
Millimix: Mixing in Small Batches

Markus Jakobsson1 and Ari Juels2

1 Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974, USA
E-mail: markusj@research.bell-labs.com

2 RSA Laboratories
RSA Security, Inc.

Bedford, MA 01730, USA
E-mail: ajuels@rsasecurity.com

Abstract. A mix network is a cryptographic construction that enables
a group of players to permute and re-encrypt a sequence of ciphertexts
so as to hide the relationship between input and output ciphertexts. In
this paper, we propose a mix network known as Millimix. In constrast to
other proposed constructions, Millimix enjoys a very high level of com-
putational efficiency on small input batches, that is, batches of several
thousand items or smaller. Additionally, Millmix possesses the full set of
properties typically sought, but generally unavailable in many other mix
network constructions, including public verifiability, robustness against
malicious coalitions of players, and strong privacy guarantees. Millimix
therefore promises to serve as a useful and practical complement to ex-
isting mix network constructions.

1 Introduction

A mix network is a cryptographic construction that enables one or more
players to take a sequence of encrypted input messages, re-encrypt them,
and output them in an unrevealed, randomly permuted order. The origi-
nal conception of mix networks is due to Chaum [5], who envisioned them
as a tool for privacy enhancement. They have since been proposed for use
in such tasks as originator-anonymous e-mail [5], Web browsing [10], and
secure elections [23, 25], as well as for seemingly unrelated applications
such as anonmyous payment systems [19] and secure multiparty compu-
tation [18]. Mix networks may also serve implicitly in high level protocols
as the basis of an anonymous channel. In many cases, such as anony-
mous Web browsing, they are perhaps the only realistic mechanism for
achieving strong privacy in an untrustworthy environment.

In the past couple of years, researchers have focused their efforts on
the investigation of threshold mix networks. These are mix networks im-
plemented by multiple players, sometimes referred to as mix servers, in
which correctness and privacy are assured even in the face of malicious
server coalitions. Early efforts in this area include those of Ogata, Kuro-
sawa, Sako, and Takatani [22], followed by Abe [1] and Jakobsson [15].
Early proposals for threshold mix networks were rather inefficient, requir-
ing tens of exponentiations per item under a typical parameterization.
Jakobsson [16] subsequently proposed a mix network that is about an
order of magnitude faster than these previous ones, but only with the
use of very large input batches – on the order of 100,000 items. A mix
network more efficient on small batches is proposed by Abe in [2]. De-
veloped independently of the construction presented here, that of Abe is
very similar, but less computationally efficient.

Many applications require mixing of small batches. In the receipt-free
election scheme of Hirt and Sako, for instance, n is equal to the num-
ber of electoral candidates [14]. For the secure multiparty computation
technique proposed by Jakobsson and Juels, n = 4 would represent the
input size required for the simulation of a two-input boolean gate [18].
Our goal in this paper is to propose a threshold mix network scheme
that is highly efficient for input batches of this small size. We measure
efficiency in practical terms. In particular, the asympotic complexity of
our construction for an n-item mix is O(n log n), in contrast to O(n) for
other mix networks proposed in the literature. Our aim, however, is to
drive the constant per-item costs for our mix to a level that is quite low
by comparison, thus yielding a much more practical algorithm for small
n. Our scheme has an additional advantage over constructions such as
that in [16], namely the property of public verifiability. This is to say that
players external to the mix network can easily verify the correct behavior
of participating mix servers. We call our mix network scheme Millimix.

1.1 Background and overview of Millimix

As with any mix network, the aim of Millimix is to take as input a se-
quence of El Gamal encrypted ciphertexts E = {E1, E2, . . . , En} and
output an El Gamal ciphertext sequence E′ = {E′

1, E
′
2, . . . , E

′
n}. The

plaintexts corresponding to the sequence E′ represent a random permu-
tation of those corresponding to the sequence E. In other words, for some
(secret) permutation σ selected uniformly at random, every ciphertext
E′

i has the same associated plaintext as Eσ(i). Briefly stated, then, E′

represents a random and secret permutation and re-encryption of the
ciphertexts in E.

Millimix is based on an architecture known as a comparison network,
which consists of a collection of wires and comparitors. A comparitor is
a device that takes an ordered pair of integers (x, y) and outputs an or-
dered pair of integers (x′, y′) = f(x, y). The ordering function f typically
either swaps the input pair or else leaves it unchanged, according to some
pre-specified condition. For example, in a comparison network that per-
forms sorting, comparitors are constructed such that f(x, y) = (x, y) if
x < y and f(x, y) = (y, x) if x ≥ y. A wire may transmit values into
or out of the network or else between comparitors. A comparison net-
work typically consists of n input wires, n output wires, and an arbitrary
number of comparitors, with intermediate connecting wires. The network
flow is unidirectional, i.e., no comparitor is used twice, and input values
flow along wires in such a way that they are permuted in parallel by the
network comparitors and then emerge on the output wires after a fixed
number of comparisons. Note that different comparitors in the same net-
work may employ different ordering functions f . Thus, it is convenient to
let F denote the suite of potentially different re-ordering functions for all
comparitors in the network, and to treat F as an input to the network,
i.e, to regard comparitors as programmable.

