
A Fuzzy Vault Scheme

Ari Juels1 and Madhu Sudan2

1 RSA Laboratories
Bedford, MA 01730, USA

E-mail: ajuels@rsasecurity.com
2 MIT Laboratory for Computer Science

200 Technology Square, Cambridge, MA 02139
E-mail: madhu@mit.edu

Abstract. We describe a simple and novel cryptographic construction
that we refer to as a fuzzy vault. A player Alice may place a secret value
κ in a fuzzy vault and “lock” it using a set A of elements from some
public universe U . If Bob tries to “unlock” the vault using a set B of
similar length, he obtains κ only if B is close to A, i.e., only if A and B

overlap substantially. In constrast to previous constructions of this flavor,
ours possesses the useful feature of order invariance, meaning that the
ordering of A and B is immaterial to the functioning of the vault. As
we show, our scheme enjoys provable security against a computationally
unbounded attacker.

Keywords: biometrics, error-correcting codes, fuzzy commitment, fuzzy vault

1 Introduction

Alice is a movie lover. She is looking to find someone who shares her taste in
movies, but does not want to reveal information about her preferences indis-
criminately to other people. One approach she might take is to compile a set
A of her favorite movies and publish it in a concealed form. For instance, Alice
might post to a Web newsgroup a ciphertext CA representing an encryption of
her telephone number telA under the set (here, key) A. In this case, if another
person, say Bob, comes along with a set B of his own favorites that is identical
to A, then he can decrypt CA and obtain Alice’s phone number. If Bob tries to
decrypt CA with a set different than Alice’s, he will fail to obtain her telephone
number. A drawback to this approach is its exactitude, or lack of error-tolerance.
If Bob’s interests are very similar to Alice’s, e.g., if he likes two or three films
that Alice doesn’t, then he will not learn telA. It seems very likely in this case,
though, that Alice would still like Bob to obtain her telephone number, as their
tastes are quite similar.

In this paper, we introduce the notion of a fuzzy vault. This is a cryptographic
construction whereby Alice can lock her telephone number telA using the set A,
yielding a vault denoted by VA. If Bob tries to unlock the vault VA using his
own set B, he will succeed provided that B overlaps largely with A. On the

other hand, anyone who tries to unlock VA with a set of favorite movies differing
substantially from Alice’s will fail, helping to ensure that Alice’s set of favorites
remains private. Thus, a fuzzy vault may be thought of as a form of error-tolerant
encryption operation where keys consist of sets. Our fuzzy vault proposal has
two important features that distinguish it over similar, prior work. First, the
sets A and B may be arbitrarily ordered, i.e., true sets rather than sequences.
Second, in contrast to previous work, we are able to prove information-theoretic
security bounds over some natural non-uniform distributions on the set A.

Error-tolerant cryptographic algorithms are useful in many circumstances
in which security depends on human factors, and thus exactitude represents a
drawback. We offer just a few examples here, all of which might benefit from use
of our fuzzy vault scheme:

1. Privacy-protected matching: As an extension of our movie lover’s exam-
ple above, we might consider a business scenario. Bisco Corp. is looking to
sell routers possessing a set A = {a1, a2, . . . , ak} of specifications. It might
publish a fuzzy vault VA with its identity κ, locked under A. If Disco Corp. is
looking for routers with a set B of similar specifications, then it will be able
to open the vault. Anyone who tries to unlock the vault with a dissimilar set
will not learn κ. (We address this idea in detail later in the paper, and decribe
an important security enhancement using on-line throttling mechanisms.)

2. Personal entropy systems: Proposed by Ellison et al. [10], this is a system
that enables users to recover passwords by answering a series of questions.
In recognition of the unreliability of human memory, the system permits
users to answer some of these questions incorrectly. A serious vulnerability
in this system is exposed in [4], who show more broadly that the underlying
hardness assumption is weak. Our fuzzy vault scheme offers an alternative
implementation that is provably secure in an information-theoretic sense and
that may involve use of sets, and not just fixed-order answers.

3. Biometrics: Alice authenticates to her server using fingerprint information.
Her system administrator wishes to store her fingerprint on the server or,
more precisely, a set A of features characterizing her fingerprint. (Such sets
are known as biometric templates.) If an attacker breaks into the server,
however, Alice does not want her template A compromised. An additional
complication is that biometric systems are error-prone: When Alice tries to
authenticate herself, her fingerprint reader is likely to produce a template
A′ that is similar to, but not identical to A (with bit errors and random
permutation and erasure of elements). Alice might store a PIN locked in a
fuzzy vault on a set A of features describing her fingerprint, thereby achieving
both error-tolerance and privacy. Note that order-invariance is critical here.
It is usually not possible to impose an order effectively on biometric features
because of the problem of erasures. For this reason, previous schemes like
that of Juels and Wattenberg [15] described below are unlikely to work well
for this problem.

1.1 Previous work

A somewhat less näıve approach to a fuzzy vault construction than straightfor-
ward encryption might be achieved through use of Shamir secret sharing tech-
niques [23]. Alice partitions her secret value κ into shares s1, s2, . . . , sn, and
encrypt these shares respectively under each of the elements a1, a2, . . . , an in her
set A. This would yield a set of ciphertexts e1, e2, . . . , en. Given use of a (t, n)-
secret sharing scheme, Bob would only need to decrypt t shares successfully in
order to unlock Alice’s secret κ. The problem with this approach is twofold.
First, suppose that Bob’s set B consists of elements b1, b2, . . . , bn. Because A
and B are unordered sets, Bob has no way of knowing which of the ciphertexts
ei to try to decrypt with a given set element bj . Even if Bob tries all n2 pos-
sible decryption operations, there is a second problem: He still does not know
which decryptions were successful. Straightforward mechanisms to reveal this
information to Bob leak substantial information about A. Indeed, this may be
regarded as the source of the weakness in, e.g., the Ellison et al. construction. It
is also possible for Bob to try to deduce by means of a brute-force search which
elements of B do not overlap with those of A. This strategy is inflexible and
likely to be prohibitively slow in many practical scenarios, as the computational
requirements grow exponentially in the size of |A ⋂

