
Cache Cookies for Browser Authentication
(Extended Abstract)

Ari Juels Markus Jakobsson Tom N. Jagatic
RSA Laboratories and Indiana University and Indiana University

RavenWhite Inc. RavenWhite Inc.
ajuels@rsasecurity.com markus@indiana.edu tjagatic@iu.edu

Abstract

Like conventional cookies,cache cookiesare data ob-
jects that servers store in Web browsers. Cache cookies,
however, are unintentional byproducts of protocol design
for browser caches. They do not enjoy any explicit inter-
face support or security policies.

In this paper, we show that despite limitations, cache
cookies can play a useful role in the identification and
authentication of users. Many users today block conven-
tional cookies in their browsers as a privacy measure.
The cache-cookie tools we propose can help restore lost
usability and convenience to such users while maintain-
ing good privacy. As we show, our techniques can also
help combat online security threats such as phishing and
pharming that ordinary cookies cannot. The ideas we
introduce for cache-cookie management can strengthen
ordinary cookies as well.

The full version of this paper may be referenced at
www.ravenwhite.com.

Keywords: cache cookies, personalization, malware,
pharming, phishing, privacy, Web browser

1 Introduction

A conventional cookie is a piece of data stored in a
specially designated cache in a Web browser. Cookies
can include user-specific identifiers or personal informa-
tion (e.g., this user is over 18 years of age). Servers
typically employ cookies to personalize Web pages. For
example, when Alice visits the Web site X, the domain
server for X might place a cookie in Alice’s browser
that contains the identifier “Alice.” When Alice visits
X again, her browser releases this cookie, enabling the
server to identify her automatically.

A cache cookie, by contrast, is not an explicit browser
feature. It is a form of persistent state in a browser that

a server can access in unintended ways. There are many
different forms of cache cookies; they are byproducts of
the way that browsers maintain various caches and access
their contents.

For example, one type of cache cookie, which we be-
lieve to be new to the literature and focus on here, is based
on Temporary Internet Files (TIFs). TIFs are data objects
– such as images – cached locally in standard browsers.
Their function is to accelerate browsing speeds: If the
browser is to display a data object present as a TIF, it
can access the object locally, rather than pulling it from a
server. TIFs can be turned into cache cookies, i.e., persis-
tent, server-accessible data objects. By caching a particu-
lar TIF X associated with its domain, a server effectively
writes a bit into the browser of a particular user. By caus-
ing a client to display a Web page containingX, and then
seeing whether the client requestsX, the server can de-
termine if X is present as a TIF in the client’s browser.
Thus by testing for the presence or absence of TIFX, a
server can read a bit from the browser.

A cache cookie can function very much like an ordi-
nary cookie. It is common for servers to plant cookies
containing secret values in the browsers of users. These
cookies help a server authenticate a user – or, more pre-
cisely, her browser. Cache cookies, as we show, can serve
much the same goal.

1.1 Our work: Cache cookies as authen-
ticators

Cookies were designed not for authentication, but as
a convenient way to pass state. They have been co-opted
in many systems to achieve security goals, chiefly asau-
thenticatorsto supplement passwords. We take the same
approach to cache cookies: We co-opt them for the unin-
tended benefits of user identification and authentication.

Because cookies (and similar sharable objects) are
fully accessible by the domain that set them, they are vul-
nerable topharming. A pharming attack creates an envi-



ronment in which a browser directed to the Web server
legitimately associated with a particular domain instead
connects to a spoofed site. A pharmer can then harvest
the browser-cached objects associated with the attacked
domain. Even SSL offers only modest protection against
such cookie harvesting. A pharmer can use an incorrect
certificate and simply rely on users’ tendency to disregard
browser warnings.1 But a pharmer can use an incorrect
certificate and simply rely on the tendency of users to dis-
regard browser warnings.

We show how to use cache cookies in ways that do
not rely on server domains and can therefore resist many
pharming attacks. The basis for our work is a new con-
ceptual framework in which cache cookies underpin a
general, virtual memory structure within a browser. We
refer to this type of structure ascache-cookie memory,
abbreviatedCC-memory.

