
Stochastic Hillclimbing as a Baseline Method for Evaluating

Genetic Algorithms

Ari Juels� Martin Wattenbergy

September 28, 1994

Abstract

We investigate the e�ectiveness of stochastic hillclimbing as a baseline for evaluating
the performance of genetic algorithms (GAs) as combinatorial function optimizers. In
particular, we address four problems to which GAs have been applied in the literature:
the maximumcut problem, Koza's 11-multiplexer problem, MDAP (the Multiprocessor
Document Allocation Problem), and the jobshop problem. We demonstrate that sim-
ple stochastic hillclimbing methods are able to achieve results comparable or superior
to those obtained by the GAs designed to address these four problems. We further
illustrate, in the case of the jobshop problem, how insights obtained in the formulation
of a stochastic hillclimbing algorithm can lead to improvements in the encoding used
by a GA.

�Department of Computer Science, University of California at Berkeley. Supported by a NASA Grad-
uate Fellowship. This paper was written while the author was a visiting researcher at the Ecole Normale
Sup�erieure{rue d'Ulm, Groupe de BioInformatique, France. E-mail: juels@cs.berkeley.edu

yDepartment of Mathematics, University of California at Berkeley. Supported by an NDSEG Graduate
Fellowship. E-mail: wattenbe@math.berkeley.edu

1

1 Introduction

Genetic algorithms (GAs) are a class of randomized optimization heuristics based loosely
on the biological paradigm of natural selection. Among other proposed applications, they
have been widely advocated in recent years as a general method for obtaining approximate
solutions to hard combinatorial optimization problems using a minimum of information
about the mathematical structure of these problems. By making use of a general \evolu-
tionary" strategy, GAs aim to maximize an objective or �tness function f : S ! R over a
combinatorial space S, i.e., to �nd some state s 2 S for which f(s) is as large as possible.
(The case in which f is to be minimized is clearly symmetrical.) For a detailed description
of the algorithm see, for example, [14], which constitutes a standard text on the subject.

GAs belong to a larger class of methods known as black-box algorithms { i.e., algorithms
which attempt to optimize a function using a strategy essentially independent of the prob-
lem at hand. As a black-box algorithm, the GA requires very little knowledge about the
combinatorial structure of the problem to be solved, so it is naturally applied to problems
whose structure is poorly understood. In particular, since the optima of these problems are
generally unknown, it is di�cult to choose criteria according to which to assess the GA's
performance. Researchers often resort to comparisons of the GA with extremely na��ve
methods such as random search, or else simply leave the GA to stand on its own. Informed
comparisons with other black-box methods, such as simulated annealing and hillclimbing,
are surprisingly rare.

In this paper, we investigate the e�ectiveness of the GA in comparison with that of
stochastic hillclimbing (SH), a probabilistic variant of hillclimbing. As the term \hillclimb-
ing" suggests, if we view an optimization problem as a \landscape" in which each point
corresponds to a solution s and the \height" of the point corresponds to the �tness of the
solution, f(s), then hillclimbing aims to ascend to a peak by repeatedly moving to an ad-
jacent state with a higher �tness. Hillclimbing represents a very na��ve black-box method,
particularly in comparison with genetic algorithms or simulated annealing. We would hope
at the very least therefore that, in justi�cation of its greater complexity, the GA would be
able to outperform SH on hard combinatorial optimization problems. This is not always
the case, however. As we attempt to demonstrate in this paper, SH proves a more e�ective
optimization method on certain problems which have received a great deal of attention in
the literature as demonstrating areas in which GAs perform strongly. In consequence, we
advocate a more widespread use of SH as a basic litmus test for the performance of the
GA.

A number of researchers in the GA community have already addressed the issue of how
various versions of hillclimbing on the space of bitstrings, f0; 1gn, compare with GAs. An
early e�ort in this direction is to be found in the thesis of Ackley [1], which considers several
varieties of SH on bitstrings in comparison with a method called \stochastic iterated genetic
hillclimbing" (SIGH). Ackley performs his experiments on a suite of test functions of his own
devising and a collection of instances of the minimum-cut graph partition problem. Davis [8]
makes the surprising discovery that hillclimbing on bitstrings outperforms standard GAs on

2

the widely referenced De Jong suite of functions [19], and proposes a modi�cation of these
functions to make them more di�cult for the simpler algorithm. Wilson [31] points out
the existence of some very elementary functions on which GAs can outperform a particular
type of hillclimbing called steepest-ascent. Mitchell and Holland [25] present an extensive
analysis of the relative performances of bitstring-based hillclimbing and GAs on a synthetic
function known as the \Royal Road".

Our investigations in this paper di�er in two important respects from these previous
ones. First, we address more sophisticated problems than the majority of these studies,
which develop test functions exclusively for the purpose of exploring certain state-space
characteristics. We examine in this paper three classical NP-complete problems and a
genetic programming problem. Second, we consider hillclimbing algorithms based on oper-
ators in some way \natural" to the combinatorial structures of the problems to which we
are seeking solutions, very much as GA designers attempt to do. In several cases, our SH
algorithms employ exactly the same encoding as proposed GAs, and adopt operators which
correspond exactly to these GAs' mutation operators. Consequently, in three of the four
problems in this paper, the hillclimbing algorithms we consider operate on structures other
than bitstrings.

The remainder of the paper is organized as follows. We describe in Section 2 the form of
the SH algorithm used in the experiments in this paper and provide details regarding this
algorithm's implementation. In Section 3, we consider four problems for which GA based
approaches have received important attention in the literature. These are the maximum cut
problem, Koza's 11-Multiplexer problem, MDAP (the Multiprocessor Document Allocation
Problem), and the jobshop problem. We design SH algorithms for these problems, and
present the results of experiments demonstrating the superiority of these SH algorithms to
the GAs proposed in the literature. In addition, for the jobshop problem, we show how
were able to improve a GA approach to the problem by making use of the SH algorithm
as a basis for its design. We summarize in Section 4, arguing in favor of SH methods as a
simple litmus test to determine whether or not the relatively complex apparatus of the GA
is justi�ed for a given problem.

