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Abstract

We present Iris, a practical, authenticated file system designed to support workloads from large en-
terprises storing data in the cloud and be resilient against potentially untrustworthy service providers. As
a transparent layer enforcing strong integrity guarantees, Iris lets an enterprise tenant maintain a large
file system in the cloud. In Iris, tenants obtain strong assurance not just on data integrity, but also on data
freshness, as well as data retrievability in case of accidental or adversarial cloud failures.

Iris offers an architecture scalable to many clients (on the order of hundreds or even thousands)
issuing operations on the file system in parallel. Iris includes new optimization and enterprise-side
caching techniques specifically designed to overcome the high network latency typically experienced
when accessing cloud storage. Iris also includes novel erasure coding techniques for efficient support of
dynamic Proofs of Retrievability (PoR) protocols over the file system.

We describe our architecture and experimental results on a prototype version of Iris. Iris achieves
end-to-end throughput of up to 260MB per second for 100 clients issuing simultaneous requests on
the file system. (This limit is dictated by the available network bandwidth and maximum hard drive
throughput.) We demonstrate that strong integrity protection in the cloud can be achieved with minimal
performance degradation.

1 Introduction

Organizations that embrace cloud computing outsource massive amounts of data, as well as workloads to
external cloud providers. Cost savings, lower management overhead, and rapid elasticity are just some of
the attractions of the cloud.

But cloud computing entails a sacrifice of control. Tenants give up configuration and management
oversight of the infrastructure that contains their data and computing resources. In cloud storage systems
today, for example, tenants can only discover corruption or loss of their data (particularly infrequently
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accessed data) if their service providers faithfully report failures or security lapses—or when a system failure
occurs. This integrity-measurement gap creates business risk and complicates compliance with regulatory
requirements.

We propose a cloud-oriented authenticated file system called Iris that gives tenants efficient, comprehen-
sive, and real-time data-integrity verification. The Iris system enables an enterprise tenant—or an auditor
acting on the tenant’s behalf—to verify the integrity and freshness of any data retrieved from the file system
while performing typical file system operations. Data integrity ensures that data has not been accidentally
modified or corrupted, while freshness ensures that the latest version of the data is always retrieved (and
thus prevents rollback attacks reverting the file system state to a previous version). Moreover, tenants in
Iris can efficiently audit the cloud provider on a regular basis and obtain continuous guarantees about the
correctness and availability of the entire file system.

Motivating scenario We envision a scenario in which a large enterprise migrates its internal distributed
file system to a cloud storage service. An important requirement for our system is that enterprise users
(called herein clients) perform the same file system operations as they typically do (e.g., file read, write,
update, and delete operations, creation and removal of directories) without modifying applications running
on user machines. The slowdown in operation latency should be small enough to be unnoticed by users even
when a large number of clients (on the order of hundreds and even thousands) issue operations on the file
system in parallel.

Design goals in Iris Iris aims to support outsourcing of enterprise-class file-systems to the cloud seam-
lessly and with minor performance degradation. Thus the design goals of Iris stem from the most common
needs of enterprise-class tenants:
- Efficiency: Cloud file systems need to achieve throughputs close to those offered by local file systems
under thousand of operations issued concurrently by many clients. Individual file system operation latency
overhead should also be minimal.
- Scalability: A cloud file system should be scalable to large enterprise file systems under a variety of
workloads with potentially very sensitive performance requirements. The system should also be scalable to
multiple clients issuing operations on the file system in parallel.
- Transparency: Transparency and backwards compatibility with existing file system interfaces is important
to facilitate migration to the cloud seamlessly.
- Strong integrity protection: Data and file system meta-data retrieved from the cloud need to be both
authentic and fresh. Tenants’ ability to verify continuously the integrity and availability of their data with
minimal bandwidth and computation is a desirable feature, as well.