B|.
Another idea that does not work well is that of imposing a common order-

ing on the sets A and B and then using a fuzzy vault construction or similar
technique that does not have the property of order invariance, e.g., [15]. This
appeoach fails because a small difference between sets can produce large differ-
ences in an ordered element-by-element comparison. Suppose, for example, that
A and B again represent respective lists of Alice and Bob’s favorite movies. If Al-
ice and Bob’s favorites include all Oscar winners, except that Alice does not like
Antonia’s Line, then a movie-by-movie comparison of these lists in alphabetical
order will yield almost no matches, while in fact A and B overlap consider-
ably. This problem also applies to attempts to impose ordering on features in
biometric systems.

To overcome these difficulties, we invoke error-correcting codes as the basis
for our construction. Given the strong technical and historical affinities between
error-correcting codes and cryptographic codes, it is not surprising that error-
correcting codes appear in many areas of cryptography, such as quantum cryp-
tography [2, 6], public-key cryptography (via the well known McEliece cryptosys-
tem) [18], identification schemes [26], digital signature schemes [1], and crypt-
analytic techniques [13], just to name a few examples. We do not explore this
extensive branch of the literature here. We note, however, that Reed-Solomon
codes, the most popular form of error-correcting code and the one we focus on
here, may be viewed as a general, error-tolerant form of Shamir secret sharing.

The starting point for our fuzzy vault construction is the fuzzy commitment
scheme of Juels and Wattenberg [15], which is also based on the use of error-
correcting codes. This is a cryptographic primitive whereby a user commits to
a secret value κ under a key x. The user may decommit using any key x′ that
is “close” to x under some suitable metric, such as Hamming distance. An at-

tacker without any knowledge of x, however, cannot feasibly decommit κ. One
application of fuzzy commitment, as suggested by the authors, is to securing
biometric systems, as described above. An enrolled fingerprint image (known as
a template), for example, might be viewed as a key x. The user tries to authen-
ticate using another, slightly different image of the same finger, which we may
denote by x′. Authentication is successful if and only if x′ is “close” to x.

As the fuzzy commitment scheme in [15] is antecedent to our own, it is worth
briefly sketching the details. Let F be a field, and C be the set of codewords
for some error-correcting code; assume that codewords lie in Fn. To commit
to a value x ∈ Fn, the user selects a codeword c uniformly at random from C
and computes an offset of the form δ = c − x ∈ Fn, i.e., the difference over
individual field elements. The commitment then consists of the pair (δ, y), where
y = h(c) for some suitable one-way function h. To decommit using key x′, the
user computes δ + x′ and, if possible, decodes to the nearest codeword c′. The
decommitment is successful iff h(c′) = y.

The construction in [15] has the advantageous features of conceptual simplic-
ity and the ability to make use of any underlying error-correcting code. Moreover,
provided that x is drawn uniformly at random from Fn, the scheme enjoys rigor-
ously proveable security linear in the cardinality of C. Suppose that the attacker
gains no information about c or x from y, as would be the case under a random
oracle assumption on h given sufficiently large security parameters. It is easy to
see then that the task of the attacker is to guess c uniformly over C. A similar,
less resilient antecedent scheme is proposed in [7, 8], while another system with
similar goals but no rigorously provable security characteristics is proposed in
[24, 25].

Note that if the hashed value h(c) is removed from the Juels and Watten-
berg scheme, i.e., if we no longer think of it as a commitment scheme, then we
obtain a kind of fuzzy vault in which the vault itself is equal to δ. If x is uni-
formly distributed, then the scheme enjoys easily provable information-theoretic
security, i.e., security against a computationally unbounded attacker (also pro-
portional to the cardinality of C). Like our own fuzzy vault construction, this
one can also be applied to any of the three practical scenarios described above,
i.e., privacy-protected matching, personal entropy systems, or biometrics.

As a fuzzy vault variant, though, the scheme of Juels and Wattenberg has two
shortcomings. First, while it tolerates some number of errors in the information
symbols in x, it does not tolerate substantial re-ordering of these symbols. Given
that translation and rotation errors are common in, e.g., biometric systems, it is
reasonable to expect that the image x′ may consist of a permutation of symbols
in x. The property of order-invariance is thus likely to be desirable in a fuzzy
commitment scheme. A second shortcoming of [15] is the difficulty of proving
rigorous results about security over non-uniform distributions. Our proposed
scheme addresses these two shortcomings, and may be thought of as an order-
invariant version of the Juels-Wattenberg scheme.

The present work has appeared previously in the form of a one-page abstract
[?].

1.2 Our scheme

Like the scheme of Juels and Wattenberg, ours is conceptually simple, and can
be implemented using any underlying error-correcting code (although we focus
on Reed-Solomon codes in our exposition here). While possessing the advantages
of order-invariance and easier analysis on non-uniform distributions, our scheme
does have a couple of drawbacks that are important to note from the outset.
First, it typically has substantially greater – though still quite practical – mem-
ory requirements than the Juels-Wattenberg scheme. Second, it is somewhat less
flexible in terms of available parameter choices at a given security level, as we
shall see.