A key feature of CC-memory is that it spans a huge
space. It is a virtually addressed memory structure,
not a physically addressed one. Thus its size is expo-
nential in the bit-length of browser resource names like
URLs. So large is the space of CC-memory in a browser
that a server can only access a negligible portion, and
an attacker cannot feasibly read more than a negligi-
ble portion of CC-memory.We propose new techniques
for privacy-enhanced identifiers and user-authentication
protocols that resist brute-force attacks against browser
caches. Importantly, our techniques require no special-
purpose client-side software.

1.2 Related work

While we emphasize the use of cache cookies for au-
thentication in this paper, most of the literature thus far
has treated cache cookies purely in light of their threat to
privacy.

Felten and Schneider first brought the problems of in-
vasive cache cookies to light [2], and indeed first coined
the term “cache cookies.” They showed how a server can
detect the presence of a given image file in a browser
cache, and thus use cached images as cache cookies.
Their techniques are based on timing analysis, however,
and somewhat difficult to implement.

Clover [1], however, brought to light more eas-
ily manipulated cache cookies based on browser his-
tories. A side-effect in Cascading Style Sheets (CSS)
(a framework for presenting Web content) permits a
server to embed code in a Web page that deter-
mines whether or not a browser contains a particu-

1It is generally difficult for a pharmer to obtain the private key cor-
responding to a legitimate SSL certificate for a domain under attack.
Pharmers have been known to obtain fraudulent certificates, however
[4]. And in principle a pharmer dupe a user to installing an invalid
certificate in her browser.

lar URL in its history. For example,any server can
determine if Alice has visited the specific Web page
www.arbitrarysite.com/randompath/index.html. Addi-
tionally, a server can effectively write a URLX into the
browser history of a client by directing the client to the
URL X (in, e.g., an invisible frame). Thus, browser-
history entries can function as cache cookies.

A related, common form of tracking used by mar-
keters today is what is known as a “Web bug,” a client-
specific HTML link to an (invisible) image in e-mail. By
downloading the image, a client alerts a server to the
opening of the e-mail. Web bugs can also be planted in
Web pages.

More recently, Jackson et al. [3] examine the privacy
impact of cache cookies and related browser features, and
present a unified view of cross-domain tracking threats
to users. They also identify new facets to cache cook-
ies, such asentity tags(Etags), which we discuss below.
Jackson et al. propose browser extensions to enforce con-
sistent privacy policies across a range of cross-domain
tracking methods.

Again, our emphasis in this paper is on thepositive
face of cache cookies. We propose ways to use cache
cookies beneficially without exacerbating existing pri-
vacy problems.

Organization: In section 2, we present our framework
for CC-memory, along with some new implementation
options. We introduce schemes for user identification and
authentication in section 3. We present supporting exper-
iments in section 4, and conclude in section 5.

2 Cache-Cookie Memory Management

We now explain how to construct CC-memory struc-
tures. As explained above, CC-memory is a general
read/write memory structure in a user’s browser. We use
cache cookies based on TIFs as an illustrative example,
but the same principles apply straightforwardly to other
types of cache cookies.

A server can, of course, plant any of a wide variety
of TIFs by giving them appropriate URLs. For exam-
ple, a server operating the domain www.arbitrarysite.com
can plant in a browser a GIF with the URL
“www.arbitrarysite.com/Z.gif,” where Z can be any
URL-compliant string. Thus, a server can create a
CC-memory structure over the space of URLs of the
form, e.g., “www.arbitrarysite.com/Z.gif”, where Z ∈
{0, 1}l+1. In other words,Z is an index into the CC-
memory space. In practice, this virtual-memory space
can be enormous – larger than a cryptographic key space.
(Current versions of IE, for instance, support 2048-bit
URL paths.)



Whenl is sufficiently large – in practice when cache
cookies are 80 or so bits long – CC-memory is large
enough to render brute-force search by browser sniffing
impractical. Suppose, for example, that a server plants a
secret,k-bit stringx = x0x1 . . .xk into a random loca-
tion in CC-memory of the browser of a given user. It is
infeasible for a second server interacting with the user to
learnx — or even to detect its presence. A server can
thus hide cache cookies from adversaries. As we explain
in the full paper, CC-memory can assume any of a vari-
ety of virtual memory structures, and can support not just
reading and writing, but also erasure and re-writing.