2 Stochastic Hillclimbing

The SH algorithm employed in this paper searches a discrete space S with the aim of
�nding a state whose �tness is as high (or as low) as possible. The algorithm does this by
making successive improvements to some current state � 2 S. As is the case with genetic
algorithms, the form of the states in S depends upon how the designer of the SH algorithm
chooses to encode the solutions to the problems to be solved: as bitstrings, permutations, or
in some other form. The local improvements e�ected by the SH algorithm are determined
by the neighborhood structure and the �tness function f imposed on S in the design of the
algorithm. We can consider the neighborhood structure as an undirected graph G on vertex
set S. The algorithm attempts to improve its current state � by making a transition to one

3

of the neighbors of � in G. In particular, the algorithm chooses a state � according to some
suitable probability distribution on the neighbors of �. If the �tness of � is as least as good
as that of � then � becomes the new current state, otherwise � is retained. This process is
then repeated. The algorithm essentially performs a random walk in which moves leading
to a reduced �tness in the current state are rejected. More formally, in the form of a piece
of pseudocode performing SH for M iterations:

� 2R S;

for j = 1 to M
� 2R N(�);
if f(�) � f(�) then

� = � ;

Here 2R indicates random selection over some suitable distribution (which does not
generally depend upon �tness), while N(�) indicates the set of neighbors of �.1

Of course, the possible variations on this algorithm are numerous. A di�erence between
the version presented here and those frequently used in practice is that when neighboring
state � is selected, it is made the new current state when the �tness of � is greater than
or equal to that of �, rather than merely greater. This apparently triing but in fact
signi�cant type of variation often goes unconsidered in implementations of hillclimbing,
even in detailed and comprehensive studies of function optimization heuristics such as [17]
and [18]. In the formulation in this paper, the hillclimbing algorithm is able to explore
\level surfaces," i.e., regions in the search space in which the �tnesses of neighboring states
are equal. In practice, this appears to lead to more rapid discovery of high �tness solutions.
If we required instead that f(�) > f(�), the algorithm could never improve its current state
if � were located in the middle of a level surface.

Another possible generalization involves a consideration of the tradeo� between the
length of individual hillclimbing runs and the number of runs performed in a single experi-
ment. In the case of jobshop, we execute the hillclimbing algorithm multiple times for short
durations rather than in one single run, and �nd that this improves the performance of the
algorithm considerably. We do not explore the issue in any depth in this paper, but it is
potentially an interesting avenue for future investigation.

1This algorithm can be viewed as simulated annealing with the temperature held constant at 0. The
method of annealing at a �xed temperature is sometimes referred to as the Metropolis process. At temper-
ature 0, all transitions leading to states with a \higher energy" (inferior �tness) are rejected, and all others
accepted with probability 1. At higher temperatures, simulated annealing moves to inferior states I with a
probability that depends on the di�erence f(�)� f(I) and the current temperature.

4

3 Maximum Cut, MDAP, GP, and Jobshop

3.1 The Experiments

In this section, we compare the performance of SH algorithms with that of GAs proposed
for four problems: the maximum cut problem, the jobshop problem, MDAP (the Multiple
Document Allocation Problem), and Koza's 11-multiplexer problem. We choose these four
problems in particular because they have received considerable attention as examples on
which GAs perform well. Most of the instances of the problems on which we conduct our
comparisons are drawn directly from the articles in which the GA approaches to these
problems are reported.

We gauge the performance of the GA and SH algorithms according to the �tness of
the best solution achieved after a �xed number of function evaluations, rather than the
running time of the algorithms. This is because evaluation of the �tness function generally
constitutes the most substantial portion of the execution time of the optimization algorithm,
and accords with standard practice in the GA community.

3.2 Maximum Cut

In order to demonstrate the e�ectiveness of the GA as a general combinatorial optimization
method, Khuri, B�ack, and Heitk�otter [20] apply the algorithm to several NP-complete
problems. We compare their results on one of these, the maximum cut problem, with
results obtained by an SH approach.

In its usual formulation, the maximum cut problem takes as inputs an undirected graph
G = (V;E) and a set of positive, integer weights W on E. The objective of the problem
is to partition V into two sets of vertices, V0 and V1, so as to maximize the total weight
of the edges whose endpoints lie in di�erent sets { i.e., edges in V0 � V1. Maximum cut is
NP-complete [13].

The GA Khuri et al. encode a partition for this problem in the form of a bitstring
B = (x1; x2; : : : ; xn), where n is the number of vertices in G. This bitstring B speci�es a
partition in which each vertex i is assigned to set Vxi

.
The GA applied to this encoding employs one-point crossover with a crossover rate of

0.6 and a mutation rate of 1

n
, where n is the length of the bitstrings on which the algorithm

operates. Selection follows a method known as linear-dynamical scaling (see [14] pp. 123-
4). Except in the case of the mutation rate, for which the authors adhere to a di�erent
standard, all parameters in this GA are identical to those in Gre�enstette's GENESIS
software package [16].

The SH Algorithm In this problem, changing a single bit corresponds to the combi-
natorially natural operation of moving a single vertex from one set in the partition to the
other. We therefore employ the same encoding as Khuri et al. in our SH, resulting in an

5

algorithm in which the current state in the search is represented by a bitstring. A neighbor
of the current state is chosen by selecting a single bit uniformly at random and inverting
it. The initial state is a bitstring chosen uniformly at random from f0; 1gn.