Let us briefly sketch the intuition behind our scheme. Suppose that Alice
aims to lock a secret κ under set A. She selects a polynomial p in a single
variable x such that p encodes κ in some way (e.g., has an embedding of κ
in its coefficients). Treating the elements of A as distinct x-coordinate values,
she computes evaluations of p on the elements of A. We may think of Alice as
projecting the elements of A onto points lying on the polynomial p. Alice then
creates a number of random chaff points that do not lie on p, i.e., points that
constitute random noise. The entire collection of points, both those that lie on
p and the chaff points, together constitute a commitment of p (that is, κ). Call
this collection of points R. The set A may be viewed as identifying those points
in R that lie on p, and thus specifying p (and κ). As random noise, the chaff
points have the effect of concealing p from an attacker. They provide the security
of the scheme.

Suppose now that Bob wishes to unlock κ by means of a set B. If B overlaps
substantially with A, then B identifies many points in R that lie on p, so that Bob
is able to recover a set of points that is largely correct, but perhaps contains a
small amount of noise. Using error correction, he is able to reconstruct p exactly,
and thereby κ. If B does not overlap substantially with A, then it is infeasible
for Bob to learn κ, because of the presence of many chaff points. (If B overlaps
“somewhat”, then he may still be able to recover κ. The gap between feasible
recovery and infeasible is fairly small, however, as we discuss below.) We present
details and analysis in the body of the paper.

The hardness of our scheme is based on the polynomial reconstruction prob-
lem, a special case of the Reed-Solomon list decoding problem [4]. Other schemes
making use of this problem include, for example, the scheme proposed by Mon-
rose, Reiter, and Wetzel for hardening passwords using keystroke data [19]. An
important difference between our scheme and previous ones of this flavor is our
range of parameter choices. The [19] scheme bases its security on the compu-
tational hardness of small polynomial reconstruction instances, while we select
parameters enabling us to achieve information theoretic security guarantees for
the same problem.

Organization

We sketch protocol and security definitions for our scheme in section 2. In sec-
tion 3, we present protocol details for our fuzzy vault scheme. We offer security

analysis in section 4, and conclude briefly with some implementation ideas in
section 5. Security proofs are included in the paper appendix.

2 Definitions and Background

We work over a field F of cardinality q and a universe U ; for convenience, we
assume in our exposition that U = F , although this need not be the case in
generally. Our aim is to lock a secret value κ ∈ Fk under a secret set A ∈ U t =
F t, for protocol parameters k and t. We consider a fuzzy vault algorithm Lock

that takes as input a secret κ and set A and outputs a vault VA ∈ Fr for some
security parameter r. The algorithm Lock may be (and for our purposes will
be) probabisetic.

A corresponding decryption algorithm Unlock takes as input a vault VA ∈
Fr and a decryption set B ∈ U t. The output of this algorithm is a plaintext
value κ′ ∈ Fk, or else ′null′ if the algorithm is unable to extract a plaintext.

Our goal is to come up with a pair of vault locking/unlocking algorithms
Lock/Unlock that allows reconstruction of the plaintext κ when the decryp-
tion set B is close to the encryption set A. At the same time, we want the vault
VA not to reveal κ. Recall from above that we are interested in algorithms that
are order invariant. In other words, the ordering on the sets A and B should
have no real impact on the locking and unlocking procedures.

2.1 Requirements

The next three definitions formalize the requirements of a good pair (Lock,Unlock)
of algorithms for our fuzzy vault scheme. We say that a probability is negligible
if it is asymptotically smaller than any positive polynomial in t and r. We say
that a probability is overwhelming if it is larger than 1 − ζ for some negligi-
ble quantity ζ. Our first definition outlines the completeness condition for our
algorithms, i.e., what should happen when the players are honest.

Definition 1. An locking/unlocking pair (Lock,Unlock) with parameter set
(k, t, r) is complete with ε-fuzziness if the following holds. For every κ ∈ Fk

and every pair of sets A, B ∈ U t such that |A − B| ≤ ε, it is the case that
Unlock(B,Lock(A, κ)) = κ with overwhelming probability.

We now formalize the security, and in particular the soundness of the algo-
rithmic pair (Lock,Unlock) in an information-theoretic sense. Assume that A
is selected according to some potentially non-uniform distribution d. We seek to
characterize the ability of an attacker with unlimited computational power to
determine κ from Lock(A, κ). We assume that this attacker is given knowledge
of a uniformly random δ-fraction of A, i.e., a random subset A′ of at most δt
elements in A (where we assume δt to be an integer). This assumption that the
adversary has knowledge of part of the secret key A is slightly unorthodox. In a

“fuzzy” system, however, it is natural to consider such notions of partial adver-
sarial knowledge, as highlighted in our examples below. Of course, other security
assumptions are possible.

We characterize security in terms of the following experiment with a compu-
tationally unbounded adversary Adv for a given parameter set. This adversary
Adv takes as input a set of δt elements of A, the parameters t and k, and
a vault VA on A, and outputs a guess at κ. Formally, Adv is an algorithm
Adv : Uδt×Z2×Fr → Fk with no bound on computational complexity. Let ∈d

denote selection from probability distribution d, and ∈U denote uniform random
selection. Here, and in all analysis that follows, we assume that κ is generated
uniformly at random, as κ is typically used as a key for some independent ci-
phertext or cryptographic protocol. Let {A}i denote the set of subsets of A of
cardinality i. The experiment is as follows.

Experiment Attack(Lock, Adv)
κ ∈U Fk; A ∈d U t; A′ ∈U {A}δt;
if Adv(A′, t, k,Lock(A, κ)) = κ

Output′1′;
else

Output′0′;

This leads to the following definition.

Definition 2. An encryption/decryption pair (Lock,Unlock) is information
theoretically secure with parameter pair (δ, µ) if pr[Attack(Lock, Adv) = 1] ≤ µ
for any computationally unbounded adversary Adv.