Contributions of Iris

In more detail, the key technical contributions and novel elements in Iris are:
- Authenticated file system design: The first contribution of Iris is to provide data integrity and freshness
for an enterprise-class file system in an efficient way. To that end, we design a balanced Merkle-tree data
structure that authenticates both file-system data and meta-data blocks. The distinctive features of our data
structure design compared to other authenticated file systems is that it efficiently supports updates from
multiple clients in parallel (without blocking) and it handles all existing file system operations (including
delete, move and truncate) with minimal overhead. Iris further implements many optimizations for typical
file system workloads (e.g., those involving sequential file accesses).
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In addition, Iris is designed to overcome the main economic barrier in migrating storage to the cloud:
the impact of high network latency. Iris implements novel caching techniques locally, within the enterprise
trust boundary. A lightweight (possibly distributed) trusted entity called the portal mediates file-system
operations passing between the enterprise clients and cloud and caches most recently accessed blocks. We
develop techniques to cache the authentication information (nodes of the Merkle tree), handle dependencies
among nodes, and preserve Merkle tree consistency when multiple clients simultaneously access nodes from
the (partially cached) data structure.
- Continuous auditing of file system correctness: Iris enables an enterprise tenant to continuously monitor
the operation of the cloud storage service and obtain strong guarantees about the correctness and availability
of the entire file system. The auditing protocol is a kind of Proof of Retrievabiliity (PoR) [17]. With a
PoR, a tenant can verify the correctness and availability of large data collection stored in the cloud with low
computation and bandwidth cost. While previous PoR protocols are designed for static data (e.g., archival
files), our protocol is the first to efficiently support dynamic PoR protocols over the entire file system. One
of the key innovations in Iris is the design of a sparse randomized erasure code over the file-system data and
metadata. The new erasure code is specifically crafted to hide the code parity structure (typically revealed by
other codes during file updates) and be resilient against a potentially adversarial cloud. It enables recovery
when corruptions are detected through auditing.
- End-to-end design and implementation: One of our main contributions is the end-to-end design and
full implementation of Iris consisting of 25,000 lines of code. We show through our performance evaluation
that the caching mechanism in Iris is effective in achieving low latency for file system operations (similar to
LAN latencies). Moreover, Iris achieves high throughput (up to 260MB for 100 clients issuing simultaneous
requests on the file system in our local testbed), with the bottleneck given by the available network bandwidth
and hard drive throughput. Finally, we demonstrate that the overall cost of adding strong integrity protection
to Iris is minimal.

Organization

In Section 2, we review related work. We give an overview of Iris and describe its architecture in Section 3,
discussing the specifics of its integrity layer in Section 4 and the auditing protocol in Section 5. In Section 6,
we describe our implementation; we report on our experimental evaluation in Section 7. We conclude in
Section 8. In the Appendix, we give an analysis and show some parameterizations of our new sparse erasure
code construction needed in the design of the dynamic PoR protocol.

2 Related Work

File systems with integrity support: Early cryptographic file systems were designed to protect data con-
fidentiality [5] and the integrity of data [30] in local storage. Later cryptographic networked file systems
provided different integrity guarantees. TCFS [7] and SNAD [22] provide data integrity by storing a hash
for each file data block. A number of systems construct a Merkle tree over files in order to authenticate file
blocks more efficiently (e.g., [13, 12, 18, 3, 23, 24]).

Many cryptographic file systems to date provide data integrity, but do not authenticate the file system
directory structure (or meta-data), e.g., [18, 23, 24]. Others, while authenticating both file system data and
meta-data, do not provide strong freshness guarantees. SiRiUS [15] does not ensure data freshness, but only
partial meta-data freshness by periodically requiring clients to sign meta-data entries. SUNDR [20] imple-
ments a property called “fork consistency” that detects freshness violations only when clients communicate
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out of band. More recently, SPORC [11] supports the building of collaborative cloud applications, enabling
clients to recover from malicious forks performed by untrusted cloud servers. Depot [21] reconciles mali-
cious forks even in the presence of faulty clients.

To the best of our knowledge, few cryptographic file systems provide freshness of both file system data
and meta-data. SFSRO [13] and Cepheus [12] build a Merkle tree over the file system directory tree. While
this approach efficiently supports file-system operations like moving or deletion of entire directories, it
results in an unbalanced authentication data structure and thus has a high authentication cost for directories
with many entries. Athos [16] constructs a balanced data structure that maps the directory tree of the file
system in a set of node relations represented as a skip list. Athos abstracts away the hierarchical structure of
the directory tree, however, and doesn’t provide efficient support for some existing file-system operations,
e.g., garbage collection. Moreover, its primary, prototyped design handles only a single client. FARSITE [3]
is a peer-to-peer storage system that uses a distributed directory group to maintain meta-data information.
Meta-data freshness is guaranteed when more than two thirds of the directory group members are correct.
Data freshness is provided by storing hashes of file Merkle trees in the directory group.