TIF-based cache cookies:As explained above,Tempo-
rary Internet files(TIFs) are files containing objects, e.g.,
images embedded in Web pages. Browsers cache these
files to support faster display when a user revisits a Web
page. TIFs have no associated expiration, but browsers
cap the disk space devoted to TIFs and delete them to
maintain this cap. Thus TIF persistence varies among
users.

To place a TIFX in a browser cache, a server can
serve content that causes downloading ofX. It can ver-
ify whether or not a browser containsX in its cache by
displaying a page containingX. If X is not present in
its cache, then the browser will request it; otherwise,
the browser will not pullX, but instead retrieve its local
copy. In order not to change the state of a cache cookie
for whose presence it is testing, a server must in the for-
mer case withholdX. This triggers a “401” error, but
manipulation of TIFs can occur in hidden windows, un-
perceived by users.

Cache cookies based on TIFs restrict read privileges, a
useful privacy feature. When a browser requests a TIFX,
it sends a request to the domain associated withX, not to
the server displaying content containingX. Thus TIF-
based cache cookies are like first-party cookies: Only the
site in control of the domain forX can detect the presence
of X in a browser cache. (Cross-domain timing attacks
[2] can undermine the first-party property for TIFs, but
are challenging to mount.)

A notable limitation of TIFs is that they cannot be ma-
nipulated over SSL. As a security measure, HTTPS ses-
sions do not cache information on disk.

C-memory: Conventional cookies have optionally as-
sociatedpaths. A cookie with associated pathP is re-
leased only when the browser in which it is resident re-
quests a URL with prefixP . For example, a cookie
set with the path “www.arbitrarysite.com/X” would only
be released when the browser visits a URL of the form
“www.arbitrarysite.com/X/...”. Using paths, it is possi-
ble to createC-memory, a type of CC-memory based on
conventional cookies. We can design C-memory to re-

strict read access to cookies based on secret keys, rather
than domain names (which can be spoofed) – to the best
of our knowledge, a new approach to the use of cook-
ies. C-memory, like CC-memory, can support huge vir-
tual memory structures. Our proposed protocols for CC-
memory can be implemented equally well in C-memory
(in systems where cookies are not blocked).

3 Schemes for User Identification and Au-
thentication

In this section, we propose a tree-based construc-
tion called anidentifier tree that enables a server to
identify visiting users via objects stored in CC-memory.
Normally, TIFs and ordinary cookies (C-memory) are
domain-tagged, meaning that access is restricted to
servers from thedomain that set them. In a pharming
attack, though, an attacker successfully spoofs a domain
name and bypasses domain-based controls. Additionally,
some forms of CC-memory, like that based on browser-
histories, are by nature accessible toany server. Our
identifier-tree scheme addresses these problems by re-
stricting server access to user identifiers based onsecret
keysheld by the server, instead of domains.

At the end of this section, we also briefly consider how
secretcache cookies can aid inauthenticatingusers that
a server has already identified, and how they can help
combat pharming attacks.

3.1 Identifier trees

On creating an identifier treeT , a server associates
each of its users with a distinct leaf in the tree; nodes in
the tree correspond to secrets in CC-memory. The server
plants in the browser of the user the set of secret cache
cookies along the path from the root to the user’s leaf. To
identify a visiting user, the server interactively queries
the user’s browser to determine which path it contains; in
other words, the server performs a depth-first search of
the identifier tree. In identifying the user’s unique leaf,
the server identifies the user. This search is feasible only
for the original server that generated the identifier tree (or
for a delegate), because only the server knows the secret
cache cookies associated with nodes in the tree.

Consider a binary treeT . Let d denote the depth of
the tree. For a given noden within the tree, letn ‖ ‘0’
denote the left child, andn ‖ ‘1’, the right child; for
the root, we taken to be a null string. Thus, for every
distinct bitstringB = b0b1 . . . bj of lengthj, there is a
unique corresponding nodenB at depthj. The leaves of
T are the set of nodesnB for B ∈ {0, 1}d.

