
Privacy­Preserving History Mining
for Web Browsers

Markus Jakobsson
PARC

Palo Alto, CA, USA

mjakobss@parc.com

Ari Juels
RSA Laboratories
Bedford, MA USA

ajuels@rsa.com

Jacob Ratkiewicz
Dept. of Computer Science

Indiana University
Bloomington, IN USA

jpr@cs.indiana.edu

ABSTRACT
We introduce a new technique that permits servers to har-
vest selected Internet browsing history from visiting clients.
Privacy-Preserving History Mining (PPHM) requires no in-
stallation of special-purpose client-side executables. Para-
doxically, it exploits a feature in most browsers (IE, Firefox
and Safari) regarded for years as a privacy vulnerability.
PPHM enables privacy-preserving data-mining through the
addition of a client-side filter that supports OR and AND
queries over the URLs cached in a client.

We describe a lightweight prototype PPHM system de-
signed for targeted advertising. We also discuss audit and
policy enhancements that help our PPHM system comply
with regulatory guidelines like the OECD Fair Information
Practice Principles.

Keywords
detection, browser history, server-side, privacy-preserving

1. INTRODUCTION
Targeted advertising is the major engine of profit for search

engines, mail services, and news sites on the Web. Search
engines, for example, serve advertisements according to the
search queries of a user. Some sites also rely on third-party
services that track user behavior across sites. Doubleclick,
acquired by Google in 2007, is perhaps the best known ser-
vice that profiles users by tracking them across networks of
affiliated sites.

Doubleclick harvests data passed from clients to servers
in the form of cookies. Clients themselves, however, carry
rich seams of behavioral data on users in their browers. Web
browsers like IE, Firefox, and Safari cache a complete list of
the URLs visited by a user over a period of time (typically
nine days) to facilitate completion of URLs typed into the
navigation bar, and to allow users to use the “back up” fea-
ture of the browser. These lists, known as histories, are in
principle attractive data repositories for personalization ser-
vices like targeted adverting. While services like Doubleclick
can only harvest navigation data over participating sites,
browser histories are comprehensive, containing all naviga-
tion information over their windows of coverage.

Unlike cookies, browser histories are for the most part
exploitable only by clients. Our main focus in this pa-
per, though, is a technique called Privacy-Preserving His-

tory Mining (PPHM) that allows server-side exploitation of
browser histories. PPHM requires no client-side software;
it relies exclusively on server-side implementation. The ad-
vantages of this approach are clear: Our system is perfectly
transparent to users and avoids the complications and bur-
den of user-mediated software installation. This simplifies
deployment and avoids stoking the dangerous habit in users
of downloading potentially troublesome executables from
the Internet.

The basis for our PPHM system is a web-browser feature
that we refer to as URL probing. As is well understood, a
server can — by means of URL probing — ascertain the
presence of a particular URL in the browser cache of a visit-
ing client. For example, a server can determine if a visiting
client has visited the webpage www.xyz.com/somepage.html
in the past few days. It is important to note that URL prob-
ing only reveals information in the case of an exact match.
For example, if a client has visited www.xyz.com/otherpage.

html, a server will not learn this fact by probing the client’s
browser history for the URL www.xyz.com/somepage.html.

As the research community has recognized for some years,
URL probing can serve as a vehicle for privacy abuses [3,
2], as it permits servers to harvest data for which they
have no legitimate right or use. Some researchers have pro-
posed browser-modifications to restrict URL probing. For
example, [4] proposes a browser modification that limits the
feature according to same-origin policies. Others [5] have
suggested server-side defenses based on making the visited
URLs difficult to anticipate to would-be attackers. We em-
phasize that our PPHM proposal does not create or exploit
a new form of URL probing, but makes use of an existing
one as a new security tool.

We propose several mechanisms for protecting user pri-
vacy in PPHM deployments. The most important is filter-
ing. We introduce special techniques that permit a server
to learn only relevant, aggregate information about URLs in
a user’s browsing history—without communicating informa-
tion about specific, visited URLs. For a list L of sites, our
techniques allow a server either: (1) To determine if a user
has visited at least one site in L, without revealing which
one (i.e., to perform an OR operation over L) or (2) To de-
termine if a user has visited all of the sites in L (i.e., to
perform an AND operation over L). Given these two opera-
tions, one can implement any monotonous boolean function,
although it is a topic of future research how to do so effi-
ciently. Furthermore, we propose simple opt-in mechanisms
for user participation in the PPHM process, and describe

mechanisms that permit public auditing of PPHM imple-
mentations.