Comparison networks may be constructed so as to achieve a variety
of of different tasks. For our construction of Millimix, we employ what
is known as a permutation network. The observation that a permutation
network described in [28] is appropriate for a mix network is made in [2]. A
permutation network takes inputs x1, x2, . . . , xn and an easily calculable
suite Fσ of re-ordering functions, where σ may represent any permutation
on n items. Let σ(i) denote the mapping of integer i under σ. Output from
the mix network consists of the sequence of items xσ(1), xσ(2), . . . , xσ(n).
Since there are n! possibilities for σ, it is easy to see that a permutation
network on n items must contain at least log2 n! = Ω(n log n) comparitors.
There is a simple general construction that contains exactly n log2 n −
n+ 1 comparitors. In this paper, we let Π denote this construction on n
input items, where the value of n is left implicit. For further details on
permutation and other types of comparitor networks, see [7, 28].

The basic idea behind Millimix is the following. Each mix server i in
turn chooses a permutation σi uniformly at random and simulates the ac-
tion of Π under Fσi

on output ciphertexts generated by the previous mix
server. (So as to avoid confusion with the notion of protocol simulation in
proofs of zero-knowledge properties, we shall say that a mix server exe-

cutes Π or, analogously, executes a comparitor.) If all mix servers behave
correctly, then the output ciphertext sequence E′ for the mix network will
represent the result of applying a permutation σ to the input ciphertext
sequence E, where σ = σk ◦σk−1 ◦ . . .◦σ1. Provided that the permutation
σi of at least one participating mix server i can be made private, the
permutation σ will remain so. This observation is the crux of the security
properties of our construction.

Observe, however, that in the scheme as described here, comparitors
change only the order, and not the values of input items as they pass
through a comparitor. Thus any player can easily determine the permu-
tation σi applied by mix server i. In order to obscure the permutations
applied in Millimix, we make use of the semantically secure re-encryption
property of El Gamal, as described in Section 3. For each comparitor
it executes, each mix server re-encrypts the pair of output ciphertexts,
thereby hiding the action of the comparitor. More formally, we may think
of mix server i as implementing a suite of functions F ∗

σi
, where the as-

sociated reordering function for each comparitor not only reorders input
values as in Fσi

, but also randomly re-encrypts them.

A requirement on the full mix network is that the set of input plain-
text values be identical to the set of output plaintext values. In fact, we
maintain the set of plaintext values as an invariant throughout the exe-
cution of the network. In order to demonstrate that it has executed Π
correctly, each mix server gives a proof, for each comparitor it executes,
that the pair of input plaintext values is identical to the pair of output
plaintext values. The main challenge addressed in this paper is to make
this proof of correct comparitor execution efficient, as it represents the
bulk of the computational work in Millimix. To do so, we elaborate on
techniques first appearing in [17].

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the security model underlying Millimix and discuss the features of
our construction. In Section 3, we recall the details of some basic crypto-
graphic primitives, and show how these are used to realize the building
blocks underlying Millmix. We give details of the Millmix construction in
Section 4. In Section 5, we present theorem statements on the security
of our construction. We present some ideas for computational efficiency
enhancement and efficiency analysis in Section 6.

2 Model and Goals

A mix network involves two types of participating entity: some number
of users and k mix servers. We also assume the existence of a bulletin

board. This is a publicly shared piece of memory to which all players have
read access and appenditive, sequential write access with authentication.1

Prior to invocation of the mix network, users post encrypted messages
to the bulletin board. When some pre-determined triggering event oc-
curs, e.g., a previously agreed upon number of messages has accumu-
lated, the mix servers operate on the posted sequence of ciphertexts
E = {E1, E2, . . . , En}. They jointly permute and re-encrypt the orig-
inally posted ciphertexts, and write the resulting ciphertext sequence,
E′ = {E′

1, E
′
2, . . . , E

′
n}, back to the bulletin board. For some permutation

σ, ciphertext Ei shares the same plaintext as ciphertext E′
σ(i); thus there

is a one-to-one correspondance between input and output plaintexts. The
mix servers may also post intermediate results to the bulletin board in
the course of the mix computation to ensure public verifiability of correct
behavior on the part of the mix servers.

There are a number of variants on this basic scenario. For example,
the input messages to the bulletin board may be plaintexts, rather than
ciphertexts. Alternatively, inputs may be ciphertexts and output mes-
sages, plaintexts. Overlap among players is also permissible: Users may
participate as mix servers.

An adversary is a player who controls some number of the users and
mix servers. Her aim is to compromise the private information of players
and/or to corrupt the correct functioning of the mix network. As an ex-
ample of the former, she might seek to compromise user privacy by finding
a corresponding input/output message pair; as an example of the latter,
she might seek to cause the mix network to output incorrect ciphertexts.
An active cheater is a mix server whose output may be controlled entirely
by the adversary. A passive cheater is one whom the adversary cannot
cause to deviate from the protocol, but whose inputs and outputs the
adversary may view. We define an honest mix server to be one that is in
neither the active nor passive control of the adversary.

