings̃k (excluding double votes).

Our definition ofideal-tally here assumes that every ballot has a unique corresponding private key. This is true
of most natural ballot structures (and true of our proposed scheme). This definition, of course, also assumes ideal
functionality in ideal-tally, namely the ability to extract private keys and plaintext votes from ballots. We do not
specify in our definition how this “oracle” power is achieved. In our proofs, we construct a simulator capable of
performing this functionality required fromideal-tally.

Note that althoughA′ receives the secret key of a coerced voter in our ideal experiment, this is really just a
technical step. This secret key in fact providesA′ with no information useful in voting, since the ideal function
ideal-tally ensures against misuse of keys; also, this secret key can provide no information useful in learning votes,
sinceA′ never seesBB.

We are now ready to present the experimentc-resist-ideal that characterizes the success ofA′.

ExperimentExpc-resist-ideal
ES,A,H (k1, k2, k3, nV , nA, nC)

V ← A′(voter names, “control voters”); %A′ corrupts voters
{(ski, pki)← register(SKR, i, k2)}nV

i=1; % voters are registered
(j, β)← A′(“set target voter and vote”); %A′ sets coercive target
if |V | 6= nA or j 6∈ {1, 2, . . . , nV } − V or

β 6∈ {1, 2, . . . , nC} ∪ φ then % outputs ofA′ checked for validity
output ‘0’;

b ∈U {0, 1}; % coin is flipped
if b = 0 then % voter evades coercion

BB ⇐ vote(skj , PKT , nC , β, k2);
s̃k ⇐ skj ;
BB ⇐ vote({ski}i 6=j,i 6∈V , PKT , nC , DnU ,nC

, k2); % ballots posted for honest voters
BB ⇐ A′(s̃k, {ski}i∈V , “cast ballots”); %A′ specifies vote choices
(X , P )← ideal-tally(SKT ,BB, nC , {pki}nV

i=1, k3); % election results are tallied
b′ ← A(X , “guessb”); % A′ guesses coin flip
if b′ = b then % experimental output determined

output ‘1’;
else

output ‘0’;
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Definition 1. We define an election schemeES ascoercion resistantif for any polynomially-bounded adversaryA,
any parametersn andnC , and any probability distributionDn,nC

, the quantity

Advc-resist
ES,A =

∣∣∣Succc-resist
ES,A (·)− Succc-resist-ideal

ES,A (·)
∣∣∣

is negligible in all security paramters.

Viewed intuitively, this definition means that in a real protocol execution, the adversary effectively learns nothing
more than the election tallyX. The adversary cannot learn any significant information from the protocol execution
itself, even when mounting an active attack.

3.1 The need for uncertain adversarial knowledge

Even if an election schemeES is coercion resistant by our definition, i.e.,|Succc-resist
ES,A (·) − Succc-resist-ideal

ES,A (·)|
is negligibly close to 0, some (thankfully small) degree of coercion remains possible for many natural distributions
Dn,nC

. In particular, in many settings, we may well haveSuccc-resist-ideal
ES,A (·) � 0. This seems counterintuitive,

but in fact reflects a critical observation: The degree of possible coercion resistance is bounded below by adversarial
uncertainty about the behavior of honest voters. This is true foranyelection scheme whatever.

For example, suppose that an adversary knows that a targeted voter aims to vote “Democrat” and that every other
voter will vote “Republican.” Then coercion isunavoidable. If a “Democrat” vote turns up, then the adversary will
necessarily know that the targeted voter has succeeded in registering a vote. Similarly, if the adversary is attempting
to coerce one voter in a given election and knows that all hundred of the other eligible voters will cast ballots, then
the adversary can mount an abstention attack straightforwardly. The adversary in this case simply threatens the voter
in the case that the total tally for the election is one hundred and one.

Viewed another way, coercion resistance depends on “noise” or statistical uncertainty in the adversary’s view
of how honest voters will vote. In other words, it hinges on the distributionDn,nC

. The more entropy inDn,nC
,

the better the level of attainable coercion resistance.Dn,nC
serves the purpose in our experiments of defining the

distribution of the “noise” that conceals the behavior of voters targeted by the adversary for coercion.
To our benefit, it is natural to expect that in a real-world election an adversary can obtain only fragmentary

knowledge about the likely behavior of voters. An adversary may know, for instance, that most of the voters in a given
district will vote “Republican,” but probably won’t know exactly how many. This means that coercion-resistance is
a viable possibility. (Additionally, it is possible for voting authorities – or indeed any entity – intentionally to inject
“chaff” in the form of blank and invalid ballots into an election system.)

4 A Coercion-Resistant Election Protocol

We are now ready to introduce our protocol proposal. We begin by describing the cryptographic building blocks we
employ. Where appropriate, we model these as ideal primitives, as discussed in appendix D.

Threshold cryptosystem with re-encryption: Our first building block is a threshold public-key cryptosystemCS
that permits re-encryption of ciphertexts with knowledge only of public parameters and keys. The private key for
CS is held byT in our construction.

To describe our aim in the ideal, we would like any ciphertextE to be perfectly hiding. We would like decryption
to be possible only by having a majority of players inT agree on a ciphertext to be decrypted. We model this latter
ideal property as in terms of a special decryption oracle denoted by˜DEC. We assume further that any decryption
performed by ˜DEC is publicly verifiable.