PPHM can enhance any Web service that relies on user
behavioral data. For example, using PPHM (alongside other
techniques):

• A social networking site can harvest information about
users’ preferences to connect them with other like-
minded users.

• A security site can scan clients to alert users if they
have recently visited known phishing sites.

• An e-commerce or content-delivery site can scan vis-
iting clients to serve them better targeted advertise-
ments.

• A financial services site can determine the exposure to
risky sites (such as phishing sites and sites known to
distribute malware) that a given user has, and use this
information to guide decisions about what transactions
to give particular scrutiny.

In this paper, we focus on targeted advertising as our exam-
ple application.

The major limitation of PPHM is the verbatim form of
server probes. A server cannot upload a browser history,
but can only make yes / no queries against it. As our proto-
type demonstrates, it is feasible for a server to make only a
few hundred queries without introducing noticeable brows-
ing delays. Our challenge is to devise a system that is: (1)
Effective in extracting meaningful data from clients using
a limited number of yes/no queries, and also (2) Strongly
protective of users’ privacy.

Organization
In section 2, we describe the intuition of our approach by
sketching a simple example targeted-advertising campaign.
In section 3 we survey related work and background litera-
ture. We describe an initial PPHM implementation in sec-
tion 4. In section 5, we discuss surrounding privacy and
ethical considerations. We conclude in section 6 with some
further research directions.

2. EXPLICATION BY EXAMPLE: AN AD­
VERTISING CAMPAIGN

As an example of how our PPHM system might work,
let us consider a toy advertising campaign. Let us suppose
that the search site A.com serves ads for two (corporate)
customers: A chocolate shop (CS) and a stock broker (SB).
So the task of A.com is to determine whether a given visiting
user is a better match for a CS ad or an SB ad.

The first and simplest approach would be for A.com to
see if a visiting client has visited either: (1) Any of a list
L1 of chocolate-related sites (e.g., www.hersheys.com, www.
seventypercent.com, etc.) or (2) Any of a list L2 of stock
brokers and/or financial publications (e.g., vanguard.com,
barrons.com, etc.). If a user has visited a site in L1 but
not one in L2, then A.com displays a CS ad. If a user has
visited a site in L2, but not one in L1, then A.com displays
an SB ad. Otherwise, A.com chooses randomly between SB
and CS.

The näıve approach to checking whether a user has visited
a site in L1 or L2 is to probe a client’s browser history indi-
vidually for each URL in the target list. While this approach

will reveal the information needed for A.com’s ad-serving
policy, it constitutes a potentially unacceptable compromise
of privacy. After all, A.com will learn all of the sites in the
target list that the client has visited. As explained above,
however, our techniques allow a server to filter its query on
the client side (using crafted HTML, as detailed below) so
that it learns only whether a client has visited at least one
site in L1 or L2, but no specifics about which site or sites.
Such “OR” filtering allows A.com to harvest exactly the in-
formation needed for its advertising policy, and no more. As
explained below, a client can also inspect the HTML served
by A.com to ensure that it is only sending “OR” queries.
A.com may wish to refine its data-mining strategy to de-

termine whether SB or CS is the better match for the user
for cases in which the user has visited both L1 and L2, i.e.,
when its first query turns up no decisive information about a
user. One approach would be for the site to deploy two new
lists, L′

1 and L′
2. L′

1 is a short list of “must-visit” sites for
chocolate lovers—those that no chocolate lover would omit.
Similarly, L′

2 is a list of sites that serious equity traders
would not miss. A.com might then query the client to deter-
mine if it has visited all of the sites in L′

1 or has visited all
of the sites in L′

2, and given a hit for exactly one of these
two lists, serve either an SB or CS ad accordingly.