Let d′ be the probability distribution d restricted to sets A such that A′ ⊂ A.
Observe that given vault VA, the best strategy a (computationally unbounded)
adversary can adopt is to output a plaintext κ′ such that the expression

w(κ′, VA) = prA∈
d′Ut [Lock(A, κ′) = VA]

is maximized. For a given vault VA = Lock(A, κ), the probability of success of
this strategy is easily seen to be w(κ, VA)/

∑

κ′∈Fk w(κ′, VA).

Remark: Note that our definition of information theoretic security does not nec-
essarily imply that the secret κ is fully protected in an information theoretically
secure manner. In particular, we may have mutual information I(Lock, κ) > 0.
This is to say that our scheme may offer information theoretic hiding of κ over
a set of possible values smaller than Fk.

2.2 Reed-Solomon codes

It is possible to construct a fuzzy vault scheme based on essentially any type of
linear error-correcting code. To sharpen our conceptual focus and analysis, how-
ever, we restrict our attention to Reed-Solomon (R-S) codes. We are interested

primarily in (k, t)-codes, i.e., those in which codewords consist of t information
symbols, i.e., field elements. Each codeword corresponds to a unique polynomial
p of degree less than k over F ; thus there are qk codewords in total. In the
simplest embodiment of such an R-S code, we may express a codeword as the
sequence {y1 = p(1), y2 = p(2), . . . , yt = p(t)}, where 1, 2, . . . , t represent the
first t elements of the field F .

If t > k, then a codeword may be seen to contain some redundancy. The
presence of such redundancy is what permits the code to be used for error cor-
rection. Suppose that c′ = {y′

1, y
′
2, . . . , y

′
t} is a corruption of the codeword c. In

other words, we have y′
i 6= yi for some ε-fraction of the information symbols

in c′. Provided that ε is small enough, the redundancy of the code is such that
given just the corrupted codeword c′, we can recover the original codeword c. For
this, we use a decoding algorithm that we denote by RSdecode. The algorithm
RSdecode takes c′ as input, and provided that too much corruption has not
occurred, outputs c.

The most common application of a Reed-Solomon or other error-correcting
code is to message transmission over a noisy channel. For this, the procedure is
as follows. The sender takes a message κ ∈ Fk and encodes it as a polynomial
of degree at most k. The sender computes the corresponding codeword c and
transmits it over a noisy channel. The noise on the channel causes a corrupted
codeword c′ to be obtained by the receiver. The receiver applies RSdecode to
c′, obtains c, and recovers the original polynomial p and thus the message κ.
As we shall see, in our scheme we may think of the noise on the channel as
arising from differences between the sets A and B. By guessing A inaccurately,
Bob introduces noise into the channel transmitting κ. (In contrast, the fuzzy
commitment scheme in [15] never actually makes explicit use of the message
space.)

2.3 Our special use of Reed-Solomon codes

For our constructions, it is convenient to consider a generalization of Reed-
Solomon codes. We think of a codeword as consisting of an evaluation of a
polynomial p over any set of t distinct points in F . In other words, we think of
a codeword as consisting of a set of pairs {(xi, yi)}ti=1, where xi ∈ F , all of the
xi are distinct, and yi = p(xi).

In this generalized view, the decoding algorithm RSdecode takes as input a
collection of points which are presumed to lie preponderantly on a single polyno-
mial of pre-specified degree at most k−1. The RSdecode algorithm, if successful,
outputs a polynomial p intersecting the large majority of input points.3 Oth-
erwise, the algorithm outputs ′null′. This will happen, for instance, if no poly-
nomial of the right degree matches the inputs adequately, or if computation of
such a polynomial is too hard because of too much corruption of the associated
codeword. The following are parameter specifics for the algorithm RSdecode.
3 So-called set decoding algorithms may in fact produce a set of candidate polynomials.

We assume that a successful algorithm outputs one of these selected uniformly at
random from the entire set.

Public parameters: A field F .

Input: A degree parameter k ≤ q and a set of points Q = {(xi, yi)}
t

i=1 such that
xi, yi ∈ F for 1 ≤ i ≤ t.

Output: A polynomial p of degree less than k over F , or else ′null′. We write RSdecode(k, Q)

to denote the output on inputs k and Q.

For our (practical) purposes, the best choice for RSdecode is generally the
classical algorithm of Peterson-Berlekamp-Massey [3, 17, 21]. This algorithm
decodes successfully if at least k+t

2 points in Q share a common polynomial.
The best version of RSdecode to date, i.e., the one most likely to recover p
successfully, is that of Guruswami and Sudan [12]. This algorithm successfully
determines p provided that the number of points in Q that lie on p is at least√

kt. Our preference for the classical algorithm is based on the fact that this
algorithm is in general much more efficient than the Guruswami-Sudan, and has
the advantage of being well studied and widely implemented. Moreover, for many
of the parameter choices we are likely to encounter in practice, k+t

2 is fairly close

to
√

kt.

3 The Fuzzy Vault Algorithms

We are now ready to detail our locking and unlocking algorithms for our fuzzy
vault scheme. We first present the algorithm Lock. The basic idea here is to
create a generalized Reed-Solomon codeword representing the secret κ (as a
corresponding polynomial p). This codeword is computed over x-coordinates
corresponding to elements in the set A. To conceal the codeword, we add chaff
points, i.e., random noise in the form of random (xi, yi) pairs.

In our exposition here, we assume some straightforward, publicly agreed-
upon method for representing the secret κ as a polynomial (e.g., taking the
information symbols in κ to be the coefficients of the polynomial). We simply
write p ← κ to represent this conversion. We let ∈U denote uniformly random
selection from a set.