Selected cryptosystem:At first El Gamal [23] may seem a natural choice of cryptosystem for our purposes. How-
ever this solution is not completely satisfying in our setting for the following reason.

Our construction will be proved to achieve coercion resistance under theDecisional Diffie-Hellman assumption
(details of this proof can be found in appendix D). The basic idea of our proof is very simple: One assumes that
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there is an adversaryA that has some advantageµ, in distinguish experimentc-resist-realfrom experimentc-resist-
ideal, and constructs another algorithmS which, receives on input a challenge for the decisional Diffie-Hellman
problem [7, 44](ga, gb, gc), and “using”A, should be able to “solve” the challenge with a related advantageµ′.
Now, as it will become apparent in section D, in order for our proof to go through correctly we require the simulator
to be able to correctly decrypt a given ciphertext even when this ciphertext is constructed from the received challenge.
Unfortunately basic El Gamal does not allow this. Indeed, if one encrypts a messagem as(ga, gcm) the simulator
cannot decrypt simply because it does not know the discrete logarithm ofgc in basega.

To overcome this problem we adopt a modified version of the basic El Gamal scheme which can be seen as a
simplified version of the well known Cramer-Shoup [17] cryptosystem (but only providing semantic security with
respect to a passive adversary). We letG denote the algebraic group over which we employ this modified El Gamal
(which we’ll simply call M-El Gamal), andq denote the group order. For semantic security, we require that the
Decision Diffie-Hellman assumption hold overG. The public key is(g1, g2, h) whereg1, g2, h are elements inG.
The secret key isx1, x2 ∈ Zq such thath = gx1

1 gx2
2 .

To encrypt m one simply computes(A, B, C) = (gr
1, g

r
2, h

rm) for randomr. Decryption is similar to plain El
Gamal: one computesm = C/(Ax1Bx2). One can easily verify (see [17]) that this variant allows correct decryption
even when ciphertexts are constructed from the received challenge.

We let∈U here and elsewhere denote uniform, random selection from a set. A ciphertext in M-El Gamal on
messagem ∈ G takes the form(α, β, γ) = (mhr, gr

1, g
r
2) for r ∈U Zq . For succinctness of notation, we sometimes

let Eh[m] denote a ciphertext on messagem under public keyh (assuming thatg1 andg2 are considered public
parameters).

Further details on the security of the scheme may be found in appendix E. An important feature of the M-El
Gamal cryptosystem is that, exactly as the original version, it may be easily implemented in a threshold setting. In
other words, the private keysx1, x2 may be distributed such that decryption can be performed by any quorum of share
holders, without leakage of additional information. We exploit this distributed form of M-El Gamal in our proposed
election scheme. As explained above, rather than focusing on a particular embodiment, we model the process by a
decryption oracle denoted by ˜DEC. We refer the reader to appendix E and to [12] for further discussion of threshold
decryption in (plain) El Gamal.

Plaintext Equivalence Test (PET): A plaintext equivalence test(PET) [26, 31] is cryptographic primitive that
operates on ciphertexts in a threshold cryptosystem. The input to PET is a pair of ciphertexts; the output is a single
bit indicating whether the corresponding plaintexts are equal or not. PET may be realized as an efficient distributed
protocol that reveals no additional, non-negligible information about plaintexts. For a detailed description of efficient
methods to perform this verification, along with proofs of the properties of the construction, see [31]. Rather than
focusing on a specific embodiment of PET, we model the ideal properties of the primitive by means of an oracle
denoted by ˜PET , and with the property of public verifiability.

Mix network: A (re-encryption) mix network (MN ) is a distributed protocol that takes as input an ordered set
E = {E1, E2, . . . , Ed} of ciphertexts generated in a cryptosystem like El Gamal that permits re-encryption. The
output ofMN is an ordered setE′ = {E ′

π(1), E
′
π(2), . . . , E

′
π(d)}. Here,E ′

π(i) is a re-encryption ofEi, while π is
a uniformly random, secret permutation. This is to say thatMN randomly and secretly permutes and re-encrypts
inputs. Thus, the special privacy property of a mix network is this: An adversary cannot determine which output
ciphertext corresponds to which input ciphertext, i.e., which inputs and outputs have common plaintexts. Stated
another way, an adversary cannot determineπ(j) for any j with probability non-negligibly better than a random
guess. A number of good mix network constructions have been proposed that offer privacy and robustness against
a static, active adversary capable of corrupting any minority of then players (servers) performing the mix network
operation, e.g., [22] and Neff [34]. These constructions can offer the additional property ofverifiability. In other
words, a proof is output that is checkable by any party and demonstrates, relative toE and the public key of the
ciphertexts thatE is correctly constructed. It is convenient to conceptualizeMN as an ideal primitive in terms of an
oracleM̃N for MN with the property of public verifiability.
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Proofs of knowledge: As sketched above, we use NIZK (non-interactive zero-knowledge) proofs of knowledge [6]
in a number of places. We do not describe these tools in detail, as they are standard in the literature. Instead, we
refer the reader to, e.g. [15], for discussion of construction and logical composition of such protocols, and [11] for
notation and discussion of efficient realization. As usual, our use of NIZK proofs requires the random oracle model
in security proofs for our scheme [4].