We have, of course, described a rather simplified adver-
tising here. Our interest is not to describe the mechanics
of ad targeting, but rather the mechanics of the privacy-
protecting querying language we have developed for PPHM.
Two aspects of our example are noteworthy. First, we have
described an adaptive advertising strategy. By making a
second query conditioned on its first, A.com is able to target
users more precisely. Of course, a policy can be arbitrar-
ily adaptive. The only limitation is the number of PPHM
queries that a service can make to a user’s browser without
inconveniencing users. (The matter of inconvenience, here,
would be a potential delay — the user would never have
to react to or become aware of queries sent by the server
performing the scan.)

More sophisticated advertising strategies are also possi-
ble through the mining of indirect information. For exam-
ple, A.com might query users on a list L3 of candy sites—
not chocolate-specific ones—or might tailor its queries or
ads based on other contextual information like a user’s ge-
ographical location as determined by IP address. Further,
A.commight use (anonymous) cookies to maintain user iden-
tity across sessions, effectively lengthing its probing window
beyond the standard nine-day cache lifetime of browser his-
tories while retaining user anonymity.

Of course, as illustrated here, PPHM imposes austere lim-
its on the information accessible to a server. If A.com re-
quired client installation of a special-purpose executable, it
could simply upload a client’s history and mine it as de-
sired (not to mention enforcing the maintenance of a richer,
longer history). The limitations of PPHM, again, arise as a
tradeoff against its benefits: The lack of special client-side
software and the privacy filtering it allows.

3. RELATED WORK
Our PPHM techniques rely on server-side probing of client

browser caches to determine what URLs a user has visited.
Such probing was first studied by Felten and Schneider [3],
who considered invasive forms of timing analysis. Secu-
riTeam [2] later described more accurate privacy-infringing

techniques that directly access browser history files. Jack-
son et al. [4] have outlined client-side defenses against such
infringements. Drawing on another recent vein of research
[7], our PPHM work explores the flip-side of browser prob-
ing, namely how it can create benefits for users using browser
histories.

Our proposed tool is effectively a filtered data-mining ser-
vice. Social networking sites such as Facebook and LinkedIn
harvest data directly from server-stored user profiles. On-
line mail services such as Hotmail and GMail mine users’
e-mail content to serve ads. Servers without access to such
rich data sources tend to rely instead on cookies as a means
for establishing user browsing patterns. First party cookies
are commonly used to identify repeat visitors, and customize
their experience based on past actions; third-party cookies
and first-party cookies with an aggregator (such as Dou-
bleclick) are used to track browsing patterns across domains.
In contrast, PPHM does not identify users, but simply at-
tempts to identify browsing patterns and online accesses.

A number of widely deployed systems relay potentially
sensitive client information to centralized data repositories.
For example, the Microsoft operating system relays informa-
tion on software failures to Microsoft; the system explicitly
prompts users for permission before doing so. A number of
toolbars, such as the Alexa toolbar and the Google toolbar,
perform centralized harvesting of the browsing behavior of
individual users. Users assent to the transmission of this in-
formation by merit of their installing the toolbars; all brows-
ing activity is associated with a client-specific identifier,
communicated and recorded. In comparison, our tracking
is substantially less invasive, and can—where appropriate—
dispense entirely with identities or pseudonyms. More im-
portantly, our techniques involve dynamic filtering of data
on the client to ensure protection of user privacy, in the
spirit of academic proposals like, e.g., [6].

4. IMPLEMENTATION

4.1 Intuition
In broad terms, our method is as follows. When the user

requests a page from an PPHM server, the server returns
a page that, in addition to the normal content, defines an
invisible section of the page containing a number of links.
Each of these links is given a CSS style that causes the
browser to “call home”— that is, to notify the server if the
link has been visited. This is implemented by directing the
browser to download a CSS style sheet from the server in
order to color visited links. The server is then able to tell
which links are visited by tracking which style sheets are
downloaded. Due to the fact that browser caching normally
prevents the same URL from being fetched twice in a page
load, user privacy can be preserved by a careful partitioning
of the links to be detected into classes, each of which is given
the same “call home” link.