Millimix achieves the following security properties relative to a static
adversary, that is, an adversary that fixes the set of players in its control
prior to execution of the protocol. We assume that an adversary actively

1 A bulletin board may, of course, be simulated or replaced by an authenticated broad-
cast channel or Byzantine agreement protocol [20]. In the latter case, the scheme is
robust against an adversary actively corrupting fewer than one-third of the servers,
rather than half.

corrupts fewer than k/2 of the mix servers and passively corrupts fewer
than k. The adversary may control an arbitrary number of users. We
denote as negligible any quantity that is asymptotically less than 1/poly
for any polynomial poly in the system security parameters. We say that a
player is polynomial-time if her computational resources are polynomially
bounded in the system security parameters.

– Public verifiability: On reading the contents of the bulletin board
at the end of the protocol, any polynomial-time player can identify
any actively cheating mix server with probability negligably less than
1.

– Privacy: Millimix conceals the permutation σ. In particular, after
any successful execution of Millimix, it is infeasible for an adversary
to output a pair (I,O) of corresponding input and output ciphertexts
with probability significantly greater than that yielded by a uniform,
random guess. More precisely, for any i, the adversary cannot deter-
mine σ(i) with probability non-negligibly greater than 1/n. We prove
privacy under the Decision Diffie-Hellman assumption.

– Robustness: It is infeasible for an adversary to cause Millimix to pro-
duce an incorrect output ciphertext sequence E′ with non-negligible
probability. We prove robustness under the discrete log assumption.

The novel property in Millimix is the following.

– Computational efficiency on small batches: The asymptotic com-
putational cost per server is Θ(kn log n). While this is greater than the
Θ(kn) for previously proposed mix networks, the associated constants
are very low, making this mix network substantially more efficient in
practice for small n. Communication costs are also Θ(kn log n), where
posting to or reading from the bullentin board is assumed to incur
one unit of communication cost.

3 Building blocks

3.1 Review of useful primitives

We construct Millimix around two cryptographic primitives, El Gamal
encryption and the Schnorr identification protocol. We review these algo-
rithms here.

El Gamal encryption Our first basic tool in Millimix is the El Gamal
encryption algorithm [11], which works as follows. Let p be a large prime
(typically 1024 bits long), and let p = 2q + 1 for another prime q. Let g
be a generator of the unique subgroup of Gq, the set of quadratic residues
in Z∗

p . Given a secret key x ∈ Zq, we define the corresponding public
key to be the pair (y, g) where y = gx mod p. (For the remainder of
the paper, we shall implicitly assume computation in the multiplicative
group Zp where applicable.) To encrypt a message2 m ∈ Gq, we select
an encryption exponent γ ∈u Zq, where ∈u denotes selection uniformly
at random. The encryption consists of the pair (α, β) = (myγ , gγ). To
decrypt using the secret key x, we compute m = α/βx.

The critical property that we make use of in the El Gamal cipher is
that of semantic security (see, e.g., [21] for a formal definition). Intuitively,
semantic security means that a ciphertext leaks no polynomial-time com-
putable information about the corresponding plaintext. For our purposes,
the most important consequence of this is that it is infeasible for an ad-
versary to determine whether two ciphertexts encrypted under the same
public key represent encryptions of the same plaintext. The ElGamal ci-
pher is semantically secure under the Decision Diffie-Hellman assumption.
See [27] for a discussion and proof of this property.

A player with knowledge of the El Gamal public key y, but not neces-
sary of the corresponding private key x, can re-encrypt a ciphertext (α, β).
Suppose that (α, β) = (myr1 , gr1) for some plaintext m and encryption
exponent r. The player selects re-encryption exponent r ∈ Zq uniformly
at random, and computes (α′, β′) = (myr1 × yr, gr1 × gr) = (myr2 , gr2),
where r2 = r1 + r. The semantic security of El Gamal means that it
is infeasible for another player to determine whether (α′, β′) and (α, β)
represent the same plaintext.

Another useful property of the El Gamal encryption algorithm is
that of homomorphism. If ciphertext (α1, β1) represents plaintext m1 and
(α2, β2) represents plaintext m2 , then the plaintext m1m2 can be com-
puted simply as (α1α2, β1β2). Similarly (α1/α2, β1/β2) represents an en-
cryption of the plaintext m1/m2. Variants on Millimix can be constructed
without the requirement for this property.

Note that El Gamal encryption may be straightforwardly performed
over other group structures. Additionally, it is possible to use other ci-
phers with semantic security properties, such as the Goldwasser-Micali
encryption scheme [13]. In certain mix network deployments, an addi-

2 Messages not in Gq can be mapped onto Gq by appropriate forcing of the LeGendre
symbol, e.g., inversion of the associated integer sign.

tional requirement, of which we omit discussion here, is that the cipher
have a non-malleable variant. The El Gamal cryptosystem has such a
variant. See [15] for further details.