4.1 Our proposed protocol

Setup: The key pairs(SKR, PKR) and(SKT , PKT ) are generated (in an appropriately trustworthy manner, as
described above), andPKT andPKR are published along with all system parameters.

Registration: Upon proof of eligibility from Vi, the registrarR generates and transmits toVi a random string
σi ∈U G that serves as the credential of the voter.R then addsSi = EPKT [σi] to the voter rollL.5 The voter rollL
is maintained on the bulletin boardBB and digitally signed as appropriate byR.

We assume the trustworthiness ofR as explained above. Still, if desired,R can furnishVi with a proof thatSi

is a valid ciphertext onσi. Where erasure of secrets by voters is not automatic, adesignated verifier proof[28] is
needed for coercion resistance. We note that credentials may be used for multiple elections.

Candidate-slate publication: R or some other appropriate authority publishes a candidate slateC containing
the names and unique identifiers inG for nC candidates, with appropriate integrity protection. This authority also
publishes a unique, random election identifierε.

Voting: Voter Vi casts a ballot for candidatecj comprising M-El Gamal ciphertexts(E(i)
1 , E

(i)
2 ) respectively on

choicecj and credentialσi. In particular, fora1, a2 ∈U Zq:

E
(i)
1 = (α1, α

′
1, β1) = (ga1

1 , ga1
2 , cjh

a1), E(i)
2 = (α2, α

′
2, β2) = (ga2

1 , ga2
2 , σih

a2).

The first is a ciphertext on the candidate choice of the voter, the second a ciphertext on the credential of the voter.
Additionally, Vi includes NIZK proofs of knowledge ofσi andcj, and also a NIZK proof thatcj ∈ C, i.e., that

cj represents a valid candidate choice. The latter can be accomplished, for example, using a disjuctive proof that
the ciphertext constitutes a valid encryption of a candidate choice inC. It is needed because an invalid candidate
choice is like a write-in: It can effectively serve as a receipt. These NIZK proofs, which we denote collectively by
Pf , may be accomplished efficiently using standard techniques. As is standard practice, the challenge values forPf
are constructed using a call to a cryptographic hash function, modeled in our security analysis by a random oracle

˜OW . Input to ˜OW for these challenge values includesε, E1, E2 and commitment values required for realization of
the NIZK proofs.Vi postsBi = (E1, E2, Pf) to BB via an anonymous channel.

Note: This is not a receipt! By our definitions, the adversary may not know whether or not a given voter has even
posted a vote. The adversary therefore can’t simply coerce by requesting decryption information.

Tallying: To tally the ballots posted toBB, the authorityT performs the following steps:

1. Checking proofs:T verifies the correctness of all proofs onBB. Any ballots with invalid proofs are discarded.
For the valid, remaining ballots, letA1 denote the list of ciphertexts on candidate choices (i.e., theE1 cipher-
texts), and letB1 denote the list of ciphertexts on credentials (i.e., theE2 ciphertexts).

2. Eliminating duplicates: The tallying authorityT performs pairwise PETs on all ciphertexts inB1, and removes
duplicates according to some pre-determined policy, using e.g., order of postings toBB. When an element is
removed fromB1, the corresponding element (i.e., that with the same index) is removed fromA1. We letB′

1

andA′
1 be the resulting “weeded” vectors. This is equivalent to retaining at most one ballot per given credential.

5 In our definitionsabove, we use the common terminology of private and public keys – with correspondingnotationski andpki – to describe
the credentials associated with voters. Shifting from a general exposition to our specific protocol, we now useσi instead ofski to denote a
voter credential, andSi instead ofpki to denote a public representation thereof. This change of notation aims to reflect the fact that voters
do not employ a conventional form of public-key authentication in our scheme.
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3. Mixing: T appliesMN to A′
1 andB′

1 (using the same, secret permutation for both). LetA2 andB2 be the
resulting lists of ciphertexts.

4. Checking credentials:T applies mix networkMN to the encrypted listL of credentials from the voter roll.T
then compares each ciphertext ofB2 to the ciphertexts ofL using PET.T retains a vectorA3 of all ciphertexts
of A2 for which the corresponding elements ofB2 match an element ofL according to PET. This step achieves
the weeding of ballots based on invalid voter credentials.

5. Tallying: T decrypts all ciphertexts inA3 and tallies the final result.

How to cheat a coercer: One possible implementation of the functionfakekey is simply for the coerced voterVi to
select and reveal a random group elementσ̃i, claiming that this is the credentialσi. (If coerced multiple times, the
voterVi would release the same valueσ̃i.) We discuss the process of faking voting keys in more detail in appendix C.

Due to space constraints, we offer further discussion of security and a formal security proof in appendix D.
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A Definitions of Correctness and Verifiability

Correctness: We first consider the property of correctness. This property is in fact twofold: First, it stipulates that
an adversaryA cannot pre-empt, alter, or cancel the votes of honest, i.e., voters that are notcontrolled; Second,
it stipulates thatA cannot cause voters to cast ballots in such a way as to achieve double voting, i.e., use of one
credential to vote multiple times, where more than one vote per credential is counted in the tally.