Khuri et al. consider three problems: two randomly generated graphs on 20 vertices,
and an explicitly constructed graph on 100 vertices. As they perform their �rst set of
experiments on two �xed instances of 20 vertices, rather than a distribution of randomly
generated graphs, so that we cannot precisely duplicate their experiments, and as these
graphs are somewhat small in any case, we con�ne our investigation to the 100 vertex
graph. The authors construct this graph as a chain of four-vertex components in such a
way that it is easy to demonstrate a unique, optimal cut of weight 1077. For details, see
[20].

Khuri et al. run a GA with a population size of 50 for 1000 iterations, so that their GA
executes a total 50,000 function evaluations. They perform 100 experiments. We compare
their results with those of our SH algorithm run for 50,000 iterations, likewise over 100
experiments.

The following table represents a histogram of the maximal �tnesses attained by each
algorithm over the above experiments:

f GA SH

1077 6 60

1055 12 39
1033 30 1
1011 35
989 12
967 3
945 1

The average �tness achieved by the GA was 1022.66 with a standard deviation of 26.12,
while the average �tness achieved by the SH algorithm was 1067.98 with a standard devi-
ation of 11.26. On this problem instance, the performance of the basic SH algorithm was
markedly superior to that of the GA.

3.3 Genetic Programming

\Genetic programming" (GP) is a method of enabling a genetic algorithm to search a
potentially in�nite space of computer programs, rather than a space of �xed-length solutions
to a combinatorial optimization problem. These programs take the form of Lisp symbolic

6

expressions, called S-expressions. The idea of applying GAs to S-expressions rather than
combinatorial structures is due originally to Fujiki and Dickinson [12] [11], and was brought
to prominence through the work of Koza [22]. The S-expressions in GP correspond to
programs which a user seeks to adapt to perform some pre-speci�ed task. The �tness of
an S-expression may therefore be evaluated in terms of how e�ectively its corresponding
program performs this task. Details on GP, an increasingly common GA application, and
on the 11-multiplexer problem which we address in this section, may be found, for example,
in [22] [21] [23].

The boolean 11-multiplexer problem entails the generation of a program to perform the
following task. A set of 11 inputs is provided, with labels a0; a1; a2; d0; d1; : : : ; d7, where a
stands for \address" and d for \data". Each input takes the value 0 or 1. The task is to
output the value dm, where m = a0 + 2a1 + 4a2. In other words, for any 11-bit string, the
input to the \address" variables is to be interpreted as an index to a speci�c \data" variable,
which the program then yields as output. For example, on input a1 = 1; a0 = a2 = 0,
and d2 = 1; d0 = d1 = d3 = : : : = d7 = 0, a correct program will output a '1', since the
input to the `a' variables speci�es address 2, and variable d2 is given input 1.

The GA Koza's GP involves the use of a GA to generate an S-expression corresponding
to a correct 11-multiplexer program. An S-expression comprises a tree of LISP operators

and operands, operands being the set of data to be processed | the leaves of the tree | and
operators being the functions applied to these data and internally in the tree. The nature
of the operators and operands will depend on the problem at hand, since di�erent problems
will involve di�erent sets of inputs and will require di�erent functions to be applied to
these inputs. For the 11-multiplexer problem in particular, where the goal is to create a
speci�c boolean function, the operands are the input bits a0; a1; a2; d0; d1; : : : ; d7, and the
operators are AND, OR, NOT, and IF. These operators behave as expected: the subtree
(AND a1 a2), for instance, yields the value a1 ^ a2. The subtree (IF a1 d4 d3) yields the
value d4 if a1 = 0 and d3 if a1 = 1 (and thus can be regarded as a \3-multiplexer"). NOT
and OR work similarly. An S-expression constitutes a tree of such operators, with operands
at the leaves. Given an assignment to the operands, this tree is evaluated from bottom to
top in the obvious way, yielding a 0 or 1 output at the root.

Koza makes use of a \mating" operation in his GA which swaps subexpressions between
two such S-expressions. For instance, if the subexpression (NOT d2) were mated with the
subexpression (IF a0 d7 (OR d3 a1)), one pair of possible resulting subexpressions would
be (NOT (OR d3 a1)) and (IF a0 d7 d2). The subexpressions to be swapped are chosen
uniformly at random from the set of all subexpressions in the tree. In every iteration of
the GA, �tness-proportionate crossover, according to the above scheme, is applied to 90%
of the population, while a somewhat involved type of selection known as \overselection" is
applied to the remaining 10%. The �tness of an S-expression is computed by evaluating it
on all 2048 possible inputs, and counting the number of correct outputs. Koza does not
employ a mutation operator in his GA.

7

The SH Algorithm The hillclimbing algorithm we implemented for this problem was
somewhat more sophisticated than for the other three problems described in this paper. In
choosing a neighboring state in a way natural to the problem, we arrive at an algorithm
which does not make transitions in the neighborhood graph with uniform probability. An-
other peculiarity of this problem is the fact that the search space { which comprises the set
of all legal S-expressions { is in�nite.

The initial state in the SH algorithm is an S-expression consisting of a single operand
chosen uniformly at random from fa0; a1; a2; d0; : : : ; d7g. A transition in the search space
involves the random replacement of an arbitrary node in the S-expression. In particular,
to select a neighboring state, we chose a node uniformly at random from the current tree
and replace it with a node selected randomly from the set of all possible operands and
operators. With probability 1

2
the replacement node is drawn uniformly at random from

the set of operands fa0; a1; a2; d0; : : : ; d7g, otherwise it is drawn uniformly at random from
the set of operators, fAND, OR, NOT, IFg. In modifying the nodes of the S-expression in
this way, we may change the number of inputs they require. By changing an AND node to
a NOT node, for instance, we reduce the number of inputs taken by the node from 2 to 1.
In order to accommodate such changes, we do the following. Where a replacement reduces
the number of inputs taken by a node, we remove the required number of children from that
node uniformly at random. Where, on the other hand, a replacement increases the number
of inputs taken by a node, we add the required number of children chosen uniformly at
random from the set of operands fa0; a1; a2; d0; : : : ; d7g.