Schnorr identification algorithm Our second basic tool is the Schnorr
identification algorithm [26], which also operates over Gq as described
above. The prover holds a private key x ∈ Zq. The corresponding public
key is (Y,G), where y = Gx, and G ∈ Gq. To prove possession of the
private key, the prover selects a value e ∈ Zq uniformly at random and
sends a commitment w = Ge to the verifier. The verifier responds with
a random, l-bit challenge c. The prover sends as a response the value
s = xc+ e. The identification protocol can be converted into a signature
algorithm, the Schnorr signature algorithm, by letting c = h(w,m) for the
message m to be signed. The prover verifies that Gs = wyc. For futher
details, see, e.g., [21].3 For l-bit challenges c, where l = Θ(poly(|q|)), the
Schnorr identification protocol is an honest-verifier zero-knowledge proof
of knowledge. For l = log(|q|), it is a zero-knowledge proof of knowledge,
where |q| denote the bit length of q.

3.2 Building blocks for Millimix

Most of the computational cost of Millimix derives from player proofs that
comparitors have been correctly simulated. For this we use two building
blocks, PEP and DISPEP. The prototcol PEP enables a player to prove
that an El Gamal ciphertext (α, β) a valid re-encryption of El Gamal ci-
phertext (α′, β′). The protocol DISPEP enables a player to prove that
one of two El Gamal ciphertexts (α1, β1) and (α2, β2) represents a valid
re-encryption of an El Gamal ciphertext (α, β). Note that either of these
protocols can be made interactive by replacing the use of Schnorr iden-
tification with a Schnorr signature, that is, by replacing challenges with
hashes on prover commitments. We assume that all El Gamal encryptions
take place with respect to a public key (y, g), where y = gx for private
key x held distributively by participating mix servers.

Plaintext Equivalence Proof PEP Let us suppose that a player re-encrypts
the El Gamal ciphertext (α, β) as (α′, β′). In other words, for some plain-
text m, the encryption (α, β) = (myγ1 , gγ1) and (α′, β′) = (myγ2 , gγ2) for
some γ1, γ2 ∈ Zq. The aim of PEP is for the player to use his knowledge

3 What we describe here is in fact a generalization of the Schnorr identification proto-
col. Typically G = g in standard implementations. Our generalization does not have
any impact on the security of the algorithm.

of the re-encryption factor γ = γ2 − γ1 to prove that (α, β) and (α′, β′)
represent the same plaintext.

We construct PEP by exploiting the homomorphism property of the
El Gamal cipher. Observe, in particular, that if (α, β) and (α′, β′) rep-
resent the same plaintext, then (α/α′, β/β′) represents an encryption of
the plaintext value 1. Hence α/α′ = yγ and β/β′ = gγ . We let Y =
(α/α′)z(β/β′) and G = yzg. Observe that (α/α′, β/β′) may be regarded
as a Schnorr public key (Y,G) whose corresponding private key is the
re-encryption factor γ. The PEP algorithm is now implemented simply
by having the prover perform the Schnorr identification algorithm on the
public key (Y,G).

Given than PEP involves an execution of the Schnorr identification
algorithm on publicly derivable values, it has the same zero-knowledge
properties as the underlying algorithm. We therefore have the following
lemma.

Lemma 1. PEP is an honest-verifier zero-knowledge proof protocol. ⊓⊔

Let m1 and m2 be the plaintexts corresponding to (α, β) and (α′, β′)
respectively. We have the following lemma, which states that the protocol
is sound, i.e., successful cheating on the part of the prover in PEP is as
hard as determining the secret value x. The claim is easily proven by
demonstration of a knowledge extractor for x.

Lemma 2. If m1 6= m2, then the protocol PEP is a proof of knowledge

of x. ⊓⊔

Other means of constructing PEP are possible. For example, it is
possible to use the proof of equivalence of discrete logs that forms a com-
ponent in the undeniable signature scheme of Chaum and [6]. The method
we propose, however, is several times more computationally efficient.

Disjunctive Schnorr identification protocol The lynchpin of Millimix is
what we refer to as a disjunctive Schnorr identification protocol. This is
a variant on the Schnorr identification algorithm in which, rather than
performing the protocol with respect to some public key (Y,G), the prover
proves knowledge of the private key corresponding to at least one of two
public keys, (Y1, G1) or (Y2, G2). The verifier, while capable of verifying
the correctness of the protocol, is incapable of determining which private
key the prover has knowledge of.