In our experiment characterizing correctness, we give the adversary powers she does not normally have. Namely,
apart from getting to select a setV of voters she will control, we also allow her to choose the candidate-slate size
nC , and to choose what votes will be cast by voters she does not control. The latter voters will indeed vote according
to the adversary’s wish – but only for the purposes of our thought experiment defining correctness, of course. If the
adversary still cannot cause an incorrect tally to be computed (i.e., one not corresponding to the votes cast), then the
scheme has the correctness property even in the real-world scenario in which the adversary has less power. The aim
of the adversary is to cause more than|V | ballots to be counted in the final tally on behalf of the controlled voters, or
to alter or delete the vote of at least one honest voter. (This corresponds to the the condition that: (1) The verification
of the tally succeeds, and (2) That either a vote is “dropped” or “added”.) Our definition assumes implicitly that
tally is computed correctly by the authorityT . (The next property we consider, namely verifiability, addresses the
possibility that this is not so.) In what follows, we let〈Y 〉 denote the multiset corresponding to entries in the vector
Y , and|Y | denote the cardinality of setY .
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ExperimentExpcorr
ES,A(k1, k2, k3, nC , nV )

{(ski, pki)← register(SKR, i, k2)}nV
i=1; % voters are registered

V ← A({pki}nV
i=1, “choose controlled voter set”); %A corrupts voters

{βi}i 6∈V ← A(“choose votes for uncontrolled voters”); % A chooses votes for honest voters
BB ⇐ {vote(ski, PKT , nC , βi, k2)}i 6∈V ; % honest voters cast ballots
(X, P )← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % honest ballots are tallied
BB ⇐ A(“cast ballots”,BB); %A posts ballots toBB
(X ′, P ′)← tally(SKT ,BB, nC , {pki}nV

i=1, k3); % all ballots are tallied
if verify(PKT ,BB, nC , X ′, P ′) = ‘1’ and % does functionverify accept?

({βi} 6⊂ 〈X ′〉 or |〈X ′〉| − |〈X〉| > |V |) then % didA successfully tamper?
output ‘1’;

else
output ‘0’;

We say thatES possesses the property of correctness if for all polynomial-time adversariesA, it is the case that
Succcorr

ES,A(k1, k2, k3, nV ) is negligible.

Verifiability: As explained above, an election system has the property of correctness if computation oftally always
yields a valid tabulation of ballots. Given the ability of an adversaryA, however, to corrupt some number of au-
thorities amongT , we cannot be assured thattally is always computed correctly. The property of verifiability is the
ability for any player to check whether the tallyX has been correctly computed, that is, to detect any misbehavior
by T in applying the functiontally.

A strong security definition for verifiability is appropriate given the high level of auditability required for trust-
worthy elections. Such a definition considers an attackerA capable of controllingall of the voters and tallying
authorities inT . This attacker seeks to construct a set of ballots onBB and a corresponding tallyX and proofP
of correct tabulation such that the proof is accepted byverify, but the tally is in fact incorrect. By an incorrect tally,
we mean one in which all of the valid ballots of a particular voter (i.e., corresponding to a particular credential) are
discounted, or else where multiple votes are tallied that could have been generated by the same voting credential.
Our experiment characterizing verifiability is as follows.

ExperimentExpver
ES,A(k1, k2, k3, nC , nV )

{(ski, pki)← register(SKR, i, k2)}nV
i=1; % voters are registered

(BB, X, P )← A(SKT , {(ski, pki)}nV
i=1, “forge election”); %A concocts full election

(X ′, P ′)← tally(SKT ,BB, nC , {pki}nV
i=1, k3); % tally is taken onBB

if X 6= X ′ % doesA’s tally differ from correctBB tally?
andverify(PKT ,BB, nC , X, P ) = ‘1’ then % does functionverify accept?

output ‘1’;
else

output ‘0’;

We say thatES possesses the property of verifiability if for all positive integersnV and all adversariesA with
polynomial running time, the quantitySuccver

ES,A(k1, k2, k3, nV ) is negligible. A technical strengthening of this
definition and that for correctness is possible, and discussed in the next section, appendix B, of this paper.

Another aspect of verifiability that we do not formally define, but do mention here and incorporate into our
proposed protocol is that of verification against voter rolls. In particular, it may be desirable for any election observer
to check that credentials were assigned only to voters whose names are on a published roll. This is not technically a
requirement if we rule out corruption of playersR, but may still be desirable for high assurance of election integrity.
Our definitions can be modified accordingly.
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B Remark on strong verifiability

We set forth our definitions of correctness and verifiability in appendix A to meet the minimal requirements for a
fair election and to achieve some measure of conceptual simplicity. These definitions are adequate for most election
scenarios, but have a technical deficiency that may be of concern in some cases. In particular, our definitions allow
for the possibility that a voter controlled byA casts a ballot corresponding to voteβ, but that the ballot gets counted
as a vote forβ′. SinceA can choose the vote cast by a controlled voter in any case, this technical deficiency only
means thatA can potentially cause the votes ofcontrolled voters onlyto change in the midst of the election process.
It does not provideA with control of a larger number of votes. Most importantly, we note that this definitional
weakness does not apply to our proposed protocol, which meets the stronger definition we now set forth.