Other systems provide data integrity guarantees for key-value stores. Venus [28] implements strong con-
sistency semantics for a key-value store with malicious storage in the back-end. CloudProof [25] provides a
mechanism for clients to verify the integrity and freshness, as well as other properties of cloud-stored data.
PoRs/PDPs: A Proof of Retrievability (PoR) [17] is a challenge-response protocol that enables a cloud
provider to demonstrate to a client that a file is retrievable, i.e., recoverable without any loss or corruption.
Proofs of data possession (PDP) [4] are related protocols that only detect a large amount of corruption in
outsourced data. Most existing PDP [4] and PoR [17, 26, 6, 9] protocols are designed for static data, i.e.,
infrequently modified data.

Dynamic PDP protocols have been proposed by Erway et al. [10], but they were not designed to han-
dle typical file system operations. For instance, Erway et al. [10] support operations like insertion in the
middle of a file, but do not efficiently support moving and deleting entire files or directories. The CS2
system [19] designs and implements an efficient dynamic PDP protocol, as well as techniques for searching
over encrypted data.

Several papers ([32] and [33]) claim to construct dynamic PoRs, but in fact only provide dynamic PDP
schemes. To the best of our knowledge, designing efficient dynamic PoR protocols is extremely challenging
and has stood as an open problem in the community.

3 System model and overview

Iris is designed as an enterprise file system using back-end cloud storage. Clients in Iris (enterprise users)
issue file system operations intermediated by Iris and relayed to the public cloud. An important design
consideration is that heavy caching on the enterprise side is strictly necessary. There are several reasons
for this. First, if local caching is not performed, the cost of network transfer to and from the cloud will
far outweigh any storage costs savings ([8] points to the extremely high cost of network transfer). Second,
without local caching individual operation latency will be prohibitive for the system to be usable.

Existing network file systems are not designed with similar requirements in mind. For instance, NFS
is not optimized for high network latency scenarios [14]. Moreover, most cloud storage systems available
today (e.g., Amazon S3) export a key-value store interface and employ a flat namespace. Our system is
unique in providing a file system interface to enterprise clients (for compatibility with existing applications),
and at the same time ensuring low operation latency. In addition, our main goal is to support integrity
protection of both file system data and meta-data and continuous verification of full file system correctness
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and availability with minimum overhead.
We describe here Iris’s architecture, threat model, and give an overview of our solution and technical

challenges.

3.1 System architecture

In our architecture (shown in Figure 1), a trusted portal residing within the enterprise trust boundary inter-
mediates all communication between enterprise clients and the cloud. The portal caches data and meta-data
blocks recently accessed by enterprise clients. Cached blocks are evicted once the cache is full and they are
not utilized by a pending operation. The portal is also responsible for checking data integrity and freshness
for all file system operations (with the integrity layer component). Data integrity ensures that data retrieved
from the cloud has been written by authorized clients and has not been accidentally modified or corrupted
at the cloud side. A stronger property, data freshness, ensures that data accessed by a client during a file
system operation is always the latest version written to the cloud by any client.

The portal offers a portal service to clients issuing file system operations, and communicates to the
cloud through the storage interface component. The auditing component issues challenges to the cloud
periodically to verify the correctness and availability of the entire file system. The portal plays a central
role in recovering from data corruptions: The portal caches error-correcting information (or more concisely,
parities) for the full file system. When corruption is detected through the auditing protocol, these parities
enable recovery of lost or corrupted data. Parities are backed up to the cloud on a regular basis (e.g., once a
day or once a week).

To scale to large organizations with tens of thousands of clients, the portal needs to be distributed in-
ternally using a tool to ensure consistency of distributed caches (e.g., memcached [2]). For purposes of our
prototype detailed in Section 6, we have instantiated the portal on a single server machine and show that it
can scale up to 100 clients executing sequential workloads in parallel on the file system.

The cloud maintains the distributed file system, consisting of all files and directories belonging to enter-
prise users. Iris is designed to use any existing cloud storage system transparently in the back end without
modification. In addition, the cloud also stores the MACs and Merkle tree necessary for authenticating data,
as well as the checkpointed parity information needed to recover from potential corruptions. As an addi-
tional resilience measure, the parity information could be stored on a different cloud or replicated internally
within the enterprise.

Figure 1: System architecture.
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3.2 Threat model

Iris treats the portal, which is controlled by the enterprise, as a trusted component, in the sense that it
executes client file-system operations faithfully. No trust assumption is required on clients: They may act
arbitrarily within the parameters of the file system. (The file-system may enforce access-control policies on
clients through the portal, but such issues lie outside the scope of Iris.)