4.2 Proof­of­concept details
We first outline the server-side infrastructure, then how

detection is carried out on the client side. Of particular in-
terest are our techniques for protecting client privacy during
the scanning process. In particular, we wish to avoid the
possibility of performing scanning on a customer who has
explicitly agreed to it, despite potential advantages to the
scanner, e.g. in detecting malware before it has the oppor-

Figure 1: Sequence of events in a single detection
session. pphm.cgi produces a page which is inter-
preted by a user’s web browser. CSS code in the web
browser causes communication with callhome.cgi,
which registers any hits in a database associated
with each client. When the user visits actions.cgi,
this database is consulted to make a final determi-
nation as to which advertisement should be served
to the client.

tunity to see a user’s login. Thus we assume in the following
that the user has opted in, perhaps in one of the following
ways:

• If PPHM is to be employed to detect malware, the user
should opt-in when they open their account (perhaps
with a bank or other financial institution). Scanning
will then take place after the user authenticates, but
before sensitive parts of their account are unlocked.
If malware is detected, the server is thus able to take
protective measures such as suspending access to some
account features or even disabling the account. Again,
though, we emphasize that PPHM provides an indi-
cation of risks like malware infection, not a definitive
litmus test.

• If PPHM is to be employed to serve better targeted
advertisements or for some such similar goal, opt-in
and opt-out could be implemented by a cookie set in
the user’s browser if they chose to opt-in. The PPHM
server could check for the cookie and only transmit
code to perform the scanning if it was found. Should
the user later wish to opt out, they could revisit the
site and choose to do so, or simply delete the cookie.

Our server-side PPHM implementation consists of three
scripts:

pphm.cgi This script produces a page that invisibly per-
forms detection, refreshing when complete to the page
that shows the results (action.cgi).

callhome.cgi This is the script that is notified when a class
of links is triggered. It is responsible for keeping track
of the classes of links triggered by a particular client.

action.cgi This script is called when the logged-in user
attempts to perform another action. It consults the
database maintained by callhome.cgi to determine
which of a predetermined list of advertisements should
be served to a user. (In our prototype, we don’t ac-
tually serve any advertisements. We have only imple-
mented a framework for doing so.)

We now discuss each of these scripts in turn. Figure 1 il-
lustrates the sequence of events in a single detection session.

4.2.1 pphm.cgi
This script is responsible for performing the browser re-

connaissance, which it accomplishes as follows. It first reads
a description of the links it should detect from an XML file
on the server. This file defines a number of link classes, each
with a unique name and a type, which may be “AND” or
“OR.” Each link class also contains a list of URLs. If the
type of the class is “AND,” the class registers a hit when
all of its associated URLs have been visited by the client’s
browser; if its type is “OR,” it registers a hit when any of
its links are visited. Note that each class registers a binary
result, either no hit or one hit, regardless of the number of
visited links in the corresponding class. How each class of
links is detected is outlined below; further details on the
link-detection techniques we employ are available in [5].

In each of the following discussions, we assume that each
user has a unique ID number. In our demo system this is
computed by incrementing a persistent ID, but other unique
numbers (such as a customer ID number) would serve equally
well. This ID is indicated in URLs by XX. Figure 2 gives a
graphical depiction of each scenario.

Detecting an OR-class
Suppose that the detection XML file specifies a class of

type OR that contains the links www.a.com, www.b.com, and
www.c.com. Thus, this class should produce a single hit if
any of these three sites has been visited by the user. This is
implemented by the following CSS and HTML code, which
is automatically generated by pphm.cgi:

<style type="text/css">

#someclass:visited {
background: url(

’http://www.server.com/callhome.cgi?id=XX&
class=someclass&type=or’);

}

...
</style>

...

When the HTML-rendering subsystem of the user’s browser
renders the page, it consults the CSS code to determine how
to format the first visited link (if any of the links are visited).
This results in the URL given as the link background being
loaded, causing callhome.cgi to be called. This registers
with the server the fact that one of the links was visited,
but the server does not learn which link. Even if the user
has visited multiple links in this class, the client will load
the link-background URL at most one time; once loaded,
the link persists in the browser’s cache. Thus, the server
will also never know how many of the links in the class the
user has visited, and the user’s privacy is preserved. Note
that even attacks such as timing attacks will be ineffective
in general, as it is not a requirement that the browser render
all links in the order that the appear in the document.