Nonetheless, one can envisage some (somewhat artificial) scenarios in which stronger guarantees may be desir-
able. For example,Amight have the aim of causing the victor in an election to win by the slimmest possible margin.
In this case, ifA controls a majority ofT , thenAmight seek to decrypt all of the ballots cast in an election and alter
the votes of controlled voters so as to favor the losing candidate.

We discuss now how our definition of verifiability may be modified to discount the possibility of this type of
attack. (Analogous modifications may be made to the definition of correctness.) In particular, we can require thatP
be a proof that every tallied vote corresponds uniquely to a credential for which a valid ballot has been cast. For this,
we require a natural technical restriction onvote. Let 〈vote(·)〉 denote the set of possible outputs for the randomized
functionvote on a particular input. We require that an output ballot be wholly unambiguous with respect to both the
voteβ and the credentialsk. In other words, we require〈vote(sk0, PKT , nC , β0, k2)〉

⋂
〈vote(sk1, PKT , nC , β1, k2)〉 =

φ if β0 6= β1 or sk0 6= sk1.
To achieve our strengthened definition of verifiability, we alter experimentExpver

ES,A(k1, k2, k3, nV ) such that if
the following conditions 1 and 2 are met, then the output of the experiment is ’1’. Otherwise it is ’0’.

1. verify(PKT ,BB, nC , X, P ) = ’1’
2. For every injective mappingf : 〈X〉 → ZnV

one of two conditions holds:
(a) ∃B : B ∈ BB, B ∈ 〈vote(ski, PKT , nC , β, k2)〉, ∀jf(j) 6= i
(b) ∃β ∈ X : f(β) = i, ∀B ∈ BB, B 6∈ 〈vote(ski, PKT , nC , β, k2)〉

Conditions 2(a) and 2(b) here respectively specify that the adversary has successfully defeated the verifiability of
the system either by causing all of the valid ballots associated with a particular credential not to be counted or else
enabling multiple votes to be tallied for a single credential.

Given use of a verifiable mix network, our proposed protocol meets this stronger security definition for verifia-
bility.

C The Faking of Voting Keys

We provide some more detail here on the process whereby a voter fakes a voting credential in our proposed proto-
col. Upon receiving a claimed credentialσ̃i, the adversary would like to verify if it is correct. Let us consider the
possibility of doing so under each of our three possible assumptions on the registration phase discussed in the body
of the paper; in doing so, recall that we always assume that the adversary can corrupt only a minority of servers in
T , and so, will not be able to decrypt any of the semantically secure encryptions of credentials.

1. Assume that there is a mechanism forcing erasure of voter information no longer needed at the end of the
registration phase, and that only a minority of servers inR may be corrupted. At the end of the registration
process, each voter will erase information specifying what part of the transcript leading to the credentialσi he
got from what registration server. Without proofs or transcripts from individual servers ofR, it is not possible
for the adversary to verify the correctness ofσ̃i.

2. Assume that the adversary cannot corruptanyserver inR. As mentioned, the registration servers may if desired
use designated verifier proofs to prove to each voter that the share they send is authentic (i.e., will be part of
the recorded transcriptSi). While the voter will be convinced of these proofs, the adversary will not; in fact, he
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cannot distinguish between real such proofs and proofs simulated byVi. Therefore,Vi can convincingly release
full simulatedtranscripts from the registration phase, corresponding to a credentialσ̃i.

3. Assuming that the user knows what (minority of) servers inR are corrupted, but is not necessarily able to erase
data, he can present the adversary with registration transcripts that are consistent with the view of the servers
he knows to be corrupted, but inconsistent (in terms of the real share ofσi) with the view of the servers that
are not. The latter transcripts will be accompanied by simulated designated verifier proofs. Since the adversary
may only corrupt a minority of servers inR, and a majority is required to compute the credentialσi, there will
be at least one share ofσi thatVi can change to obtain a fake credentialσ̃i 6= σi, without the detection of the
adversary.

D Proving Coercion-Freeness

In this section, we provide a detailed outline for proof of the property of coercion-freeness in our proposed elec-
tion protocol. (We do not consider correctness or verifiability here, as these are more standard properties, and
the associated proofs are more straightforward.) For the purposes of this proof, we assume the use of the M-El
Gamal cryptosystem over a preselected groupG of orderq. The coercion-freeness of our scheme is dependent on
the Decision-Diffie Hellman (DDH) assumption onG. Briefly stated, this assumption states that no algorithm with
running-time polynomial in the security parameters forG can distinguish between the two distributionsD andD′

with non-negligible probability: Here,D is the distribution of tuples of the form(y1, g1, y2, g2), whereg1, g2 ∈U G,
y1 = gx

1 , andy2 = gx
2 for x ∈U Zq; i.e., the pair(y1, g1) and(y2, g2) are related by a common exponent.D′ is

the distribution of random tuples, i.e., tuples of the form(y1, g1, y2, g2), wherey1, g1, y2, g2 ∈U G. For detailed
treatment of this assumption (expressed in an alternative, equivalent form), see, e.g., [7].