Experimental Results In the implementation described in [23], Koza initializes the GA
with a pool of 4000 expressions. He observes over 54 experiments that the algorithm has a
28% chance of producing a correct S-expression by the tenth generation (i.e., after 40,000
function evaluations), a 78% chance by the �fteenth generation (after 60,000 function eval-
uations), and a 90% chance by the twentieth generation (after 80,000 function evaluations).
In [21], where Koza performs a series of 21 runs with a slightly di�erent selection scheme
from the one described above, he �nds that the average number of function evaluations re-
quired to �nd a correct S-expression is 46,667. Here the probability of producing a correct
expression after 40,000 function evaluations is about 60% (according to a reading of the
graph presented in the paper) and the probability by 60,000 function evaluations is 100%.

In 100 runs of the SH algorithm, we �nd that the probability of producing a correct
S-expression in fewer than 20,000 function evaluations is 61%. The probability that a
correct S-expression is found in fewer than 40,000 function evaluations is 98%, in fewer
than 60,000 function evaluations, 99%, and in fewer than 80,000 function evaluations, 100%.
The average time required to �nd a correct S-expression was 19,234.90 function evaluations,
with a standard deviation of 5179.45. The minimum time to �nd a correct expression in
these runs was 3733, and the maximum, 73,651.

The average number of nodes in the correct S-expression found by the SH algorithm

8

was 88.14; the low was 42, the high, 242, and the standard deviation, 29.16. Given that
there are four possible operands (and even more possible operators), it is easy to see that
the number of S-expressions of 242 or fewer nodes is greater than 4242 � 10144. Thus
the portion of the search space which the algorithm explores in practice appears to be of
non-trivial size.

The following is a histogram of the number of function evaluations { rounded to the
nearest thousand { which SH performed in these 100 experiments in order to achieve a
correct S-expression.

0

2

4

6

8

10

0 10000 20000 30000 40000 50000 60000 70000 80000

11 Multiplexer

Figure 1. SH on the 11-Multiplexer Problem. Function Evaluations to Achieve Optimum.

Remark.

It is interesting to note { perhaps partly in explanation of the SH algorithm's success on
this problem { that the SH algorithm formulated here de�nes a neighborhood structure in
which there are no strict local minima. More precisely, from any point in the search space,
the graph de�ning the neighborhood structure contains a path to some optimal solution
such that every transition in the path leads to a state with an equal or greater �tness. This
property holds not only for the 11-multiplexer problem, but for any problem which involves
the realization of a speci�c boolean formula.

To see this, it su�ces to observe that the output yielded by a given leaf q can be
\corrected" for some arbitrary input X to the operands of the tree. In other words, there
is a sequence of transitions in the search space which replaces an arbitrary leaf q by an
expression E with the following property: on all inputs but X , E yields the same output as
q; on input X , E yields an output complementary to that of q. For this corrective sequence
of transitions to occur with positive probability, it must of course never result in a decrease
in the �tness of the tree. Given this criterion, observe that the following sequence achieves

9

the desired correction:

IF IF IF

q --> / | \ ... --> / | \ --> / | \ = E

q q q E' q q E' q NOT

|

q

where E0 is some subexpression which yields a 1 on input X and a 0 otherwise.
In consequence of this observation, a simple inductive proof su�ces to show that the

search space contains no strict local minima.

3.4 MDAP

The authors of [30] formulate an NP-complete document allocation problem which they refer
to as MDAP (Multiprocessor Document Allocation Problem). Their e�orts to solve this
problem using a GA, which they show to be superior to certain more traditional methods,
have received considerable attention. In this section we will perform two experiments
comparing the performance of a GA developed in that paper to an SH algorithm for MDAP.
We will conduct the �rst of these experiments on a suite of problems drawn from [30], and
the second on a new suite of problems developed for the purposes of the current paper.

The inputs to the MDAP problem are a multiprocessor architecture, a collection of
documents, and a collection of subsets of these documents, or clusters. The problem is
to allocate the documents to the processors so as to minimize the interprocessor distances
between documents in the same cluster. This minimization of distances within clusters is
a heuristic meant to produce a low retrieval time for documents in the same cluster.

More formally, an instance of MDAP is speci�ed by the following parameters:

� A set X = fx1; x2; : : : ; xng of processors.

� An architecture on these processors, speci�ed by interprocessor distances Xij for
1 � i < j � n.

� A set D = fd1; d2; : : : ; dmg of documents.

� A set fC1; C2; : : : ; Crg of clusters, where each cluster Ci comprises a set of docu-
ments, fdi1; d

i
2; : : : ; d

i
jCij

g.

An allocation A is a mapping D ! X , that is, a placement of documents on processors.
As a heuristic for ensuring an evenly distributed workload, an allocation is required to
distribute the documents so that every processor receives either djDj=jX je or bjDj=jX jc

10

documents. The quantity that determines a cluster's retrieval time is its radius, which
is the maximum interprocessor distance of any two elements in the cluster. MDAP seeks
to minimize the sum of the radii of the clusters. More formally, if R(Ci) is the radius of
cluster Ci, what is sought is a function A : D! X such that:

rX

i=1

R(Ci)

is minimized. Signi�cant overlap among clusters can result in complex tradeo�s in the
minimization of cluster radii. MDAP is NP-complete for general architectures [30].

The GA In the GA developed in [30] speci�cally for this problem, feasible solutions
take the form of permutations. The permutation � : f1 : : :ng ! f1 : : :ng speci�es the
document allocation A(di) = �(i) (mod jX j). This scheme ensures an even distribution
of documents across processors. The GA attempts to minimize a �tness function f , where
for a permutation �, f(�) is de�ned to be the sum of the cluster radii speci�ed by �.