Public parameters: A field F , a Reed-Solomon decoding algorithm RSdecode.

Input: Parameters k, t, and r such that k ≤ t ≤ r ≤ q. A secret κ ∈ Fk. A set
A = {ai}

t

i=1, where ai ∈ F .

Output: A set R of points {(xi, yi)}
r

i=1 such that xi, yi ∈ F .

Algorithm Lock

X, R← φ;
p← κ;
for i = 1 to t do

(xi, yi)← (ai, p(ai));
X ← X bigcup xi;

R← R
⋃

(xi, yi);

for i = t + 1 to r do

xi ∈U F −X;

yi ∈U F − {p(xi)};
R← R

⋃

(xi, yi);

output R;

So as not to leak information about the order in which the xi are chosen, the set
R may be output in a pre-determined order, e.g., points in order of ascending
x-coordinates, or else in a random order. Note that chaff points in Lock are
selected so as to intersect neither the set A nor the polynomial p. This is for
technical reasons, namely to simplify our security proofs. We refer to the set R
and the parameter triple (k, t, r) together as a fuzzy vault, denoted by VA.

As explained above, to unlock a vault VA created by Alice as above, Bob
tries to determine the codeword that encodes the secret κ. Recall that the set
A specifies the x-coordinates of “correct” points in R, i.e., those that lie on the
polynomial p. Thus, if B is close to A, then B will identify a large majority of
these “correct’ points. Any divergence between B and A will introduce a certain
amount of error. Provided that there is sufficient overlap, however, this noise
may be removed by means of a Reed-Solomon decoding algorithm. We write
κ′ ← p to denote conversion of a polynomial of degree at most k to a secret in

Fk, i.e., the reverse of the procedure employed in Lock. We let (xi, yi)
(bi,◦)←− R

denote projection of R onto the x-coordinate bi. In particular, if there is a pair
(bi, y) ∈ R for any y, then (xi, yi) = (bi, y); otherwise a null element is assigned
to the pair (xi, yi). Our unlocking algorithm is now as follows.

Public parameters: A field F , a Reed-Solomon decoding algorithm RSdecode.

Input: A fuzzy vault VA comprising a parameter triple (k, t, r) such that k ≤ t ≤ r ≤ q

and a set R of points {(xi, yi)}
r

i=1 such that xi, yi ∈ F . A set B = {bi}
t

i=1, where bi ∈ F .

Output: A value κ′ ∈ Fk
⋃

{′null′}.

Algorithm Unlock

Q← φ;

for i = 1 to t do

(xi, yi)
(bi,◦)←− R;

Q← Q
⋃

(xi, yi);

κ′ ← RSdecode(k, Q);

output κ′;

If the final decoding operation is successful, then the algorithm outputs a
secret κ′ which should be equal to κ if the set B is close to the original set A. If
the decoding operation fails, then the algorithm outputs ′null′.

The following proposition characterizes the completeness of our fuzzy vault
scheme.

Proposition 3. Given use of the Peterson-Berlekamp-Massey algorithm for RSdecode,
the algorithm pair (Lock,Unlock) above with parameter triple (k, t, r) is com-
plete with (t−k

2)-fuzziness.

As an example of how the above algorithms might be applied, we briefly
consider a parameterization of k and t in what we call the movie lover’s problem,
i.e., the problem described above in which Alice is seeking someone with similar
taste in movies. We defer discussion of security parameters for the next section.

Example 1 (The movie lover’s problem). Let us consider the movie lover’s prob-
lem with a total set of 104 titles in which Alice selects a set A of t = 22 different
favorites.4 We might choose k = 14. Since k+t

2 = 18, another movie lover with a
set B of 22 favorite titles will be able to decrypt the digital box via the Peterson-
Berlekamp-Massey algorithm provided that the original set A and the new set
B intersect on at least 18 titles. Notice that for this choice of parameters, it is
feasible to compute all possible subsets of size 18 from the set of size 22, and
try interpolating from each subset. This would result, however, in an average
of 3657.5 trials, while the cost of one decoding step is easily within an order of
magnitude of one interpolation step. Thus the use of RSdecode speeds up5 the
decommitment step by at least a factor of 300.

4 Security

The security of our fuzzy vault construction depends on the number of chaff
points r − t in the target set R. The greater the number of such points, the
more “noise” there is to conceal p from an attacker. As many chaff points are
added to R, there begins to emerge a set of spurious polynomials that look
like p, i.e., polynomials that have degree less than k and agree with exactly
t points in R. Briefly stated, the more chaff points there are, the greater the
probability that some set of t of these chaff points (and/or real points) align
themselves by chance on some polynomial of the desired degree. In the absence
of additional information, an attacker cannot distinguish between the correct
polynomial p and all of the spurious ones. Thus, p is hidden in an information-
theoretically secure fashion in R, with security proportional to the number of
spurious polynomials. Note that the security of the vault VA depends exclusively
on the number of such polynomials, and not on the length of the secret key κ;
the vault is often weaker than the secret κ it protects (which is acceptable for the
applications we describe). The following lemma proves that with high probability
many polynomials degree less than k agree with the target set R in t places, i.e.,

4 We consider 22 titles, as this is the number of password questions used in [10], which
seems a good example application for our ideas.

5 Another way of viewing this is that the fuzzy vault algorithm can be enhanced by
additional use of brute-force search, thereby improving the security threshold. This
improvement can be made substantial without a loss of speed relative to the pure
brute-force algorithm.

that there are many spurious polynomials. This lemma and its proof are based
on similar results of Dumer et al. [9].

Recall that the locking algorithm Lock picks t points according to a given
p of degree less than k and r − t random points (xi, yi) in F × F and outputs
this set in random order as a vault hiding p (i.e., κ). Recall that q denotes the
cardinality of F . The following lemma is parameterized by r, k, and t and a small
real number µ. Proof of the lemma may be found in the appendix.