D.1 Assumptions

As explained above, we simplify our analysis by assuming ideal constructions for a number of components in our
election protocol. Our aim in doing so is twofold: (1) Our protocol is flexible enough to accommodate a range of
cryptographic building blocks from the literature and (2) We wish to retain a focus on the conceptual and definition
elements of our paper, and not on protocol details. Hence, we assume the availability of oracles for the four fol-
lowing cryptographic operations in our protocol: mixing, plaintext equivalence testing (PET), threshold ciphertext
decryption, and calls to the one-way or hash function required for NIZK proofs. As in the main body of the paper,
denote these oracles respectively bỹMN, ˜PET, ˜DEC and ˜OW . Although the functioning of these oracles should
be clear from our protocol description, we present it again here:

– The oracleM̃N performs exactly the same function as a mix network. It accepts as input an ordered listE =
{E1, E2, . . . , Ed} of ciphertexts under the public keyPKT of the tallying authorities. Its output onE is an
ordered setE′ = {E ′

π(1), E
′
π(2), . . . , E

′
π(d)} for a secret, random permutationπ, whereE ′

π(i) represents a re-
encryption of ciphertextEi.

– The oracle ˜PET takes as input a pair of ciphertexts(E, E ′) underPKT . It outputs a ‘1’ if E andE ′ have
identical corresponding plaintexts, and outputs ‘0’ otherwise.

– The oracle ˜DEC takes as input a ciphertextE underPKT . It outputs the corresponding plaintext.
– The oracle ˜OW takes as input a query value in{0, 1}∗, and outputs a random value{0, 1}k4, wherek4 is a

security parameter (that may depend onk1, k2 andk3). The output of ˜OW is consistent, in the sense that a
given input value always yields the same output value. This oracle may be viewed as the ideal embodiment of a
cryptographic hash function.

Each of these oracles accepts publicly viewable input from all participating authorities (talliers). Each tallier
may be thought of as having a publicly readable tape to which it may write input values for a given oracle; each
tape contains a write portion for each time-step of the protocol, which we assume to be synchronous. At the end
of a given timestep, an oracle produces output according to the following procedure. If a majority of talliers have
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furnished identical non-null valuesZ on their tapes, then the oracle processes inputZ and yields the corresponding
output. If there is no non-null majority input, then the oracle simply outputs the special symbol⊥. The requirement
for majority input ensures that the protocol execution is determined by honest players, i.e., effectively reducesA to
an honest-but-curious adversary once the ballot-posting phase for the election is complete.

We additionally assume for simplicity that key setup and registration are performed by a trusted entity. Our
proofs may be extended to accommodate more general assumptions in which these two processes are performed in
a distributed manner.

D.2 Proof overview

Recall that our definition of coercion-freeness revolves around a game played between an adversaryA and a voter
targeted for coercion. The aim ofA is to guess which of the following two behaviors the voter has adopted during
the execution of an election systemES: (1) The voter has divulged valid voting credentials and abstained from
voting or (2) The voter has divulged fake credentials and cast a ballot. In order to demonstrate thatES possesses
coercion-freeness, we must show thatA can guess successfully with probability only negligibly better than a weaker
adversaryA′ interacting with an ideal election system. This adversaryA′ is passive, and its only input is the final
tally X of votes cast by honest voters in the completed election plusΓ , the number of ballots eliminated for invalid
associated credentials.

Our proof strategy is to construct a polynomial-time algorithmS that takes a set of ballotsW of honest voters
and simulates the election systemES in the experimentc-resist. If the simulation is indistinguishable toA from use
of the true functional components ofES, andA cannot cause the simulation to deviate from correct execution, then
we see thatA learns nothing more than the correct election tallyX and the number of bad ballotsΓ . This means
in turn thatA is no more powerful than the ideal adversaryA′ characterized in our experimentc-resist-ideal. Thus
ES is coercion-free.

The inability of the adversary to cause deviation in the experiment from correct execution hinges on our oracle
definitions, which require majority agreement on input values. Given this, we show that the simulation produced by
S is indistinguishable byA from a real experimental execution ofc-resist under the DDH assumption onG. Our
proof relies on the semantic security of M-El Gamal (see appendix E). In particular, we make use of the following,
useful fact implied by the DDH assumption: A poly-time adversary that selects a plaintextm cannot distinguish
between the distribution of M-El Gamal ciphertexts onm (A1, A2, B) and the distribution of random triplets inG
with non-negligible probability (in the security parameters forG). In consequence of this observation, it is possible
for S to simulate the election process by substitutingrandom ciphertexts, i.e., random triplets of group elements,
for the real ciphertexts that would be processed in a true execution of the experimentc-resist. In particular,S can
simulate the ballots of voters not controled byA with a list of random ciphertexts. Additionally,S can simulate the
oracleM̃N by setting its simulated output to a list of random ciphertexts. Under the DDH assumption,A cannot
distinguish between the random ciphertexts furnished byS and the ciphertexts that would be processed in a true
execution ofES.

D.3 The simulation

We now outline the steps of the simulation ofc-resist executed byS. Throughout the simulation, according to the
usual technique in the literature,S maintains state for the simulated oraclẽOW so as to ensure consistency of output
values. LetW ∈ DnU ,nC

represent a set of ballots input into the simulation as representing the posting of honest
voters. At the very beginning the simulator receives a quadruple(g1, g2, h1, h2) which is either a Diffie-Hellman
quadruple or a random one, according to some hidden bitd. More formally,d = 1 if the quadruple is a DH one and
d = 0 otherwise. The goal of the simulator is to guess which situation is dealing with.