This encoding necessitated the development of special mating and mutation operators
on permutations. The mating operator applied to a pair (�; �) of permutations does the
following. A position i is chosen uniformly at random from f1; : : : ; ng, designating a trans-
position � = (�(i) �(i)). This transposition is applied to yield new children �0 = ��

and �0 = �� . Suppose, for example, that � =< 2; 1; 3; 4 > and � =< 4; 1; 2; 3 >, and
that position i = 4 is chosen. Since �(4) = 4 and �(4) = 3, the mating operator will
compose � =< 2; 1; 3; 4 > with the transposition (34), yielding �0 =< 2; 1; 4; 3 > and
� =< 3; 1; 2; 4 > with transposition (34), yielding �0 =< 4; 1; 2; 3 >. This is the basic
operation. The full blown mating operator in fact picks two positions j � k uniformly at
random from f1; : : : ; ng and performs the above mating operation on position j, then j+1,
and so forth, through k. Those familiar with GAs will observe that this mating operator is
slightly unusual in that there is no exchange of material between solutions.

The mutation operator as applied to permutation � simply selects two elements �(i)
and �(j) (not necessarily distinct) uniformly at random from among the elements in � and
transposes them.

For the purposes of the experiments to come in the latter half of this section, we at-
tempted to recode the GA in [30] according to the description presented in the paper. Our
results, however, were consistently inferior to those given by the authors of that article.
This situation was aggravated by the fact that their code was unavailable for distribution
due to a computer crash [10]. We found, however, that by implementing the mating and
mutation operators in [30] in the context of a di�erent formulation of the GA we were able
to achieve results superior to those presented by the authors.

Our GA includes, in order, the following phases: evaluation, elitist replacement, se-
lection, crossover, and mutation. In the evaluation phase, the �tnesses of all members of
the population are computed. Elitist replacement substitutes the �ttest permutation from
the evaluation phase of the previous iteration for the least �t permutation in the current

11

population (except, of course, in the �rst iteration, in which there is no replacement). The
GA proposed in [30] employs unscaled �tness-proportionate selection. The performance
of this variety of selection on function optimization tasks is often found to be somewhat
poor, so we chose instead to use binary stochastic tournament selection [15]. In this type
of selection, P pairs, where P is the size of the population, are selected uniformly at ran-
dom with replacement from the population. A new population of size P is constituted by
selecting the �tter permutation from each of these pairs (with ties broken randomly). The
crossover step in our GA selects P

2
pairs uniformly at random without replacement from

the population and applies the mating operator to each of these pairs independently with
probability 0.6. For this probability, referred to generally as the crossover rate, a value
of 0.6 is fairly standard in the literature. It is, for instance, the default value proposed
in Gre�enstette's GENESIS software package [16]. In accordance with results in [3] and
[26] regarding the optimal mutation rate, we set this parameter to 1

n
. More precisely, the

number of mutations performed on a given permutation in a single iteration is binomial
with parameter p = 1

n
. The population in our GA is initialized by selecting every individual

uniformly at random from Sn.

The SH Algorithm As in the GA above, the search space S for the SH algorithm we
developed was Sn, the space of all permutations on n elements. The initial state � is chosen
uniformly at random from Sn. A neighbor is selected by transposing two elements chosen
uniformly at random from the permutation. In other words, to select a neighbor � , a single
mutation of the sort employed in the GA described above is applied.

Four architectures are considered in [30]: a 1x16 mesh, a 2x8 mesh, a 4x4 mesh, and
a hypercube of 16 processors. The authors consider two types of document distribution,
an \even" distribution and a \(64, 8, 25, 50)" distribution. In the \even" distribution, 64
documents are assigned to 8 clusters, each of size 8. Since each processor must be assigned
an equal number of documents, an allocation in this instance will map 4 documents to every
processor. In this \even" distribution of documents, the clusters are disjoint. On the one
hand, this implies that the solution to the problem is trivial: if each cluster is assigned to
two adjacent processors, the radius for each cluster will be equal to 1, which is the smallest
we can achieve, since every cluster contains 8 documents and therefore must be placed on
at least two processors. On the other hand, this means that we know the minimal cluster
radius sum for this problem: for all of the architectures presented here, it is equal to 8. In
consequence, we can gauge the performance of the two algorithms here in an absolute sense.
As the other distribution considered in their paper, the \(64, 8, 25, 50)" { in which half of
the documents occupy one quarter of the clusters { appears to have a similar triviality, we
consider it su�cient just to examine the \even" distribution.

The authors of [30] tabulate their average results for a GA on a population of size
30 executed for 1000 iterations. We present their results, indicated by \ga", with those
obtained by our own GA, indicated by \GA", and with those of our SH algorithm, indicated

12

by \SH". The results for the GA in [30] are the average results over 5 trials [10]. The
results for our GA are the average results over 100 runs on a population size of 30 for 1000
iterations. The results for the SH algorithm are the average of 100 runs, each executed
for 30,000 iterations. For experiments with our GA and SH, we also present the standard
deviation on the �nal �tnesses obtained in our experiments (indicated by \SD"), the highest
and lowest �nal �tnesses, and the number of times that the optimum �tness was achieved
(\#Opt.").

For each architecture, we generate a single instance at random, and apply both algo-
rithms to that one instance. Note that by merit of its having disjoint clusters, however, all
instances are identical up to relabeling, so that the speci�c choice of problem instance has
no bearing on the performance of the GA or the SH algorithm.

1x16 Mesh 2x8 Mesh 4x4 Mesh Hypercube

ga GA SH ga GA SH ga GA SH ga GA SH

Mean 29 18.21 8.78 23 16.85 11.95 19 17.49 12.76 23 17.65 15.58
SD 2.69 1.05 1.24 1.81 1.32 2.01 0.94 0.79
High 25 12 20 16 21 16 20 17
Low 13 8 14 8 15 8 15 13
#Opt. 0 63 0 4 0 5 0 0

The following graph represents the performance of the two algorithms on the 1x16 mesh
architecture. The graphs for the other three architectures display the same basic form.