With each nodenB, we associate a secret valueuB ,
namely a secret (l-bit) address in CC-memory. To store



Figure 1. A simple identifier tree of depth
d = 3 with a highlighted path for identifer
‘001’

nodenB in the CC-memory of a browser, a server plants
a cache cookie at addressuB.

The server that has generatedT for its population of
users assigns each user to a unique, random leaf. Sup-
pose that useri is associated with leafnB(i) , where

B(i) = b
(i)
1 b

(i)
2 . . . b

(i)
d . The server determines the leaf

– and thus identity – of a user as follows. The server first
queries the user’s browser to determine whether it con-
tainsn0 orn1 in its cache; in particular, the server queries
addressu0 looking for whether the corresponding bit is
on or off, and then addressu1. The server then recurses.
When it finds that nodenB is present in the browser, it
searches to see whethernB ‖ ‘0’ or nB ‖ ‘1’ is present.
Ultimately, the server finds the full path of nodesn

b
(i)
1

,

n
b
(i)
1 b

(i)
2

, . . . , n
b
(i)
1 b

(i)
2 ...b

(i)
d

, and thus the leaf correspond-

ing to the identity of useri.
A toy, simplified identifier tree is depicted in Fig. 1.

In the full paper, we discuss tradeoffs among the degree,
storage requirements, and round-complexity of identifier
trees.

Security of identifier trees: Space restrictions forbid in-
depth security analysis of identifier trees. Our aim, how-
ever, is to protect against an adversary that: (1) Controls a
number of users and thus knows their identifiers and (2)
Can lure users to a rogue server via a pharming attack.
We assume, however, that beyond this: (A) The adversary
does not possess knowledge of the set{(uB)}B∈{0,1}d

of server secrets; and (B) The adversary cannot mount an
active (real-time) man-in-the-middle attack. Our scheme
aims at two security goals:

1. Privacy: The adversary should be unable to extract
a unique identifier for a user from her identifier tree.
Consequently, the adversary should be unable on the
basis of her identifier tree to establish a clear linkage
between independent sessions initiated by a given
user. Note, however, that the adversary can learn

partial information about user identifiers and there-
fore cancorrelateappearances of a given user across
sessions.

2. Authentication: The adversary should be unable to
impersonate any user it does not control.

3.2 Secret cache cookies for authentica-
tion

Secretcache cookies can offer some resistance to
pharming. A secret cache cookie is simply a secret bit-
string (key)yi specific to useri that is stored in a secret,
user-specific addressui in CC-memory (or C-memory).
Secret cache cookies can act as authenticators. Once
the user identifies herself and perhaps authenticates with
other means, e.g., a password or hardware token, a server
checks for the presence of a user-specific secret cache
cookie as a secondary authenticator. We emphasize that
a server gains access to the secret cache cookienot by
merit of its domain name, but by merit of its knowledge
of the secretui.

Security of secret cache cookies:For both restricted and
unrestricted CC-memory, as well as C-memory, secret
cache cookies are resistant to basic pharming. Domain
spoofing, e.g., DNS poisoning, is insufficient for success-
ful attack: In order to access the keyyi, a server must
know the secret addressui associated with a user.

A more aggressive pharming attack, however, can
compromise a secret cache cookie. A pharmer can lure a
user, steal her password, log into a server to learnui, lure
the user a second time, and stealyi. We cannot wholly
defend against such a multi-phase attack, but can raise the
number of required attack phases. To do so, we associate
with useri not one secret cache cookie, but a sequence
of d of them. A server searches for thed secret cache
cookies sequentially, rejecting an authentication attempt
immediately when it is unable to locate one. To defeat
such an authentication scheme, a pharmer must interact
with a server and client in turn at leastd times. For large
enoughd, this virtually requires a real-time man-in-the-
middle attack (or malware, which renders most authenti-
cation methods impotent).

4 Implementation

We now describe an implementation of CC-memory
based on TIFs. Our server is an Apache 1.3.33 using
FastCGI, Perl and Gentoo Linux (2.4.28 kernel), on a
1 GHz Pentium III with 256MB memory. Our client
uses Mozilla 1.5.0.1 and Windows XP, on a machine
with identical hardware as the server. Thus, the server is
clearly under-powered for its task; on the other hand, we



performed experiments on a 100 Mbps private local area
network with minimal network traffic and congestion.

