A Bodyguard of Lies:
The Use of Honey Objects in Information Security

Ari Juels
Cornell Tech
“New York, NY, USA
juels@cornell.edu

ABSTRACT

Decoy objects, often labeled in computer security with the term
honey, are a powerful tool for compromise detection and mitiga-
tion. There has been little exploration of overarching theories or
set of principles or properties, however. This short paper (and ac-
companying keynote talk) briefly explore two properties of honey
systems, indistinguishability and secrecy. The aim is to illuminate
a broad design space that might encompass a wide array of areas
in information security, including access control, the main topic of
this symposium.

1. INTRODUCTION

From time immemorial, deception been a cornerstone of coun-
terintelligence. In particular, the use of decoys, realistic but fake
objects to divert or detect attacks, has proven a powerful technique.
Like most clever ideas, decoys arose in the natural world before hu-
man beings stumbled upon them. For example, many insects and
fish have false eyes known as “eye-spots.” These prominent dark
circles lure attackers away from more vulnerable body parts. Also
like most clever ideas, decoys are the subject of a quip by Winston
Churchill. He famously remarked, “In war-time, truth is so pre-
cious that she should always be attended by a bodyguard of lies.”

In computer security, the term honey is often favored to denote
decoys [2]. Honeypots, servers deployed to lure attackers for ob-
servation, are the best known example [6]. But there are many
varieties of honey system, such as honeyfiles [10], honey docu-
ments [1], honeytokens [7], and honey encryption [3].

While honey objects are fairly widely used, there is little litera-
ture articulating overarching concepts in their use or design. This
paper will briefly discuss two properties required for successful de-
ployment of honey objects. While these properties are simple, in-
tentional reflection on them can lead to better architectures and a
richer design space for honey systems.

As a point of reference, let us consider a simple system in which
S = {s1,..., sn} denotes a set of n objects of which one, s* = s;,
forj € {1,...,n}isthe true object, while the other n—1 are honey
objects. It’s convenient to refer to the objects in .S generically as
sweet objects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

SACMAT’ 14, June 25-27, 2014, London, Ontario, Canada.

ACM 978-1-4503-2939-2/14/06.

http://dx.doi.org/10.1145/2613087.2613088 .

The two principles we’ll explore then are:

1. Indistinguishability: To deceive and attacker, honey objects
must be hard to distinguish from real objects. They should,
in other words, be drawn from a probability distribution over
possible objects similar to that from which a real object s*
was selected.

2. Secrecy: In a system with honey objects, j is a secret. Honey
objects can, of course, only deceive an attacker that doesn’t
know j, so j cannot reside alongside S. Kerckhoffs’s prin-
ciple therefore comes into play: the security of the system
must reside in the secret, i.e., the distinction between honey
objects and real ones, not in the mere fact of using honey
objects. The secret j may reside with either or both of two
types of entity: An actor (generally a user) that selects ob-
jects from S and a honeychecker, a system that signals an
attack when an object other than s* = s; is selected and is
distinct from the system that stores .S.

This paper will illustrate these two concepts as they arise in a
system called honeywords and how they influence the larger design
space for honey systems. Then it will very briefly discuss how
honey objects might be deployed in access-control systems.

2. AN EXAMPLE: HONEYWORDS

Honeywords are decoy passwords used to detect the breach of a
password database [4].

A password database is an authentication system component that
contains a set of passwords, one per account. An attacker that
breaches the system and obtains the database can impersonate a
user by authenticating to the system using her password. A spate
of recent such breaches has shown how pervasive this threat is.

In a honeywords system, for a given user, a /ist of n passwords
S = {s1, 82,...5n} is stored. In this list, s* = s; is the user’s real
password, while s; for ¢ # j is a honeyword, a fake password. The
term “sweetwords” is applied to elements of .S in general.

When a user tries authenticating to the system using a password
s, it is checked against the list S. If it doesn’t lie in the list, then the
authentication attempt is rejected as in a normal password system.
If s = s;, then authentication proceeds normally.