The disjunctive Schnorr identification algorithm works as follows. Let
us assume w.l.o.g. that the prover knows the private key x1 = logG1

Y1

associated with the key pair (Y1, G1). The prover chooses e1 and s2 at
random and also a l-bit challenge c2. He computes w1 = Ge1

1 and w2 =
Gs2

2 Y c2
2 , and sends these values to the verifier. The verifier picks a random

l-bit challenge c and sends it to the prover. The prover computes c1 =
c ⊕ c2 (where ⊕ denotes the bitwise XOR operation) and s1 = e1 − c1x,
and sends s1, s2, c1, and c2 to the verifier. The verifier checks that Y ci

i =
Gsi

i wi for i ∈ {1, 2}. In essense, the prover can “cheat” on one of the two
identification proofs exploiting the fact that it has one degree of freedom
in its choice of challenges c1 and c2. This protocol enjoys the same ZK
properties as a conventional Schnorr proof. It is easy to see that the proof
is sound in the sense that the prover can only complete it successfully
with knowledge of x1 or x2. This protocol may be made non-interactive
or made into a signature algorithm by appropriate use of hash functions
to replace the challenges. For further details, see [8, 9].

We do not make use of the disjunctive Schnorr identification algorithm
directly in Millimix, but use it as a subroutine in the following building
block.

Disjunctive plaintext equivalence proof DISPEP The protocol DISPEP
enables a prover to demonstrate that an El Gamal ciphertext (α, β) repre-
sents a re-encryption of one of two different El Gamal ciphertexts, (α1, β1)
or (α2, β2). We accomplish this by combining the protocol PEP with the
disjunctive Schnorr identification algorithm in the obvious fashion. In
particular, let (Y1, G1) = (α/α1, β/β1) and (Y2, G2) = (α/α2, β/β2). The
protocol DISPEP simply involves the prover performing the disjunc-
tive Schnorr identification (or signature) protocol with respect to the two
public keys (Y1, G1) and (Y2, G2).

It is clear that DISPEP inherits the ZK properties of the underlying
Schnorr identification protocol. We make use of following lemma.

Lemma 3. DISPEP is an honest-verifier zero-knowledge proof protocol.

⊓⊔

By demonstrating an appropriate knowledge extractor, we can easily
prove the following. Let m denote the plaintext corresponding to cipher-
text (α, β), and m1 and m2 denote the plaintexts corresponding respec-
tively to (α1, β1) and (α2, β2).

Lemma 4. Either m = m1 or m = m2, or the protocol PEP is a proof

of knowledge of x. ⊓⊔

4 Millimix Protocol: Details

4.1 Distributed key generation

The first step in the Millimix protocol is for the k servers to generate
a joint El Gamal public key pair (y, g), where y = gx. This public key
is posted to the bulletin board. The private key x is then shared using
(t, k)-threshold distributed key generation protocol, where t = ⌈k/2⌉− 1.
Key generation may be achieved using the techniques described in the
seminal paper of Pedersen [24] or in any one of a number of subsequent
papers on threshold and proactive variants. See Gennaro et al. [12] for a
brief overview of relevant distributed key generation techniques and some
important caveats. Of course, determining x is no harder than computing
a discrete log: an adversary need only compute x = logg y. In this paper,
we shall make the following assumption about the distributed key genera-
tion protocol used in Millimix. This assumption applies to the techniques
described in [24] and to may others of interest.

Assumption 1 If a player can extract x from the transcript produced

by the distributed key generation protocol, than she can solve discrete log

problem. ⊓⊔

4.2 Executing a comparitor

Let us now describe the protocol by which a mix server executes a compar-
itor. Input to the comparitor is a pair of El Gamal ciphertexts (α1, β1) and
(α2, β2) on respective plaintexts m1 and m2. Output consists of El Gamal
ciphertexts (α′

1, β
′
1) and (α′

2, β
′
2) corresponding to respective plaintexts

m′
1 and m′

2. After posting output to the bulletin board, the mix server
must prove that either (m1,m2) = (m′

1,m
′
2) or else (m1,m2) = (m′

2,m
′
1).

In other words, it must show that inputs were either swapped, or left in
their original order, and then re-encrypted. To do this, the server proves
the following two statements.

Statement 1: m1 = m′
1 OR m1 = m′

2 .

Statement 2: m1m2 = m′
1m

′
2 .

The mix server demonstrates the Statement 1 using direct application
of DISPEP. For Statement 2, he uses the homomorphic properties of

El Gamal to compute E[m1m2] = (α1α
′
1, β1β

′
1) and computes E[m′

1m
′
2]

analogously. He then invokes PEP as described in Section 3.4

4.3 Executing Millimix

Our description of Millimix is now simple. Mix server 1 takes the sequence
of input ciphertexts E = E0 = E0

1 , E
0
2 , . . . , E

0
n and passes them through

Π, executing each comparitor in turn as described in Section 1.1. He then
proves the correctness of his exection of Π comparitor by comparitor. In
the interactive version of the interactive version of the proof protocols,
challenges are computed as the XOR of independent, randomly generated
challenges contributed by each of the verifying mix servers. Proof tran-
scripts are dynamically posted to the bulletin board. Mix server completes
its execution of Π by writing to the bulletin board the output ciphertext
sequence E1 = E1

1 , E
1
2 , . . . , E

1
n, representing a random permutation and

re-encryption of the ciphertexts in E0. This process is repeated by every
other mix server i in turn: mix server i takes input Ei and writes cipher-
text sequence Ei+1 to the bulletin board, along with the transcript of
proofs of correctness. When mix server k posts Ek+1 = E′ to the bulletin
board, this completes the mix network operation.