Detecting an AND-class
Preserving the user’s privacy in this case is slightly more

involved. Suppose in this example that we wish to tell if
a user has visited sites www.x.com, www.y.com, and www.z.

com. We wish the server to be notified if the user has been

(a) Detecting links in
an OR class. The server
is signalled by the first vis-
ited link. Note that subse-
quent visited links will not
signal the server, as they
will be handled by browser
cache; thus, the server can-
not tell how many of the
links were visited.

(b) Detecting links in
an AND class. The
server is signalled by the
first un-visited link. Note
that at most one signal will
be recieved, so the server
will not know which (or
how many) links were un-
visited.

Figure 2: Privacy-preserving detection of visited
links by means of link classes. In each case, the
server can tell only if the conditions of the class are
satisfied; not the degree to which they are (or are
not). Note that these strategies are through appli-
cation of a variant of De Morgan’s laws for proposi-
tional formulae.

to all three of the sites; if the user has been only to some
subset of the sites, we wish to know nothing. The following
CSS and HTML perform this detection with a class named
anotherclass:

<style type="text/css">
#anotherclass:link {

background:url(
’http://www.server.com/callhome.cgi?id=XX&

class=anotherclass&type=and’);

}
...

</style>
...

Note that here, the CSS class used is link rather than
visited. This is the class that is used to specify the ap-
pearance of un-visited links. Now, the PPHM server receives
exactly one request if any of x.com, y.com, or z.com are un-
visited. If the server receives a request, the server knows
that at least one (and possibly all) links are unvisited, and
thus the class is not a hit. If it receives no request, it knows
that all links are visited. The fact that the class is a hit when
the server receives no requests means that the server must
adopt a “guilty until proven innocent” approach in deter-
mining if the class is a hit. Thus, if a user’s browser crashes,
or the user navigates away from the page, before detection
is complete, the class might erroneously be marked as a hit.
This can be avoided by adding a reference to a second URL
at the end of the list of URLs to be scanned. The second
reference would be unconditional, and so, would be made
whether the first call was made or not. While there is no
guarantee that the browser will render the links in order,
this is a heuristic solution. One can tolerate a certain prob-
ability of misclassification: targeted advertising is always a
hit-or-miss affair.

4.2.2 callhome.cgi
This script is triggered by all CSS styles. It simply records

in a database the user’s unique ID, as well as the set of
classes that the user has triggered.

4.2.3 action.cgi
Called when detection is finished, this script consults the

database built by callhome.cgi to determine the appropri-
ate advertisement to serve to a user.

4.3 Implementation Alternatives

4.3.1 Fuzzy PPHM
At the cost of some loss in privacy, we can broaden our

privacy-preserving PPHM techniques that a server can de-
termine if a client has visited at least k in a target list of
n sites. By returning a randomized number of spurious hits
to the list, a client-side script can conceal the exact num-
ber from the server. (This technique resembles a number of
other statistical privacy-preserving approaches, e.g., [1].)

Let U = {u1, . . . , un} be a set of target URLs. Let us
suppose that the server wishes to detect clients that have
visited at least k URLs in U . The server sends the client a
script that does the following:

1. Makes a call to X.cgi (a client-specific CGI script) for
each u ∈ U that the client has visited.

2. Makes r ∈U [0,m] additional calls to X.cgi.

3. Accepts a single query r′ from the server, and returns
‘1’ if r ≥ r′ and ‘0’ otherwise.

On receiving R > k total hits to X.cgi from a client, the
server computes r′ = R − k, and sends the query r′ to the
client. The server determines that the client has visited k
links in U if the client returns a ‘1.’

The degree of privacy preservation in this scheme depends
on the number of client visits v to sites in U , as well as
the value of m. (It also depends on any a priori server
knowledge about v for a given client.) In general, a client
enjoys the minimum degree of privacy when v = k; in that
case, the server learns v exactly with probability 1/m. We
believe, however, that m can be made fairly large–on the
order of thousands–thereby acceptably minimizing exposure
of client data. Of course, r can be drawn from a non-uniform
probability distribution to meet particular privacy needs.