Lemma4. For every µ > 0, with probability at least 1 − µ, the target set R
generated by the algorithm Lock on polynomial p and locking set A satisfies the
following condition: There exist at least µ

3 qk−t(r/t)t polynomials p′ of degree less
than k such that R includes exactly t points of the form (x, p′(x)) ∈ F ×F .

Example 2. As an example, consider the following choice of parameters. Suppose
we pick a field of size approximately q = 104, and set r = q. Now let t = 22, i.e.,
the movie lovers pick twenty-two of their favorite movies out of a choice of q, and
we chaff the data with q−22 random points. Suppose we use this information to
encrypt a polynomial of degree less than 14 (as in our earlier example). Then we
expect to see about 286 polynomials of degree less than 14 agreeing with 22 out
of the roughly 104 points in R. In particular, with probability at least 1− 2−43,
there will be 243 polynomials exhibiting this behavior. (Thus, we achieve what
may be roughly characterized as a 43-bit security level.)

The example above suffers from a significant loss in security due to a näıve
transformation of expected values to high probability results in the proof of
Lemma 4. We believe that this loss in security is just an artifact of the proof, and
that the true answer is perhaps more along the lines “With probability at least
1− 2−83, there are 283 polynomials agreeing with the given data on 22 points.”
(Thus, we get roughly 83-bit security.) Again, this conjecture remains open at
this stage. For the moment, however, we try a different choice of parameters to
strengthen our security analysis.

Example 3. Again, we pick r = q ≈ 104 and t = 22. This time we use this infor-
mation to encrypt a polynomial of degree less than 18. The decommitment works
correctly with 20 agreements, and the running time is faster than a brute-force
search by a factor of at least 10. Then we expect to see about 2139 polynomials
of degree less than 18 agreeing with 22 out of the approximately 104 points in
Q. In particular, with probability at least 1−2−70, there will be 270 polynomials
exhibiting this behavior. (Thus, we achieve what may be roughly characterized
as a 70-bit security level.)

As stated above, we believe our scheme more amenable to analysis over non-
uniform distributions that that in [15]. As an example, we note that the above
lemma naturally adapts itself to the case where the set of locking sets A are
not all considered equally likely. For simplicity we consider the case where A is

equally likely to come from some family of sets E ⊂ 2U = 2F , i.e., a family of
sets over U = F . We have the following lemma, whose proof is provided in the
appendix.

Lemma 5. For every µ > 0, with probability at least 1 − µ, the target set R
generated by the algorithm Lock to commit to a polynomial p with locking set A
satisfies the following condition: There exist at least µ

3 qk−t|E| polynomials p′ ∈ P
such that R agrees with p′ on some subset of t points in the family E.

Example 4. Consider a variant of the movie lover’s problem where the movie
lover is expected to choose 2 movies each from 10 categories, and each category
consists of 1000 movies. In this case, the distribution on movies has support on

only (
(

103

2

)

)10 sets. The above lemma shows that with r = 104, t = 20 and k = 16,
one expects to find 2106 polynomials of degree at most 15 agreeing with the data
on 20 points, with 2 agreements each from each of 10 categories. As usual, this
can be converted to the following probability statement: With probability at
least 1− 2−53 there exist 253 polynomials of degree at most 15 that agree with
the given data points on two points each in each of the 10 categories. (Thus, we
achieve roughly a 53-bit security level.)

Finally, we give a general characterization of the information-theoretic se-
curity of Lock according to Definition 2. A proof, again, may be found in the
appendix.

Theorem 6. For every δ > 0, the algorithm Lock is (δ, p)-information theoret-

ically secure for p = 2
√

1
3qk−(1+δ)t(r/t)(1−δ)t

Remark: It is possible to make a substantially stronger security claim under rea-
sonable computational assumptions on the hardness of Reed-Solomon decoding,
as done in, e.g., [19]. We do not explore this possibility here, as it is not essential
to our achieving good security results, and there is no general consensus about
appropriate hardness assumptions for this problem.

5 Implementation Issues

In the examples we have given above, the security parameterization is slightly
weak from a cryptographic standpoint. For instance, in example 4, we achieve
roughly a 53-bit security level, slightly weaker than DES, and thus vulnerable
to intensive off-line attack [11]. In many cases, we may address this problem
simply by re-parameterizing the vault, in particular, raising the size t of the
set A. For example, to construct a strong personal-entropy system, we might
require the user to answer 29 questions correctly out of 32 (with t = 32 and
k = 25), thereby achieving a fuzzy vault with 85-bit security, which offers good
cryptographic security for most purposes.

For applications involving privacy-protected matching, such as the movie-
lover’s problem, this approach will not work. The problem here lies not in the

fuzzy vault scheme, but is inherent in the problem of matching people or other
entities. In particular, given that there are only six billion or so people in the
world, if Alice wants to have a good chance of finding a compatible movie lover,
she can at best select a set that can be guessed by a well-informed attacker
with a probability of one in six billion or so. As six billion is equal roughly to
232.3, this means that Alice’s vault can at best be expected to have less than 33-
bit security6 – entirely inadequate for cryptographic purposes. In most scenarios
involving matching, the pool of participants, and thus the best achievable off-line
security, is likely to be even smaller.