All servers verify proofs of correct execution ofΠ as they are posted to
the bulletin board by server i. If, at any time, a majority of players believe
that server i has cheated, they expel him from the protocol, perform
a resharing of the secret key x, and restart the protocol, with server
i + 1 taking as input the the ciphertext sequence Ei. (If mix server k
is determined to be cheating, then the last correctly formed ciphertext
sequence is posted to the bulletin board as the output of the mix network.)

The observation that servers may execute complementary portions of
Π and thereby reduce the total number of instantiations of Π is explored
in [2].

5 Security

We now analyze the security of the interactive version of our contruction
against an adversary that corrupts fewer than k/2 mix servers in an active
sense and fewer than k in a passive sense. As described before, Schnorr
protocol challenges are generated as the XOR of random strings generated

4 It is possible to prove the correctness of a comparitor more straightforwardly by
means, e.g., of a statement of the form [(m1 = m′

1) AND (m2 = m′

2)] OR [(m1 = m′

2)
AND (m2 = m′

1)]. Such approaches are rather less efficient, though.

by each verifying mix server. Thus, given at least one verifying server that
has not been actively corrupted, challenges will be distributed uniformly
at random. This means that in the described attack scenario, challenges
will be distributed uniformly at random, as they would be if generated
by a single honest verifier. Thus it suffices to prove our protocols zero
knowledge under the assumption that the verifier is honest.

Lemma 5. The distribution of any proof transcript for Π is simulatable

by any verifying mix server.

Proof (sketch): Since fewer than half of the players have been actively
corrupted, no passively corrupted or honest mix server will be removed
from participation in the protocol. Thus, at any time during the execution
of the protocol, there will be at least one passively corrupted or honest
verifying server.

Recall from Lemmas 1 and 3 that the proof protocols employed with
the execution of Π are honest-verifier zero-knowledge. Although it does
not immediately follow that the composition of these proofs is zero-
knowledge, the entire set of proofs may in fact be simulated using the
same techniques for independent simulation of PEP and DISPEP. The
lemma follows. ⊓⊔

Theorem 1. Millimix achieves privacy under the Decision Diffie-Hellman

assumption.

Proof (sketch): Semantic security means that there is no algorithm A
of the following form. Algorithm A is given as input El Gamal encryptions
of plaintexts m0 and m1, and a pair of random re-encryptions c0 and c1.
With probability non-negligibly greater than 1/2, algorithm A guesses b
such that m0 is the plaintext for cb.

Since the adversary corrupts fewer than k/2 servers in an active fash-
ion, at least one honest server will adhere correctly to and not be removed
from participation in the mix network. Suppose that Millimix does not
achieve the privacy assumption. Then for some set of input ciphertexts on
plaintexts m0,m1, . . . ,mn−1, the adversary is able to output a pair (I,O)
of corresponding input and output ciphertexts with a non-negligible ad-
vantage over a random guess. It is easy to see, therefore, that with non-
negligible probability, the adversary is able to determine the output ci-
phertext C corresponding to some fixed input item mi with probability
non-negligibly greater than 1/n. It is also easy to see that there is an
input item mj such that the adversary outputs (mj , C) with probability
at most 1/n. Assume, without loss of generality, that i = 0 and j = 1.

We now construct algorithm A as follows. Algorithm A encrypts m0

and m1 and simulates their passage through Millimix. In place of the
corresponding output ciphertexts for these two input items, A inserts
random re-encryptions of c0 and c1. Algorithm A then invokes the ad-
versary to guess at an associated input/output pair (I,O). If I = m0 or
I = m1 and O = cb for b ∈ {0, 1}, then A outputs b. It is easy to see that
b will be correct with probability non-negligibly greater than 1/2. Since,
by Lemma 5, all proofs in the protocol are zero knowledge, Algorithm A
has computed b with no information other than that revealed by the El
Gamal ciphertexts. This violates the semantic security assumption on the
El Gamal cipher, and therefore the Decision Diffie-Hellman assumption.

⊓⊔

Theorem 2. Millimix is robust under the discrete log assumption.

Proof (sketch): By Lemmas 2 and 4, it is infeasible for a server to
cheat in its execution of Π without knowledge of the secret key x. Now,
by Lemma 5, proof transcripts for Π are simulatable. Therefore, the ro-
bustness of our construction relies on the difficulty for the adversary of de-
termining the secret key x given information derived from the distributed
key generation protocol. By Assumption 1, it now follows that the hard-
ness of determining x is equivalent to the hardness to the discrete log
problem. ⊓⊔

Given Theorem 2, combined with the fact that all transcripts are
posted to the bulletin board, it is easy to see that our construction is
publicly verifiable. Thus we state the following theorem without proof.

Theorem 3. Millimix is publicly verifiable. ⊓⊔

6 Efficiency

6.1 Batch verification and encryption

Recall that every mix server i in Millimix must in turn execute Π. All
other mix servers verify the correctness of the proofs generated by this
mix server. In what follows, we refer to as the prover the mix server
executing Π at a given time. We refer to any of the other mix servers as
a verifier.