It is important to note that this this rather roundabout
method of determining a bound on the number of visited
links is necessitated by the security policies in modern browsers.
Step 1 must necessarily be accomplished by means of CSS
style sheets on the client side, which cannot communicate
with programmatic web page elements such as Javascript;
only with the server by the method this paper describes.
Steps 2 and 3, however, must be accomplished by client-side
Javascript. Thus, it is not possible for the query in step 3 to
relate to the number of visited links, as the Javascript used
to implement step 3 cannot know this information.

4.3.2 Non­standard browsers
In addition to the above browser-independent approach,

we outline some features of particular browsers that can en-
hance detection on these browsers.

• Internet Explorer version 6 (but not version 7) allows
CSS descriptors to call JavaScript functions. This al-
lows finer-grained detection (such as the “fuzzy scan”
described above) without any compromise in privacy,
as all computation can be done on the client side.

• In Safari, a link which is bookmarked counts as perma-
nently visited (while a normally-visited link reverts to
unvisited after a few days). This is beneficial to mal-
ware detection efforts, as malware that affects browsers
often adds sites as bookmarks as well as visiting them.
Under Safari, such sites would be detected even long
after the initial malware installation due to this fea-
ture.

5. PRIVACY
A common approach to protection of consumer data is

anonymization (or pseudonymous identification). This ap-
proach is impractical, however, for many of the environ-
ments in which PPHM can be most beneficially deployed.
Online e-commerce web sites, in particular, require authen-
tication of user identities in the course of transactions. As
we have explained, therefore, data-filtering is the crux of
our approach to privacy. The granularity and exact nature
of PPHM filtering may of course be adjusted to meet various
security and privacy needs, and ultimately depends upon the
policy of a PPHM deployer. We propose two other impor-
tant measures, however, that empower users to monitor and
control their privacy in a PPHM environment:

1. User notice and consent: We recommend that PPHM
be deployed on a strict opt-in basis. Potential users
should be notified of the goals and operating param-
eters of an PPHM system before they are enrolled in
an PPHM program. Only when an informed user has
explicitly consented to enrollment in writing or on a
web form should PPHM scanning of her browser take
place. Furthermore, we believe that a server should
perform PPHM scanning of the browser of a consent-
ing user only after adequately authenticating the user
as well as her client machine. This requirement helps
ensure that an PPHM deployment does not transgress
the bounds of user consent by scanning a client ma-
chine or operating environment that does not belong
to the user.

2. Auditability: Because our PPHM system harvests
information through a CSS style sheet and HTML doc-
ument downloaded by the client, any client can deter-
mine exactly what information the PPHM system gath-
ers and reports simply by viewing these documents.
Most users of course lack the motivation and/or ex-
pertise to read HTML or CSS. Detection of widespread
abuse in a system of this kind, though, requires only
that a small number of users monitor its behavior.
PPHM-related code can be short and transparent.

Fair Information Practice Principles. The Organization
for Economic Co-Operation and Development enunciated a
set of eight basic privacy principles in 1980 [8] that have
served as a basis for a number of subsequently published
Fair Information Principles (FIP), such as the EU privacy

directive and the FIP guidelines of the United States Fed-
eral Trade Commission (FTC). Appendix A enumerates the
eight principles in an excerpt from the original OECD docu-
ment. These principles are an excellent touchstone for gaug-
ing the privacy properties of a system.

We believe that PPHM may be readily deployed in com-
pliance with the OECD principles and related FIPs. Refer-
ring the reader to Appendix A, we note that our filtering
approach helps support the Collection Limitation and Use
Limitation Principles by strictly limiting the amount of in-
formation harvested by a server. By revealing exactly what
information the system scans and collects, the auditability
property of PPHM supports the Accountability and Pur-
pose Specification Principles. Compliance with the remain-
ing OECD principles requires careful notice and consent for
consumers, as well as careful data security practices around
PPHM-enabled servers.

6. CONCLUSION
We have proposed a privacy-preserving auditing tool that

permits a server to determine if a client has recently web-
pages from specified sets of URLs. Our proposed technique
allows AND and OR operations over the members of the
sets, allows simple auditing of functionality, and can be built
to support opt-in mechanisms.

