Squealing Euros: Privacy Protection in RFID-Enabled Banknotes

Ari Juels RSA Laboratories Ravikanth Pappu Thing Magic LLC

What is a **R**adio-Frequency **Id**entification (RFID) tag?

• In terms of appearance...

What is an RFID tag?

- You probably own a few RFID tags...
 - Contactless physical-access cards
 - Automated toll payment
 - Inventory tags
- An RFID tag simply calls out its (unique) name or static data at a range of several meters

There is an impending explosion in RFID-tag use

- Gillette has just ordered 500,000,000 RFID tags
 - Roughly two for every inhabitant of U.S.
 - "Smart shelf" application
- Auto-ID Center at MIT
 - Walmart, Gillette, etc.
 - RFID tags as next-generation barcodes
 - 2005: \$0.05 per tag
 - 2008: \$0.01 per tag

Euro banknotes

• European Central Bank plans to implant RFID tags in banknotes by 2005

- Uses:
 - Anti-counterfeiting
 - Tracking of illicit monetary flows

Other possible uses

• More efficient mugging

- Fairly easy tracking of people and transactions by *anyone!*
 - Law-enforcement snooping capabilities made freely available

The two messages of this talk

1. Deployed naïvely, embedding of RFID tags in Euro notes presents a serious danger to privacy

2. The danger need not be quite so severe: There are reasonably practical ways to protect privacy.

The capabilities of RFID tags

- Little memory
 - Static 64-bit identifier in current ultra-cheap generation (five cents / unit)
 - Hundreds of bits soon
- Little computational power
 - A few thousand gates
 - *No* cryptographic functions available
 - Static keys for read/write permission

What is meant by "naïve"?

- No technical details released by ECB thus "security through obscurity"
 - Yet reverse-engineering a cheap RFID tag unlikely to be hard...
- Simple static identifiers are the most naïve
- How about encrypting ID?
 - Creates new static identifier, i.e., "meta-ID"
- How about a law-enforcement access key?
 - Tag-specific keys require initial release of identity
 - Universal keys subject to interception / reverse-engineering

Protecting privacy in RFID tags

- To thwart tracking, appearance of ID should *change*
- No crypto on RFID tag

 (With public-key crypto, good approaches possible)
- **First key idea:** Periodically re-encrypt ID in *external* computing agent

El Gamal cryptosystem

- Work in group **G** of order **q**
 - For semantic security, Decision Diffie-Hellman hard
 - Published generator g
- Key generation:
 - Private key is $x \in_{\mathrm{U}} Z_q$
 - Public key is $y = g^x$
- To encrypt message $m \in G$:
 - Select encryption factor $r \in_{\mathrm{U}} Z_q$
 - Ciphertext is $C = (my^r, g^r) = (a, b)$
 - Plaintext computable as $m = (a / b^x)$
- We write $C = E_y[m,r]$

First key idea: Periodic re-encryption

- We encrypt banknote serial numbers (IDs) using El Gamal
 - Public key y is published law-enforcement key
 - Authorities can decrypt any ID using x
- Thus, banknote with serial number *ID* carries ciphertext $C = E_{y}[ID,r]$

First key idea: Periodic re-encryption

• El Gamal has a special feature: It is possible to *blind* or *re-encrypt* a ciphertext without knowledge of plaintext or private key

 $-C' = \mathbf{E}_{y}[m,s]$

First key idea: Periodic re-encryption

Presents an integrity problem: Rogue agents
 Access to banknotes must be controlled

Second key idea: Restrict access via optical channel

Re-encryption by optical devices in shops, e.g., check-verification machines

Third idea: Permit ciphertext-verification by agent

Putting it together

- Consumer carries banknote *ID* with ciphertext *C* into shop
- Shop does the following:
 - Optically reads printed key K
 - Uses **K** to gain read access to **r**
 - Reads *C* from RFID tag
 - Checks correctness of C using knowledge of r
 - Re-encrypts *ID*
 - Re-writes *C*' to RFID tag

Also in the paper

- Use of digital signature scheme to mitigate risk of *ID* forgery
 - Special technical requirements on this scheme
- Security definitions
 - What does it mean to breach privacy in this system?
- Cost analysis
 - Bottom line: at most 780 bits of storage if we use ECC

How well have we done?

- Privacy is clearly better than for naïve approaches
- Cloning attacks are possible
 - Equally easy against naïve systems
 - Possible countermeasure: Tie re-encryption factor cryptographically to shop identity
- Major drawback: Re-encryption perhaps not frequent enough

- Durable and flexible foil linings for European wallets
- Other approaches...

To Learn More

- Auto ID center at MIT
- Steve Weis master's thesis and papers – symmetric-key crypto; passive attacks
- Papers discussed here:
 - "Squealing Euro" paper
 - Google ← "Ari Juels"
 - "Blocker" paper
 - Google ← "Ron Rivest"
 - Universal re-encryption paper, pseudonym paper
 - Upon request