1. Setup:S chooses uniformly and at random two elementsx1, x2 ∈U Zq and setsh = gx1
1 gx2

2 mod p.S publishes
the public key(g1, g2, h) and also a randomized candidate slateC = {ci}nC

i=1 such thatci = gri
1 for ri ∈U Zq.

(For technical reasons in our proof, we require that candidate identifiers here be random, rather than comprising
the set{1, 2, . . . , nC}.)
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2. Registration: S simulates the registrarR, generating a set of credentials{σi = gsi
1 } for si ∈U Zq. For the

encrypted credential listL0, the simulatorS publishes a list ofnV ciphertexts. These chipertexts are generated
using the received Diffie-Hellman challenge as follows. For eachσi, S chooses a randomωi ∈ Zq and sets
(Li,1 = hωi

1 , Li,2 = hωi
2 , Li,3 = hωix1

1 hωix2
2 σi).

3. Adversarial corruption: The adversaryA selects a setV of nA voters to corrupt, as well as a voterj for
coercion and a target voteβ. If any of these selections are invalid, i.e., ifV 6= nA or j 6∈ V − V or β 6∈ C

⋃
φ,

then the simulation is terminated.
4. Coin flip: A coin b ∈U {0, 1} is flipped.
5. Credential release:S givesA the set of credentials{σi}i∈V as well as a credentialσ for the targeted voterj.

If b = 1, thenS givesσ = σj ; otherwiseσ is a random string.
6. Honest voter simulation: For each ballot element inW , the simulator posts a ballot consisting of two cipher-

texts(αi,1, α
′
i,1, βi,1), (αi,2, α

′
i,2, βi,2). S also furnishes the associated NIZK proofs of the form specified above.

Since the associated challenges value comes from̃OW , and may therefore be predetermined byS, the NIZK
proof may be simulated using standard techniques. LetA0 be the list of these ballots. LetA∗ be the associated
set of plaintext ballot choices inW for which the associated credential is correct, i.e., excludingλ elements.
The simulator creates the ciphertexts above as follows. For each ballot element inW , S chooses two elements
ri, ki at random inZq and sets(αi,1 = hri

1 , α′
i,1 = hri

2 , βi,1 = hrix1
1 hrix2

2 cj), (αi,2 = hki
1 , α′

i,2 = hki
2 , βi,2 =

hkix1
1 hkix2

2 σi)
7. Adversarial ballot posting: The adversaryA posts a set of ballotsB0 and associated NIZK proofs.
8. Decryption of ballots posted by the adversaryS checks the NIZK proofs inB0. Let B1 be the list of ballots

with correct proofs. For each ballot inB1 and each credential in{σi}i∈V
⋃

σj , the simulator decrypts using his
own private key (see above).

9. Tallying simulation: S simulates the behavior of honest tallying authorities. Since these are a majority, any de-
viating behavior by tallying authorities in the control ofAmay be ignored. This part of the simulation proceeds
as follows:

(a) Proof checking: Let E0 denote the combined list of input ballotsA0 andB0. S simulates the behavior
of honest tallying authorities in rejecting all ballots with invalid associated NIZK proofs. LetE1 be the
resulting ballot list.

(b) Eliminating duplicates: Since no mixing has yet occurred,S may simulate the elimination of duplicate
ballots using its own decryption key. LetE2 be the resulting ballot list.

(c) Mixing: S simulates the oracleM̃N as applied toE2 by outputting an equal-length listE3 of random
ciphertext triples. Likewise,S simulates the mixing ofL0 by outputtingan equal-lengthed listL1 of random
ciphertexts.

(d) Checking credentials:S simulates the process of credential checking. In a true protocol execution, this
would involve sequential comparison using̃PET between each ballot inE3 (more precisely, the credential
ciphertext therein) and the ciphertexts inL1. Either a match is found, in which case a ballot is deemed to
be based on a valid credential, or else the listL1 is exhausted, and the ballot is rejected.
S simulates the output of ˜PET for this phase of the protocol using its own decryption key as before. Let
E4 be the resulting ballot list.

(e) Decryption: This is done straightforwardly.

Now if the adversary outputs a guess bitb′ the simulator returnsb′ as his own guess for the decisional Diffie-
Hellman challenge.

Observe that if the simulator’s input is a Diffie-Hellman triplet (that isd = 1) then the simulation above is
perfectly indistinguishable from the experimentExpc-resist

ES,A,H .
As a matter of fact, assumingg1 = g, g2 = ga, h1 = gb, h2 = gab for someg, any ciphertext of the form

(αi,1 = hri
1 , α′

i,1 = hri
2 , βi,1 = hrix1

1 hrix2
2 m) is actually a valid one. Indeedhri

1 = gbri = gbri
1 , hri

2 = gabri = gbri
2

andhrix1
1 hrix2

2 m = gbrix1gabrix2m = gbrix1
1 gbrix2

2 m = hbrim.
This means that

Pr[S = 1|d = 1] = Pr[Expc-resist
ES,A,H(V) = 1] = Succc-resist

ES,A (V)
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where we denoted withV the view of the adversary.