7. REFERENCES

[1] Agrawal, R., and Srikant, R. Privacy-preserving
data mining. In ACM SIGMOD Conference on
Management of Data (2000), ACM Press, pp. 439–450.

[2] Clover, A. Timing attacks on Web privacy (paper
and specific issue), 20 February 2002. Referenced 2008
at http://www.securiteam.com/securityreviews/

5GP020A6LG.html.

[3] Felten, E. W., and Schneider, M. A. Timing
attacks on Web privacy. In ACM Conference on
Computer and Communications Security (2000), ACM
Press, pp. 25–32. Referenced 2008 at http:

//www.cs.princeton.edu/sip/pub/webtiming.pdf.

[4] Jackson, C., Bortz, A., Boneh, D., and Mitchell,
J. Protecting browser state from web privacy attacks.
In Proceedings of The 15th annual World Wide Web
Conference (WWW2006) (2006), pp. 737–744.

[5] Jakobsson, M., and Stamm, S. Invasive browser
sniffing and countermeasures. In Proceedings of The
15th annual World Wide Web Conference (WWW2006)
(2006), pp. 523–532.

[6] Juels, A. Targeted advertising ... and privacy too. In
RSA Conference – Cryptographers Track (CT-RSA)
(2001), D. Naccache, Ed., Springer-Verlag, pp. 408–424.
LNCS no. 2020.

[7] Juels, A., Jakobsson, M., and Jagatic, T. Cache
cookies for browser authentication (extended abstract),
2006.

[8] Organization for Economic Co-Operation and
Development. OECD guidelines on the protection of
privacy and transborder flows of personal data, 1980.
Referenced 2008 at
http://www.oecd.org/document/18/0,2340,en_2649_

34255_1815186_119820_1_1%_1,00.html.

APPENDIX

A. OECD FAIR INFORMATION PRACTICE
(FIP) PRINCIPLES

In its 1980 Guidelines on the Protection of Privacy and
Transborder Flows of Personal Data [8], the OECD enun-
ciated eight basic principles for data privacy. These have
served as a basis for a number of other regulatory guidelines,
which are often referred to generically as Fair Information
Principles (FIP). The United States Federal Trade Commis-
sion FIP and the EU Privacy Directive draw on the OECD
document. The eight principles, drawn verbatim from the
OECD document, are:

1. Collection Limitation Principle: There should be limits
to the collection of personal data and any such data
should be obtained by lawful and fair means and, where
appropriate, with the knowledge or consent of the data
subject.

2. Data Quality Principle: Personal data should be rel-
evant to the purposes for which they are to be used,
and, to the extent necessary for those purposes, should
be accurate, complete and kept up-to-date.

3. Purpose SpecificationPrinciple: The purposes for which
personal data are collected should be specified not later
than at the time of data collection and the subsequent
use limited to the fulfilment of those purposes or such
others as are not incompatible with those purposes and
as are specified on each occasion of change of purpose.

4. Use Limitation Principle: Personal data should not be
disclosed, made available or otherwise used for purposes
other than those specified in accordance with [the pre-
vious principle] except:

(a) with the consent of the data subject; or

(b) by the authority of law.

5. Security Safeguards Principle: Personal data should
be protected by reasonable security safeguards against
such risks as loss or unauthorised access, destruction,
use, modification or disclosure of data.

6. Openness Principle: There should be a general policy
of openness about developments, practices and policies
with respect to personal data. Means should be read-
ily available of establishing the existence and nature
of personal data, and the main purposes of their use,
as well as the identity and usual residence of the data
controller.

7. Individual ParticipationPrinciple: An individual should
have the right:

(a) to obtain from a data controller, or otherwise, con-
firmation of whether or not the data controller has
data relating to him;

(b) to have communicated to him, data relating to him:

• within a reasonable time;

• at a charge, if any, that is not excessive;

• in a reasonable manner; and

• in a form that is readily intelligible to him;

(c) to be given reasons if a request made under sub-
paragraphs(a) and (b) is denied, and to be able to
challenge such denial; and

(d) to challenge data relating to him and, if the chal-
lenge is successful to have the data erased, rectified,
completed or amended.

8. Accountability Principle: A data controller should be
accountable for complying with measures which give
effect to the principles stated above .