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

MDAP 1x16, 64 documents

GA
SH

Figure 2. MDAP, 1x16 MESH, Avg. Fitness vs. Number of Iterations

13

It could be objected that it is the simplicity of the instances of this problem which is
responsible for the relative success of the hillclimbing approach. To demonstrate that this is
not the case, we modi�ed the suite of problems used in the �rst set of experiments to create
more di�cult instances of MDAP. In our second set of experiments, we explore a deeper
range of \even" distributions in which there is overlap among clusters, insuring a non-trivial
search space. We refer to as an m �m problem one in which there are m clusters, each
containing m documents. In the set of problems we consider here, each cluster is assigned
a collection of documents chosen uniformly at random without replacement from the total
set of documents to be assigned.

Our second set of experiments includes a 10x10 and a 12x12 problem on a 64 document
set, and a 12x12 and a 14x14 problem on a 128 document set. For each of these problems,
we consider two 16 processor architectures, namely a 2x8 mesh and a hypercube. We also
examine two slightly larger instances, a 18x18 and a 20x20 problem on a 256 document set.
We consider each of these two problems on two di�erent 32 processor architectures, a 4x8
mesh and a hypercube.

For our GA, we present the average results obtained over 100 experiments of 1000
iterations on a population size of 100. For the SH algorithm we present the average �tness
obtained over 100 runs, each comprising 100,000 iterations. We generate a new random
instance of each problem individually for every run.

Results for the 64 document instances are as follows:

2x8 Mesh, 10x10 Hypercube, 10x10 2x8 Mesh, 12x12 Hypercube, 12x12

GA SH GA SH GA SH GA SH

Mean 37.49 30.31 29.02 24.65 52.75 46.20 38.11 34.57
SD 1.46 1.19 0.85 0.73 1.72 1.09 0.93 0.88
High 42 34 31 26 58 49 40 36
Low 34 28 27 23 49 44 36 33

For the 128 document instances:

2x8 Mesh, 12x12 Hypercube, 12x12 2x8 Mesh, 14x14 Hypercube, 14x14

GA SH GA SH GA SH GA SH

Mean 43.32 31.27 35.12 31.04 59.72 46.49 45.11 40.41
SD 1.85 0.98 0.89 1.26 1.82 1.33 1.14 1.02
High 49 34 37 34 64 51 48 42
Low 38 29 33 28 55 42 43 38

14

And for the 256 document instances:

4x8 Mesh, 18x18 Hypercube, 18x18 4x8 Mesh, 20x20 Hypercube, 20x20

GA SH GA SH GA SH GA SH

Mean 101.09 79.64 73.96 71.78 123.01 97.44 85.93 80.86
SD 2.58 1.55 1.01 0.46 2.89 1.83 1.32 0.44
High 108 82 77 72 130 101 89 81
Low 95 76 72 70 116 93 83 79

It will be observed that here again, in the case of these more di�cult instances of MDAP,
the SH algorithm outperformed the GA on all problem sizes.

3.5 Jobshop

In this section, we formulate an SH algorithm for the jobshop problem. Rather than simply
constructing this algorithm based on the mutation operator in the GA with which we
compare our results { as we did in the case of the maximum cut and MDAP problems {
we consider the combinatorial structure of the problem afresh. This leads us to conceive a
new neighborhood structure for jobshop which we shall employ in the following section to
construct a new, more e�ective GA for the problem.

The jobshop problem is widely studied in the �eld of management science. It is a no-
toriously di�cult NP-complete problem [13] that is hard to solve even for small instances.
A great deal of e�ort over the course of thirty years has gone into �nding e�cient approx-
imation algorithms for it. See, for example, [4, 5, 7, 24, 6, 28, 9, 27].

In this problem, a collection of J jobs are to be scheduled onM machines (or processors),
each of which can process only one task at a time. Each job is a list of M tasks which
must be performed in order. Each task must be performed on a speci�c machine, and no
two tasks in a given job are assigned to the same machine. Every task has a �xed (integer)
processing time. The problem is to schedule the jobs on the machines so that all jobs are
completed in the shortest overall time. This time is referred to as the makespan.

Three instances formulated in [27] constitute a standard benchmark for this problem: a
6 job, 6 machine instance, a 10 job, 10 machine instance, and a 20 job, 5 machine instance.
The 6x6 instance is now known to have an optimal makespan of 55. This is very easy to
achieve. While the optimum value for the 10x10 problem is known to be 930, this is a
di�cult problem which remained unsolved for over 20 years [2]. A great deal of research
has also been invested in the similarly challenging 20x5 problem, for which an optimal value
of 1165 has been achieved, and a lower bound of 1164 [6].

A number of papers have considered the application of GAs to scheduling problems. In
particular, Nakano and Yamada [28], Davidor et al. [7], and Fang et al. [9] have described

15

GAs designed to address the three benchmark instances for the jobshop problem. We
compare our results with those obtained in Fang et al., one of the more recent of these
articles.

The GA Fang et al. encode a jobshop schedule in the form of a string of integers, to
which their GA applies a conventional crossover operator. This string contains JM inte-
gers a1; a2; : : : ; aJM in the range 1::J . A circular list C of jobs, initialized to (1; 2; : : : ; J) is
maintained. For i = 1; 2; : : : ; JM , the �rst uncompleted task in the (ai mod jCj)th job in C
is scheduled in the earliest plausible timeslot. A plausible timeslot is one which comes after
the last scheduled task in the current job, and which is at least as long as the processing
time of the task to be scheduled. When a job is complete, it is removed from C. Fang et
al. also develop a highly specialized GA for this problem in which they use a scheme of
increasing mutation rates and a technique known as GVOT (Gene-Variance based Operator
Targeting). For the details see [9].