On the other hand if the simulator’s input is not a Diffie-Hellman triplet (that isd = 0) then the view produced
by the simulation above does not give any information (in a strong information theoretic sense) about the votes
posted by the honest parties. This is because, assumingg1 = g, g2 = ga, h1 = gb, h2 = gc for somec ∈U Zq,
one has that a ciphertext of the form(αi,1 = hri

1 , α′
i,1 = hri

2 , βi,1 = hrix1
1 hrix2

2 m) actually “masks” the message

m perfectly. Indeedhri
1 = gbri = gbri

1 , hri
2 = gcri = gc′ri

2 andhrix1
1 hrix2

2 m = gbrix1gcrix2m = gbrix1
1 gc′rix2

2 m =
gbrix1
1 gbrix2

2 gc′′rix2
2 m = hbrigc′′rix2

2 m.
This means that, in this case, the probability that the simulator outputs one is equal to the probability that the

adversary outputs one in experimentExpc-resist-ideal.
More formally

Pr[S = 1|d = 0] = Pr[Expc-resist-ideal
ES,A,H (V) = 1] = Succc-resist-ideal

ES,A (V)

This means that
Advddh

S = |Pr[S = 1|d = 1]− Pr[S = 1|d = 0]| = Advc-resist
ES,A

under the Decisional Diffie-Hellman Assumption this quantity is negligible.

E Some details on primitives

El Gamal: Recall that we letG denote the algebraic group over which we employ El Gamal, andq denote the
group order. For semantic security, we require that the Decision Diffie-Hellman assumption hold overG [7, 44]. A
public/private key pair in El Gamal takes the form(y(= gx), x), wherex ∈U Zq. We let∈U here and elsewhere
denote uniform, random selection from a set. The private keyx may be distributed among thenT players inT
using(t, nT )-Shamir secret sharing [43] overGF [q], for t > nT /2. This private key may be generated by a trusted
third party or via a computationally secure simulation of this process [24]. Each player then holds a public/private
key pair (yi(= gxi), xi), wherexi is a point on the polynomial used for the secret sharing. A ciphertext in El
Gamal on messagem ∈ G takes the form(α, β) = (myr, gr) for r ∈U Zq. For succinctness of notation in the
body of the paper, we sometimes letEy[m] denote a ciphertext on messagem under public keyy. To re-encrypt
a ciphertext(α, β), it suffices to multiply it pairwise by a ciphertext onm = 1, i.e., to compute a new ciphertext
(α′, β′) = (yr′α, gr′β) for r′ ∈U Zq .

To decrypt a ciphertext(α, β), the plaintextm = α/βx is computed. To achieve a threshold decryption of
ciphertext(α, β), each active playeri publishes a decryption shareβi = βxi . The valueβx, and thusm, may be
computed using standard LaGrange interpolation. Playeri may prove the correctness of its share using an NIZK
proof of the formPK{s : βi = βs ∧

ui = gs} – essentially two Schnorr identification proofs [40] with conjunction
achieved using techniques described in, e.g., [15]. We omit many details in this description regarding the scheduling
of these operations and the use of commitments to avoid adversarial bias. (The reader is referred to, e.g., [12, 24] for
some discussion of these issues in relation to key generation.)

Modified El Gamal: As mentioned before our modified version of the El Gamal cryptosystem can be seen as a
simplified version of the Cramer-Shoup [17], method. It is rather straightforward to prove that the scheme is actually
semantically secure under the decisional Diffie-Hellman assumption. The argument closely follows the one presented
in [17]. Here we provided a sketched version of such an argument. Imagine there exists a probabilistic polynomial
time algorithmA which can break the semantic security of the proposed scheme. Then our goal is to describe a
different algorithmS (a simulator) which usesA to break the decisional DH problem. So assumeS receives on
input a quadruple(g1, g2, h1, h2) and has to determine if this is a DDH quadruple or not.S constructs the public key
(for the M-El Gamal scheme) as prescribed by the key generation algorithm, i.e. it choosesx1 andx2 at random and
setsh = gx1

1 gx2.
Encryption and decryption remain unchanged
Next when the adversary comes up with the two messagesm0, m1 he wants to be challenged onS proceeds as

follows. It flips a random (private) bitb, and encryptsmb as follows
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(hkx1
1 hkx2

2 m, hk
1, h

k
2)

(wherek is a random value)
Note that if the given quadruple is a DH one the ciphertext has the right distribution. This is becausehk

1 =
gk′
1 andhk

2 = gk′
2 for somek′ andhx1

1 hx2
2 )k = hk′

(for the samek′)
If, on the other hand, the given quadruple is not a DH one then it is easy to check that theA gains no information

at all about the encrypted message (this is because this time to decrypt adv has to know the secret exponentsx1 and
x2 which remains information theoretically hidden by h).

Mix networks: As explained above, there are many good choices of mix networks for our scheme. The examples
with the strongest security properties are the constructions of Furukawa and Sako [22] and Neff [34]. Both of these
employ El Gamal as the underlying cryptosystem, i.e., an input ciphertextEi = (α, β) = (myk, gk) for some
public keyy and published generatorg. Security in these constructions is reducible to the Decision Diffie-Hellman
assumption and a random-oracle assumption on a hash function. We also note that the security of these and most
other mix network constructions relies on a second inputP = {P1, P2, . . . , Pd}, wherePi is an NIZK proof of
knowledge of the plaintext forEi. This serves the purpose of rendering the cryptosystem chosen-ciphertext-attack
secure while still permitting re-encryption.