For this reason, we propose that fuzzy vaults in such privacy-protecting
matching scenarios are best employed in an on-line setting. Here is a rough,
first sketch of an idea for an on-line version of the movie-lover’s problem. Alice
publishes a fuzzy vault VA encrypting a secret value κ under a set A of her fa-
vorite movies. If Bob wishes to obtain Alice’s telephone number, he tries to open
VA using his set of favorite movies B. If he decodes successfully, he obtains a se-
cret value κ′. Alice and Bob now invoke a password-authenticated key-agreement
protocol (see [5] for a recent example). They use their respective secrets κ and κ′

as passwords for this protocol.7 If κ = κ′, then Alice and Bob will successfully
establish a private channel. Otherwise, they will learn no information about the
secret value of the other party, aside from the fact that κ 6= κ′. By employing
an appropriate throttling mechanism, Alice can restrict the number of overall
queries or queries from a single source so as to restrict information leakage.

This strategy effectively protects Alice’s set A, but enables Alice to attract
inappropriate matches. To illustrate this problem, consider the following simple
strategy. Alice creates a vault VA in which all x-coordinates agree with some
polynomial p. Now, no matter what Bob inserts into his set B, he will think that
Alice has the same favorite movies. This example highlights the important fact
that a fuzzy vault is not, strictly speaking a commitment. In particular, it is not
uniquely binding: Alice may embed multiple sets A1, A2, . . . , Al in a single vault
VA.

There are several ways to avoid this difficulty. One way is for Alice to include
in her vault a cryptographically binding commitment cA to her secret value κ
using, such as, e.g., a Pedersen commitment [20]. Now, Alice participates in the
key agreement protocol with Bob in a manner that binds her to cA (through a
straightforward modification of existing algorithms). This does not ensure that
VA and cA represent the same secret κ, but this condition is not required for
secure matching. A more general, mutually binding protocol is the following.

1. Alice publishes VA on secret κA.

6 It is possible to slow the algorithm Unlock so as to impose a higher computational
burden on an attacker, but this approach still doesn’t offer adequate security here.

7 Alternatively, as a practical alternative more compatible with existing infrastruc-
ture, they can employ the Secure Socket-Layer (SSL) protocol to establish a private,
authenticated channel, and then employ a socialet millionaires’ or similar protocol
to test the condition κ = κ′ in zero knowledge [14, 22]. This method depends upon
one player having an appropriately signed certificate.

2. Bob publishes VB on secret κB .
3. Alice applies Unlock to VB using her set A. If successful, she obtains a

value κ′
B . Otherwise, she aborts.

4. Bob applies Unlock to VA using his set B. If successful, he obtains a value
κ′

A. Otherwise, he aborts.
5. Alice and Bob do a password-authenticated key agreement using respective

passwords (κA ‖ κ′
B) and (κB ‖ κ′

A). (Here, ‖ is some suitable conjunctive
operator.)

Due to lack of space, we do not undertake a formal analysis of this protocol,
but merely note that it binds Alice and Bob to use of their respective vaults VA

and VB . Given use of a zero-knowledge password-authenticated key-agreement
algorithm, the above protocol reveals to Alice and Bob only the information
contained in VA and VB and also whether κA = κB . We reserve defer of such
protocols for further research.

Acknowledgments

The authors wish to extend special thanks to Burt Kaliski for his ideas regarding
Section 5. Thanks also to Daniel Bleichenbacher, Markus Jakobsson, and the
anonymous reviewers of this paper on the Eurocrypt 2000 program committee
for their many helpful comments.

References

1. M. Alabbadi and S.B. Wicker. A digital signature scheme based on linear error-
correcting block codes. In Josef Pieprzyk and Reihanah Safavi-Naini, editors,
Asiacrypt ’94, pages 238–248. Springer-Verlag, 1994. LNCS No. 917.

2. C.H. Bennett, G. Brassard, C. Crépeau, and M.-H. Skubiszewska. Practical quan-
tum oblivious transfer protocols. In J. Feigenbaum, editor, Crypto ’91, pages 351–
366. Springer-Verlag, 1991. LNCS No. 576.

3. E. R. Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.
4. D. Bleichenbacher and P. Nyuyen. Noisy polynomial interpolation and noisy chi-

nese remaindering. In B. Preneel, editor, Eurocrypt ’00, pages 53–69, 2000. LNCS
no. 1807.

5. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using diffie-hellman. In B. Preneel, editor, Eurocrypt ’00, pages 156–
171. Springer-Verlag, 2000. LNCS no. 1807.

6. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In Proceedings of the 29th IEEE Symposium on the Foundations of
Computer Science, pages 42–52, 1988.

7. G.I. Davida, Y. Frankel, and B.J. Matt. On enabling secure applications through
off-line biometric identification. In IEEE Symposium on Privacy and Security,
1998.

8. G.I. Davida, Y. Frankel, and B.J. Matt. On the relation of error correction and
cryptography to an offline biometric based identification scheme. In Proceedings
of WCC99, Workshop on Coding and Cryptography, 1999.

9. I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum
distance of a linear code. In Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 475–484, 1999.

10. C. Ellison, C. Hall, R. Milbert, and B. Schneier. Protecting Secret Keys with Per-
sonal Entropy, pages 311–318. 2000.

11. Electronic Frontier Foundation. Cracking DES: Secrets of encryption research,
wiretap politics & chip design. O’Reilly, 1998.

12. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In FOCS ’98, pages 28–39. IEEE Computer Society, 1998.

13. T. Jakobsen. Cryptanalysis of block ciphers with probabisetic non-linear relations
of low degree. In H. Krawczyk, editor, Crypto ’98, pages 212–222. Springer-Verlag,
1998. LNCS No. 1462.

14. M. Jakobsson and M. Yung. Proving with knowing: On oblivious, agnostic, and
blindfolded provers. In N. Koblitz, editor, Crypto ’96, pages 186–200. Springer-
Verlag, 1996. LNCS no. 1109.