If, however, s is a honeyword, meaning s = s; for some i # j,
an alarm is triggered in the system. It is improbable that a user
will accidentally submit a honeyword rather than her correct pass-
word when authenticating. So submission of a honeyword is good
evidence (although not necessary proof positive) of a breach that
disclosed S to an attacker.

!The passwords should be hashed and salted, but exactly how they
are stored and checked isn’t important for our purposes here.



The two principles of indistinguishability and secrecy are ad-
dressed in this system as follows:

1. Indistinguishability: Suppose that we model a true password
s* = s; as coming from a probability distribution U, and
honeywords as selected from a distribution G. Suppose an
attacker breaches the system and learns .S, and that it knows
U and G. It can be shown that the attacker that tries to imper-
sonate a user by proffering a sweetword s; as the user’s pass-
word achieves the highest probability of success by guessing
the sweetword s; € S that maximizes U (s;)/G(s;).

Thus, indistinguishability in this setting means that the dis-
tributions U and G are close. There are a number of strate-
gies for achieving this property and generating good honey-
words. For example, in a large system, a given user might be
assigned the passwords of other users as honeywords.

2. Secrecy: If j is stored alongside S, then an attacker that
breaches the system can immediately identify s* = s;. The
architecture of the honeywords system proposed in [4] is
therefore distributed. A honeychecker is deployed as a sys-
tem distinct from the computer system that stores S. This
honeychecker stores the index j for every user. The computer
system transmits to the honeychecker the index of any sub-
mitted sweetword, which the honeychecker verifies. Given
its minimal functionality—it can be designed as a input-only
device—the honeychecker may be harder for an attacker to
breach than the computer system.

The actor in this case is the user. The user stores s* = s;
and thus j in her head.

3. THE DESIGN SPACE

There are many other ways in which indistinguishability and se-
crecy can be enforced. A few other examples deserve mention to
illustrate the breadth of the design space for honey systems.

3.1 Indistinguishability

There are some cases in which the true object s* comes from a
mathematically well defined distribution, e.g., credit card numbers,
RSA private keys, and so forth. A number of such examples are
given in [3]. In these cases, generation of good honey objects may
be relatively straightforward. Alternatively, s* might come from a
distribution that can be well characterized using public sources of
data, such as user-selected passwords. Generation of valid honey
objects may nonetheless remain somewhat challenging [4].

When the true object s* comes from a complicated distribu-
tion, constructing good honey objects may seem nearly impossi-
ble. Honey documents—e-mail messages, for example—could in
principle require the generation of fake but semantically and con-
textually realistic natural language, an intractable problem today.

On the other hand, to be effective, honey objects need not nec-
essarily bear up under intensive manual scrutiny by an attacker. If
manual analysis of honey objects is costly, then it is sufficient for
samples from the probability distributions U and G to be difficult
to distinguish by means of machine classification. In [5], a project
history is simulated for a piece of bogus software is produced by
introducing obfuscated software variations. Similarly, in [9], the
creation of documents in foreign languages is proposed to deceive
attackers without the ability to apply translation tools on the fly.

A good design principle is to minimize the complexity of U by
creating a honey system that presents a highly constrained distin-
guishability problem. For example, a decoy document system is

proposed in [8] whose efficacy relies on attackers searching doc-
uments differently than legitimate users. The documents them-
selves need not look realistic, though, only their names and direc-
tory placement.

Measuring indistinguishability can be a serious challenge when
U is complex—particularly when an attack may be manual. An
additional challenge, when honey objects are visible to users, is en-
suring that valid users can themselves distinguish effortlessly be-
tween true and honey objects, or otherwise do not trigger false
positives by frequently touching honey objects. Legitimate users
should preferably encounter honey objects only rarely.

3.2 Secrecy

A honeychecker can in principle be a simple, dedicated service,
as in the honeywords system, and the secret j the index of a valid
object. But a honeychecker can in fact assume a wide variety of
forms, as can the secret.

In the Decoy Document Distributor (D?) system [1], several types
of honey and thus honeychecker are deployed. Documents contain
watermarks in their associated binaries that can be detected upon
document exfiltration from a network, code that beacons to a server
upon opening of a document, and bogus credentials whose use sig-
nals document exfiltration to a relying party.