We execute awrite to the browser cache by causing
the client to make a series of HTTP requests to cacheable
content. In our implementation we chose to cache GIF
image files referenced from a dynamically generated doc-
ument. These images contain solely the HTTP header
and no actual content, resulting in very quick loads. The
HTTP/1.1 server response header for the first load con-
tains Last-Modified, ETag, Cache-Control, andExpires
fields and values. The Cache-Control and Expires fields
are set to instruct the Web client to cache the content
many years into the future. An ETag (short for “entity
tag”) is a field that enables a server to distinguish among
different instances of a single resource, e.g., different ver-
sions or copies of a cached browser image.

We execute aread via subsequent client retrievals of
the cached objects. These result in the client sending
Last-Modified andETag values to the server in HTTP
requests in the form ofIf-Modified-Sinceand If-None-
Matchfields respectively. If these values match those in
the initialwrite, then a cache hit is observed. In this case,
the server returns an HTTP 304 (Not Modified) response
so as not to “clobber” the cached value. Otherwise, it re-
turns a 404 (Not Found) HTTP response. (This process of
a client sending data to a server to be validated is called
a conditional GET request.)

Our uses proposed above for cache cookies are likely
to involve considerably more frequent reads, i.e., authen-
tications, than writes, i.e., initializations. Thus in our ex-
periment we measured the full, round-trip time for the
server to read a batch ofn TIFs, i.e., to readn TIFs in
a single communication round. We refer to Figure 2 for
our results; we have plotted one hundred data points for
each value ofn within the range of 1 to 80.

Figure 2. Round-trip time for a server to
read a batch of n TIF cache-cookies

As an example, consider a translation of these timing
results into a performance estimate for an identifier tree,
such as a binary tree of depthd = 60. Forn = 2, the av-
erage read time was 0.04175 seconds. This corresponds
to the expected time for the server to test the pair of de-
scendants of a given node. Thus traversal of the full tree
would require an average of approximately 2.5 seconds.

We can greatly extend the amount of information in a
TIF in CC-memory by co-opting two fields. There is the
Last-Modifiedfield, which contains 32 bits. TheETag,
though, is particularly useful for our purposes; in Mozilla
1.5.0.1, for example, an ETag can contain up to 81864
bits. (The line buffer for the ETag is 10k bytes, some
devoted to header information.) Thus for secret cache
cookies, a single TIF can furnish essentially as much se-
cret data as needed – well beyond the 128 bits typical for
a cryptographic secret key.

5 Conclusion

We have shown that careful deployment, cache cook-
ies can support privacy-sensitive user identification. They
can also strengthen user authentication and help protect
against phishing and pharming attacks. Users are increas-
ingly supressing cookies because of privacy concerns.
Cache cookies are an alternative that can replace some
of the resulting, lost functionality. Additionally, the tech-
niques we have introduced for cache cookies can be ap-
plied to ordinary cookies to help strengthen their use in
authentication.

For further details on our work, we refer to the full
paper, available at www.ravenwhite.com.

References

[1] A. Clover. Timing attacks on Web privacy (paper and
specific issue), 20 February 2002. Referenced 2006 at
www.securiteam.com/securityreviews/5GP020A6LG.html.

[2] E. W. Felten and M. A. Schneider. Timing attacks on Web pri-
vacy. In ACM Conference on Computer and Communications
Security, pages 25–32. ACM Press, 2000. Referenced 2006 at
http://www.cs.princeton.edu/sip/pub/webtiming.pdf.

[3] C. Jackson, A. Bortz, D. Boneh, and J. Mitchell. Web privacy
attacks on a unified same-origin browser. InWWW 06, 2006. To
appear.

[4] J. Vijayan. Microsoft warns of fraudulent digital certifi-
cates. Computerworld, 22 March 2001. Referenced 2006 at
www.computerworld.com/softwaretopics/software/story/
0,10801,58857,00.html.