Verifiers in Millimix must check the correctness of many Schnorr iden-
tification transcripts – several for each comparitor in Π. This suggests

that the work of the verifiers might be reduced by employing batch ver-
ification techniques, methods proposed in the literature for accelerating
signature verification by grouping underlying mathematical operations
together (see, e.g., [3]). We demonstrate a method here for simultane-
ous batch verification of a collection of PEP and DISPEP proofs. We
rely upon the use of addition chains to accelerate the verification process.
Batch verification is of course not necessary for the security or robustness
properties of Millimix, but improves its efficiency considerably.

Recall that the prover supplies verifiers with a set {wi, ci, si}
z
i=1 of pur-

ported Schnorr proofs on public keys {Yi, Gi}
z
i=1, for some z. The verifier

checks the correctness of a given proof by verifying that Gsi
i = Y ci

i wi. It
is common practice to reduce the computation required for this equation
by rewriting it as Gsi

i Y
−ci
i = wi, and using simultaneous multiple expo-

nentiation to compute the double exponentiation Gsi
i Y

−ci
i . This reduces

the work of the verifier to the equivalent of about 1.17 exponentiations,
rather than 2.

We may carry this idea a step further by grouping together a set of z
Schnorr proofs and having the verifier check that:

z∏

i=1

Gsi
i Y

−ci
i =

z∏

i=1

wi. (1)

Note that Eqn. 1 does not immediately imply the correctness of the
set of individual equations {Gsi

i = Y ci
i wi}

z
i=1. For this, we rely on the

following theorem. Let us denote by BV the interactive protocol in which
the prover and verifier engage in a series of a PEP and b DISPEP proofs,
and the verifier checks these proofs by means of Eqn. 1. Let Yi, Gi be the
key pair for PEP proof i, with secret key xi and let [Y 0

i , G
0
i , Y

1
i , G

1
i] be

the key pair for DISPEP proof j, with secret keys x0j and x1j . Proof of
the following theorem relies on elementary construction of a knowledge
extractor, and is therefore omitted.

Theorem 4. The protocol BV is an honest-verifier zero-knowledge proof

of knowledge of either x or else of {xi}
a
i=1 and one of {x0j , x

1
j} for all

j ∈ [1, . . . , b].

As an efficiency enhancement to batch verification, we can have veri-
fiers use addition chains to check Eqn. 1 rapidly. Perhaps the best addition
chain method for our purposes is that proposed by Bleichenbacher [4]. Of
course, addition chain methods may also be used equally well to accelerate
the work of the prover.

6.2 Efficiency analysis

For each comparitor it executes, a mix server must compute two El Gamal
re-encryptions. This requires computation of the values gr1 , gr2 , yr1 , yr2 ,
where r1 and r2 are random re-encryption factors. Additionally, the mix
server must perform one invocation of PEP, and one of DISPEP. For
each PEP proof i, the prover must compute Gei

i for a random value ei.
Since Gi = yuigvi for known values ui and vi, this involves a double expo-
nentiation to fixed bases y and g. For each DISPEP proof, it is easy to
see that the prover must compute two such double exponentiations. Thus,
for each comparitor, the prover must compute three double exponentia-
tions to fixed bases and four exponentiations to fixed bases. A verifying
mix server must verify the transcripts yielded by one invocation of PEP
and one of DISPEP – hence three Schnorr identification proofs – for
each comparitor.

We shall consider a straightforward application of the techniques of
[4] to improve the efficiency of both prover and verifier. In a mix net-
work architecture with m comparitors, we shall assume the prover must
perform j = 7m multiple independent exponentiations. (That is, for the
sake of simplicity, we shall treat double exponentiations as two separate
exponentiations.) For this task, the number of modular multiplications t
required by the techniques described in [4] is bounded above as follows:

t ≤ log2 N +
(j − 1) lnN

ln(j − 1)− ln ln(j − 1)
,

where N = 2|q|. The corresponding task of a verifying mix server is to
perform simultaneous multiple exponentiation on j = 3m terms. We have
the following bound on number of modular multiplications t required for
this task: t ≤ j − 1 + log2 N + (j−1) lnN

ln(j−1)−ln ln(j−1) .