The SH Algorithm In our SH algorithm for this problem, a schedule is encoded in the
form of an ordering �1; �2; : : : ; �JM of JM markers. These markers have colors associated
with them: there are exactly M markers of each color of 1; : : : ; J . To construct a schedule,
� is read from left to right. Whenever a marker with color k is encountered, the next
uncompleted task in job k is scheduled in the earliest plausible timeslot. Since there are
exactly M markers of each color, and since every job contains exactly M tasks, this de-
coding of � yields a complete schedule. Observe that since markers of the same color are
interchangeable, many di�erent ordering � will correspond to the same scheduling of tasks.

To generate a neighbor of � in this algorithm, a marker �i is selected uniformly at
random and moved to a new position j chosen uniformly at random. To achieve this, it is
necessary to shift the subsequence of markers between �i and �j (including �j) one position
in the appropriate direction. If i < j, then �i+1; �i+2; : : : ; �j are shifted one position to the
left in �. If i > j, then �j ; �j+1; : : : ; �i�1 are shifted one position to the right. (If i = j,
then the generated neighbor is of course identical to �.)

Suppose, for example, that J = 2 and M = 3. One possible ordering � corresponds to
the sequence of colors 111222. (Note that in the above formulation, it is only the colors of
the markers that are signi�cant.) If we choose to move �1 (here, the �rst marker of color
1) to position 6, then we obtain the sequence 112221.

Fang et al. consider the makespan achieved after 300 iterations of their GVOT-based
GA on a population of size 500. We compare this with an SH for which each experiment
involves 30,000 iterations repeated 5 times; we take the result of the best repetition. In
both cases therefore, a single execution of the algorithm involves a total of 150,000 function
evaluations. Note that multiple repetitions of the SH algorithm, as remarked in Section
2, proved important to its performance. We chose the number of repetitions in the SH
algorithm arbitrarily; presumably, it could be improved with tuning.

16

Fang et al. present their average results over 10 trials, but do not indicate how they
obtain their \best". We present the statistics resulting from 100 executions of the SH
algorithm. Here, as in all subsequent tables, \Mean" indicates the mean result obtained in
these 100 runs, while \High" and \Low" indicate the highest and lowest quantities obtained.
\SD" indicates the standard deviation of the �nal �tnesses achieved in these 100 runs. The
\Best Known" results are the best upper bounds for these problem instances available in
the literature.

10x10 Jobshop 20x5 Jobshop

GA SH GA SH

Mean 977 965.64 1215 1204.89
SD 10.56 12.92
High 996 1241
Low 949 949 1189 1183

Best Known 930 1165

As can be seen from the above table, the performance of the SH algorithm appears to
be as good as or superior to that of the GA.

3.6 A New Jobshop GA

In this section, we reconsider the jobshop problem in an attempt to formulate a new GA
encoding. We use the same encoding as in the SH algorithm described above: � is an
ordering �1; �2; : : : ; �JM of the JM markers, which can be used to construct a schedule as
before. We treated markers of the same color as e�ectively equivalent in the SH algorithm.
Now, however, the label of a marker (a unique integer in f1; : : : ; JMg) will play a role.

The basic step in the crossover operator for this GA as applied to a pair (�; �) of
orderings is as follows. A label i is chosen uniformly at random from f1; 2; : : : ; JMg. In �,
the marker with label i is moved to the position occupied by i in � ; conversely, the marker
with label i in � is moved to the position occupied by that marker in �. In both cases,
the necessary shifting is performed as before. Hence the idea is to move a single marker in
� (and in �) to a new position as in the SH algorithm; instead of moving the marker to
a random position, though, we move it to the position occupied by that marker in � (and
�, respectively). The full crossover operator picks two labels j � k uniformly at random
from f1; 2; : : : ; JMg, and performs this basic operation �rst for label j, then j + 1, and so
forth, through k. (By analogy with the GA above for MDAP.) The mutation operator in
our GA performs exactly the same operation as that used to generate a neighbor in the
SH algorithm. A marker �i is chosen uniformly at random and moved to a new position j,

17

chosen uniformly at random. The usual shifting operation is then performed. Observe how
closely the crossover and mutation operators in this GA for the jobshop problem are based
on those in the corresponding SH algorithm. In all other details, the GA here is identical
to that implemented for the MDAP problem above.

We execute this GA for 300 iterations on a population of size 500. Results of 100
experiments performed with this GA are indicated in the following table by \new GA".
For comparison, we again give the results obtained by the GA of Fang et al. and the SH
algorithm described in this paper.

10x10 Jobshop 20x5 Jobshop

new GA GA SH new GA GA SH

Mean 956.22 977 965.64 1193.21 1215 1204.89
SD 8.69 10.56 7.38 12.92
High 976 996 1211 1241
Low 937 949 949 1174 1189 1183

Best Known 930 1165

With this new encoding inspired by our SH algorithm, we see that the GA was able to
outperform the SH developed for this problem. It is not possible to compare the e�ective-
ness of this GA encoding directly to the encoding proposed in Fang et al. or Davidor et al.,
because their GAs di�ered from our own: Fang et al. employ a specialized crossover oper-
ator and Davidor et al., a \steady-state" GA. The superiority of the experimental results
presented here over those previously published, though, would seem to suggest that the
above encoding is at least as e�ective as these others { even allowing for di�erences in the
respective powers of the GAs involved. More importantly, the encoding presented here was
simpler than previous ones, an advantage o�ered by our consideration of a straightforward
optimization approach before we developed our GA encoding.