In [8], inside attackers are detected by merit of the fact that they
click on documents that a well behaving user would not access.
Thus there are cases in which the secret in a honey system is not
an index j, but rather a behavioral profile that might be stored by
a honeychecking service and reside in the mind of an actor, i.e., a
user, as a pattern of behavior.

Honey encryption [3] operates in a rather different setting. It per-
mits the construction of a ciphertext that decrypts under any key to a
plausible looking plaintext. An attacker therefore cannot tell when
the ciphertext has been correctly decrypted. For example, given
a password vault encrypted under a master password using honey
encryption, an attacker that tries to guess master passwords can-
not determine when decryption has been successful. The attacker
therefore does not know when passwords extracted from the vault
are safe for use in impersonating the owner of the vault. There is no
explicit honeychecker associated with a honey encryption system.

A service that consumes and verifies the correctness of the plain-
text in a honey encryption system, however, may act in effect as a
honeychecker. For example, if a password vault is encrypted using
honey encryption, then any server that consumes a password in the
vault effectively acts as a honeychecker.

4. HONEY IN ACCESS CONTROL

Honey objects can be used in an access-control system against
arange of possible adversaries: rogue administrators, misbehaving
users or other subjects, outside attackers, and so forth—as well as
for audit. Similarly, access-control systems can conveniently sup-
port general honey systems. Here we give a couple of examples.

Consider the case of a user seeking to access resources illegit-
imately. One might imagine a role-based access control (RBAC)
system in which roles include “honey permissions,” that is, permis-
sions that exceed the organic responsibilities associated with the
role (e.g., access to financial spreadsheets for an IT administrator).
Indistinguishability in this case means the inability of an attacker
to determine whether a permission was assigned legitimately to a
role or as bait. The secret is the set of honey permissions; a honey-
checker might monitor for use of these permissions. In a real-world
system, accommodation would need to be made for (inevitable)
false positives, and a policy decision would have to be made as to



whether resource-access granted by honey permissions would be
allowed by the system or blocked upon alert by the honeychecker.

Access-control systems can be a convenient point at which to
insert honeychecking capabilities for a honey system. In partic-
ular, a reference monitor may be used to store secrets for honey
systems—watchlists of honey objects. Access-control systems can
also support real-time response to suspected breaches. If permis-
sion is requested to touch a honey object, the reference monitor
might alert an administrator, isolate critical systems by revoking
permissions, etc.

There are no doubt many other opportunities to combine honey
objects, with their rich design space, and access-control systems,
with their widespread use in real-world system.

5. REFERENCES

[1] B.M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo.
Baiting inside attackers using decoy documents. In Security
and Privacy in Communication Networks, pages 51-70,
2009.

[2] F. Cohen. The use of deception techniques: Honeypots and
decoys. In H. Bidgoli, editor, Handbook of Information
Security, volume 3, pages 646—655. Wiley and Sons, 2006.

[3] A.Juels and T. Ristenpart. Honey encryption: Beyond the
brute-force barrier. In Eurocrypt, 2014. To appear.

[4] A.Juels and R. Rivest. Honeywords: Making
password-cracking detectable. In ACM CCS, pages 145-160,
2013.

[5] Y. Park and S. J. Stolfo. Software decoys for insider threat. In
ASIACCS, pages 93-94, New York, NY, USA, 2012.

[6] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[7] L. Spitzner. Honeytokens: The other honeypot. Symantec
SecurityFocus, July 2003.

[8] M. B. Salem S. J. Stolfo. Modeling user search behavior for
masquerade detection. In RAID, pages 181-200, 2011.

[9] J. Voris, N. Boggs, and S.J. Stolfo. Lost in translation:
Improving decoy documents via automated translation. In
IEEE Symposium on Security and Privacy Workshops (SPW),
pages 129-133, 2012.

[10] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles:
deceptive files for intrusion detection. In IAW, pages
116-122, 2004.