To provide a concrete sense of the efficiency of Millimix in a practical
setting, let us consider some typical parameter settings. The El Gamal
cipher is most commonly parameterized such that p is a 1024-bit prime
and q is a 1023-bit prime. Thus full exponentiation of an element of
Gq involves an average of 1534.5 modular multiplications. Table 1 below
presents the total computational work for the prover and for each verifier.
We measure computational effort in terms of the equivalent number of
full exponentiations in Gq, i.e., we divide the number of required modular
multiplications by 1534.5. Numbers in parentheses indicate the work per
input item. We denote the number of input items to the network by
n, as above. (While we consider only values n that are powers of two;

other values of n are possible.) The heading d denotes the number of
comparitors in the permutation network on n items.

n d Prover work (PW) Verifier work (VW)
4 5 7.6 (1.9) 4.6 (1.1)
16 49 39.5 (2.5) 20.7 (1.3)
64 321 183.6 (2.9) 91.3 (1.4)
256 1793 806.9 (3.2) 390.1 (1.5)
1024 9217 3439.4 (3.4) 1635.6 (1.6)
4096 45057 14398.0 (3.5) 6772.8 (1.7)

Table 1. Computational work for Millimix

As each mix server must execute Π in turn, the total computational cost
per mix server for Millimix is PW + (k − 1)V W . Hence, for example,
with k = 5 mix servers and n = 64, the total computational cost per
mix server is equivalent to about 122.3 full exponentiations, or about 7.6
exponentiations per input item.

It is undoubtedly possible to achieve better efficiency by exploiting
the fact that the prover performs a majority of double exponentiations
and also exponentiations with respect to fixed-base exponents. Addition-
ally, it is possible to achieve large batch sizes, and thus better efficiency,
by employing an “optimistic” approach to verification when k ≥ 3. This
is to say that a mix server batches together verification of all proofs
performed by all other mix servers. In the presumably rare event that
cheating is detected, the cheater is identified using a more expensive ver-
ification procedure. Another possible approach to making Millimix more
efficient would be to depart from the hardware-based foundations of per-
mutation networks and consider comparitors with more than two inputs.
This might be an especially fruitful line of investigation for small mix
networks, and mix networks where n is not a power of 2.

Acknowledgements

Thanks to Daniel Bleichenbacher and Kazue Sako for their advice and
comments.

References

1. M. Abe. Universally verifiable mix-net with verification work independent of the
number of mix-servers. In K. Nyberg, editor, EUROCRYPT ’98, pages 437–447.
Springer-Verlag, 1998. LNCS No. 1403.

2. M. Abe. A mix-network on permuation networks, 1999. To appear in Asiacrypt
’99.

3. M. Bellare, J.A. Garay, and T.Rabin. Fast batch verification for modular ex-
ponentiation and digital signatures. In K. Nyberg, editor, EUROCRYPT ’98.
Springer-Verlag, 1998. LNCS No. 1403.

4. D. Bleichenbacher. Addition chains for large sets, 1999. Manuscript.
5. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–88, 1981.
6. D. Chaum and H. van Antwerpen. Undeniable signatures. In G. Brassard, editor,

CRYPTO ’89, pages 212–216. Springer-Verlag, 1989. LNCS No. 435.
7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. Mc-

Graw Hill, 1994.
8. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge

and simplified design of witness hiding protocols. In Advances in Cryptology –
CRYPTO ’94, pages 174–187. Springer-Verlag, 1994. LNCS No. 839.

9. A. de Santis, G. di Crescenzo, G. Persiano, and M. Yung. On monotone formula
closure of SZK. In 35th Annual Symposium on Foundations of Computer Science
(FOCS), pages 454–465. IEEE Press, 1994.

10. E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to make personalized
Web browsing simple, secure, and anonymous. In R. Hirschfeld, editor, Financial
Cryptography ’97, pages 17–31, 1997.

11. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

12. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. In Jacques Stern, editor, Proc. EU-
ROCRYPT ’99, pages 295–310, 1999.

13. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comp. Sys. Sci,
28(1):270–299, 1984.

14. M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-
tion, 1999. Manuscript.

15. M. Jakobsson. A practical mix. In K. Nyberg, editor, EUROCRYPT ’98, pages
448–461. Springer-Verlag, 1998. LNCS No. 1403.

16. M. Jakobsson. Flash mixing. In Proc. of 1999 ACM Symposium on Principles of
Distributed Computing (PODC), 1999. To appear.

17. M. Jakobsson and A. Juels. Millimix: Mixing in small batches, 1999. DIMACS
Technical Report 99-33.

18. M. Jakobsson and A. Juels. Mix and match: Secure multiparty computation using
mix networks, 1999. Manuscript.

19. M. Jakobsson and D. M’Räıhi. Mix-based electronic payments. In Selected Areas
in Cryptography (SAC) ’98, 1998. To appear.

20. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.
21. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1996.
22. W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous

channel. In Proc. ICICS ’97, pages 440–444, 1997. LNCS No. 1334.
23. C. Park, K. Itoh, and K. Kurosawa. All/nothing election scheme and anonymous

channel. In T. Helleseth, editor, EUROCRYPT ’93. Springer-Verlag, 1993. LNCS
No. 921.

24. T. Pedersen. A threshold cryptosystem without a trusted third party. In D.W.
Davies, editor, EUROCRYPT ’91, pages 522–526. Springer-Verlag, 1991. LNCS
No. 547.

25. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In L.C. Guillou and J.-J. Quisquater,
editors, EUROCRYPT ’95. Springer-Verlag, 1995. LNCS No. 921.

26. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991.

27. Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption. In 1998
International Workshop on Practice and Theory in Public Key Cryptography (PKC
’98), 1998. To appear.

28. A. Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.