15. A. Juels and M. Wattenberg. A fuzzy commitment scheme. In G. Tsudik, editor,
Sixth ACM Conference on Computer and Communications Security, pages 28–36.
ACM Press, 1999.

16. A. Juels and M. Sudan. A fuzzy vault scheme. In International Symposium on
Information Theory (ISIT), page 408, IEEE Press. 2002.

17. J. L. Massey. Shift register synthesis and BCH decoding. IEEE Transactions on
Information Theory, 15(1):122–127, 1969.

18. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. Tech-
nical Report DSN progress report 42-44, Jet Propulsion Laboratory, Pasadena,
1978.

19. F. Monrose, M. K. Reiter, and S. Wetzel. Password hardening based on keystroke
dynamics. In G. Tsudik, editor, Sixth ACM Conference on Computer and Com-
munications Security, pages 73-82. ACM Press, 1999.

20. T. Pedersen Non-interactive and information-theoretic secure verifiable secret
sharing In J. Feigenbaum, editor, Crypto ’91, pages 129–140. Springer-Verlag,
1991. LNCS No. 576.

21. W. W. Peterson. Encoding and error-correction procedures for Bose-Chaudhuri
codes. IRE Transactions on Information Theory, IT-60:459 – 470, 1960.

22. B. Schoenmakers, F. Boudot, and J .Traoré. A fair and efficient solution to the
sociaset millionaires’ problem. Discrete Applied Mathematics, 2000. To appear.

23. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

24. C. Soutar. Biometric encryption for secure key generation, January 1998. Presen-
tation at the 1998 RSA Data Security Conference.

25. C. Soutar and G.J. Tomko. Secure private key generation using a fingerprint. In
CardTech/SecurTech Conference Proceedings, Vol. 1, pages 245–252, May 1996.

26. J. Stern. A new identification scheme based on syndrome decoding. In D.R. Stin-
son, editor, Crypto ’93, pages 13–21. Springer-Verlag, 1993. LNCS No. 773.

A Proofs

Lemma4. For every µ > 0, with probability at least 1 − µ, the target set R
generated by the algorithm Lock on polynomial p and locking set A satisfies the

following condition: There exist at least µ
3 qk−t(r/t)t polynomials p′ ∈ P such

that R includes at least t points of the form (x, p′(x)) ∈ F ×F .

Proof: We first analyze a modified algorithm whose output is just a collection
of r random points, say (xi, zi) in F × F . We claim that the expected number
of polynomials that agree with this set of points in t places, denoted N , is large.
To see this, fix a polynomial p′ and consider the probability that p agrees with
the set of points in exactly t places. This probability is given by the expression:

(

n

t

)

q−t(1− 1/q)r−t ≥ 1

3

(

r

qt

)t

.

Thus the expected number of polynomials of degree less than k that agree with

t of the r random points is N = 1
3qk

(

r
qt

)t

.

We now revert to our original problem, where the algorithm Lock is not
outputting a random set of points, but rather a set of points t of which are
selected to be from a fixed polynomial p. We will show that in this case the
probability that the number of polynomials in agreement with the output set in
t points is than µN , is at most µ. This yields the lemma as desired. To prove
this part, we construct a (huge) bipartite graph G. The left vertices correspond
to polynomials of degree less than k (i.e., there is one vertex for each such
polynomial). The right vertices correspond to subsets of n points from F×F (i.e.,
there is one vertex for every subset of size r). Two vertices p and R are adjacent
if p agrees with the set in exactly r points. The analysis of the modification
of Lock showed that a average degree of a right vertex is N . Notice that the
algorithm Lock, on the other hand, picks a fixed vertex p on the right and
outputs a random neighbor of this vertex. Our goal is to show that this output
vertex has high degree (say µN) with high probability. Towards this end, we
first notice that the graph G is symmetric about left vertices, i.e., for every pair
of vertices on the left p and p′ there is an automorphism of G that maps p to
p′. Thus it would suffice to consider the right endpoint of a random edge of G
and argue that its degree is at least µN . But this is obviously true since vertices
with degree < µN can only account for a µ fraction of the edges in the graph G.
The lemma is thus proved. ut

Lemma 5. For every µ > 0, with probability at least 1 − µ, the target set R
generated by the algorithm Lock to commit to a polynomial p with locking set A
satisfies the following condition: There exist at least µ

3 qk−t|E| polynomials p′ ∈ P
such that R agrees with p′ on some subset of points from the family E.

Proof: This lemma is proved in exactly the same way as the previous one. The
only change is that the probability that a given polynomial p′ agrees with a
random set of r points in one of the subsets from E reduces to

|E|(1/q)t(1− 1/q)r−t,

and this change percolates through the rest of the proof. ut

Theorem6. For every δ > 0 the algorithm Lock is (δ, µ)-information theoret-

ically secure for µ = 2
√

1
3qk−(1+δ)t(r/t)(1−δ)t.

Proof: As in the proofs of Lemma 4 and Lemma 5, we first argue that given
any µ > 0, E ⊆ U of size t and E ′ ⊆ E of size δt, the data points R have at least
µ
3 qk−(1+δ)t(r/t)(1−δ)t polynomials agreeing with the data points on t points that
include E′ as a subset.

Picking µ =
√

1
3qk−(1+δ)t(r/t)(1−δ)t we get that with probability at least

1−µ, there are at least 1/µ polynomials exhibiting such behavior. By symmetry,
each of these polynomials is equally likely to be the polynomial p that is being
encrypted. Thus the Attack algorithm has at most a 2µ chance of finding p —
success probability of µ, if our encryption is unlucky and there are not too many
polynomials agreeing with the data; and µ is the probability that the encryption
is correct, but the attacker manages to guess it by luck. Thus we get the security
as claimed. ut

This article was processed using the LATEX macro package with LLNCS style