4 Conclusion

As black-box algorithms, GAs are principally of interest in solving problems whose combina-
torial structure is not understood well enough for more direct, problem-speci�c techniques
to be applied. As we have seen in the case of the four problems presented in this paper,
stochastic hillclimbing can o�er a useful gauge of the performance of the GA. In some cases
it shows that a GA-based approach may not be competitive with simpler methods; at others
it o�ers insight into possible design decisions for the GA such as the choice of encoding
and the formulation of mating and mutation operators. We again stress that we do not
advocate stochastic hillclimbing as a powerful optimization technique in itself. Given its

18

simplicity, there are likely to be substantially more e�ective optimization heuristics in most
cases. Nonetheless, in light of the results presented in this paper, we hope that designers of
black-box algorithms will be encouraged to experiment with stochastic hillclimbing in the
initial stages of the development of their algorithms.

Acknowledgments

We wish to thank Alistair Sinclair for suggesting a simpli�cation to our GA encoding
for the jobshop problem and for his comments on drafts of this paper. Thanks also to Dave
Corne, Jean-Arcady Meyer, and Hava Siegelmann.

References

[1] D. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic
Publishers, 1987.

[2] D. Applegate and W. Cook. A computational study of the job-shop problem. ORSA
Journal of Computing, 3(2), 1991.

[3] T. B�ack. The interaction of mutation rate, selection, and self-adaptation within a
genetic algorithm. In R. M�anner and B. Manderick, editors, Parallel Problem Solving

from Nature 2, pages 85{94. Elsevier, 1992.

[4] E. Balas. Machine sequencing via disjunctive graphs: An implicit enumeration algo-
rithm. Operations research, 17:941{957, 1969.

[5] J. Barker and G. McMahon. Scheduling the general jobshop. Management Science,
31(5):594{598, 1985.

[6] J. Carlier and E. Pinson. An algorithm for solving the jobshop problem. Management

Science, 35:(2):164{176, 1989.

[7] Y. Davidor, T. Yamada, and R. Nakano. The ECOlogical framework II: Improving
GA performance at virtually zero cost. In Forrest, editor, Proceedings of the Fifth

International Conference on Genetic Algorithms, pages 171{176, San Mateo, CA, 1993.
Morgan Kaufmann.

[8] L. Davis. Bit-climbing, representational bias, and test suite design. In Belew and
Booker, editors, Proceedings of the Fourth International Conference on Genetic Algo-

rithms, pages 18{23, San Mateo, CA, 1991. Morgan Kaufmann.

[9] H. Fang, P. Ross, and D. Corne. A promising genetic algorithm approach to job-
shop scheduling, rescheduling, and open-shop scheduling problems. In Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo,
CA, 1993. Morgan Kaufmann.

19

[10] O. Frieder. Personal communication, 1993.

[11] C. Fujiki. An evaluation of Holland's genetic operators applied to a program generator.
Master's thesis, University of Idaho, 1986.

[12] C. Fujiki and J. Dickinson. Using the genetic algorithm to generate Lisp source code
to solve the prisoner's dilemma. In J. Grefenstette, editor, Proceedings of the Second

International Conference on Genetic Algorithms, pages 236{240, San Mateo, CA, 1989.
Morgan Kaufmann.

[13] M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman and Co.,
1979.

[14] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, 1989.

[15] D. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Foundations of Genetic Algorithms 2, pages 69{93, San Mateo, CA,
1991. Morgan Kaufmann.

[16] J. Grenfenstette. A User's Guide to GENESIS. Navy Center for Applied Research in
Arti�cial Intelligence, 1987.

[17] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated an-
nealing: An experimental evaluation; part I, graph partitioning. Operations Research,
37(6), 1989.

[18] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated an-
nealing: An experimental evaluation; part II, graph coloring and number partitioning.
Operations Research, 39(3), 1991.

[19] K. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan, 1975.

[20] S. Khuri, T. B�ack, and J. Heitk�otter. An evolutionary approach to combinatorial
optimization problems. In Proceedings of CSC 1994, 1994.

[21] J. Koza. Foundations of Genetic Algorithms, chapter A Hierarchical Approach to
Learning the Boolean Multiplexer Function, pages 171{192. Morgan Kaufmann, San
Mateo, CA, 1991.

[22] J. Koza. Genetic Programming. MIT Press, Cambridge, Massachusetts, 1991.

[23] J. Koza. The genetic programming paradigm: Breeding computer programs. In Branko
Sou�cek and the IRIS Group, editors, Dynamic, Genetic, and Chaotic Programming,
pages 203{221. John Wiley and Sons, Inc., 1992.

20

[24] G. McMahon and M. Florian. On scheduling with ready times and due dates to
minimize maximum lateness. Operations research, 23(3):475{482, 1975.

[25] M. Mitchell, J. Holland, and S. Forrest. When will a genetic algorithm outperform
hill-climbing? In J.D. Cowen, G. Tesauro, and J. Alspector, editors, Advances in

Neural Information Processing Systems 6, San Mateo, CA, 1994. Morgan Kaufmann.

[26] H. M�uhlenbein. How genetic algorithms really work: I. mutation and hillclimbing. In
R. M�anner and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages
15{25. Elsevier, 1992.

[27] J. Muth and G. Thompson. Industrial Scheduling. Prentice Hall, Englewood Cli�s,
New Jersey, 1963.

[28] R. Nakano and T. Yamada. Conventional genetic algorithm for job shop problems.
In Belew and Booker, editors, Proceedings of the Fourth International Conference on

Genetic Algorithms, pages 474{479, San Mateo, CA, 1991. Morgan Kaufmann.

[29] C. Shaefer and S. Smith. The Argot strategy II { combinatorial optimizations. Tech-
nical Report RL90-1, Thinking Machines, 1990.

[30] H. Siegelmann and O. Frieder. Document allocation in multiprocessor information re-
trieval systems. In N. Adam and N. Bhargava, editors, Lecture note series in Computer

Science: Advanced Database Systems. Springer Verlag, 1994.

[31] S. Wilson. GA-easy does not imply steepest-ascent optimizable. In Belew and Booker,
editors, Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 85{89, San Mateo, CA, 1991. Morgan Kaufmann.

21