The cloud, on the other hand, is presumed to be potentially untrustworthy. It may corrupt the file-system
in a fully Byzantine manner. The cloud may alter or drop file-system operations transmitted by the portal;
it may corrupt or erase files and/or metadata; it may also attempt to present the portal with stale, incorrect,
and/or inconsistent views of file-system data. The objective of the portal in Iris is to detect the presentation
of any invalid data by the cloud, i.e., immediately identify any cloud output that reflects a file-system state
different from that produced by a correct execution of the operations emitted by the portal.

3.3 Solution overview and challenges

Iris consists of two major components:
Authenticated file system: As already described, the first challenge we address in building an authenti-
cated enterprise-class file system is the high cost of network latency and bandwidth between the enterprise
and cloud. Another challenge is efficient management and caching of the authenticating information. In-
tegrity and freshness verification should be extremely efficient for existing file system operations and induce
minimal latency.

Iris employs a two-layer authentication scheme. In its lower layer, it stores on every file block a message-
authentication code (MAC)—generated by the portal when a client writes to the file system. These MACs
ensure data integrity. To ensure freshness, it is necessary to authenticate not just data blocks, but also their
versions. Each block has an associated version counter that is incremented every time the block is modified.
This version number is bound to the file-block’s MAC: To protect against cloud replay of stale file-blocks
(rollback attacks), the counters themselves must be authenticated.

The upper layer of the authenticated data structure in Iris is a balanced Merkle-tree-based structure
that protects the integrity of the file-block version counters. This data structure embeds the file-system
directory tree, and balances each directory for optimization. Attached to each node representing a file is a
sub-tree containing file-block version counters. The root of the Merkle tree stored at the portal guarantees
the integrity and freshness of both data and meta-data in the file system.

This Merkle-tree-based structure has two distinctive features compared to other authenticated file sys-
tems: (1) Support for existing file system operations: Iris maintains a balanced binary tree over the file
system directory structure to efficiently support existing file system calls; and (2) Support for concurrent
operations: The Merkle tree supports efficient updates from multiple clients operating on the file system in
parallel. Iris also optimizes for the common case of sequential file-block accesses: Sequences of identical
version counters are compacted into a single leaf. We detail the data structure in Section 4, and the Merkle
tree caching mechanism in Section 6.
Auditing protocol: Iris enables the enterprise tenant to continuously monitor and assess the correctness
and availability of the entire file system through the auditing protocol. The auditing protocol in Iris is an
instantiation of a PoR protocol and, in fact, the first one that supports data updates. Previous PoR protocols
have been designed for static data (files that do not undergo modifications). In any PoR, the tenant samples
and checks the correctness of random data blocks retrieved from the cloud to detect any large-scale data
corruption. To recover from small-scale damage, parity information computed with an erasure code needs
to be maintained over the data.

6



The main challenge in designing a PoR protocol is that the erasure code structure, i.e., mapping of data
blocks to parity blocks, must be randomized to prevent an adversarial server from introducing targeted,
undetectable file corruptions. File updates are most problematic as they partially reveal the code structure
(in particular the parity blocks corresponding to updated file blocks). At the same time, file updates should
be efficient and involve only a small fraction of parity blocks.

We overcome this challenge with two techniques. First, we design Iris to cache parity information
locally at the portal (and only checkpoint it to the cloud at fixed time intervals). As the cloud does not
perceive individual file updates, but only parity modifications aggregated over a long time interval, the
cloud cannot easily infer the mapping from file blocks to parity blocks. Second, we design a new sparse,
binary code structure that combines randomly chosen blocks from the file system into a codeword. The
code supports updates to the file system very efficiently through binary XOR operations. Its sparse structure
supports very large file systems. This novel code construction is carefully parameterized to optimize local
storage at the portal side, update cost, and bandwidth and computation in the auditing protocol. We describe
the auditing protocol and the erasure code construction in Section 5.

4 Authentication in Iris

We describe in this section how Iris provides strong data protection, including integrity and freshness, for
both file system data and meta-data. The authentication scheme in Iris is based on Merkle trees, and de-
signed to support existing file-system operations. In addition, random access to files for both read and write
operations is a desirable feature (offered by existing file systems like NFS) that we also choose to imple-
ment. The tenant needs to maintain at all times the root of the Merkle trees for checking the integrity and
freshness of data retrieved from the cloud. For reducing operation latency, recently accessed nodes in the
tree are also cached at the portal (the caching mechanism is described in Section 6).

Figure 2: Authenticated tree. A file system directory
on the left and its mapping to the Merkle tree on the
right.

Figure 3: File version tree for a file with 16 blocks.
Blocks 0-3 and 10-13 have been written twice, all
other blocks have been written once. White nodes on
the left are removed in the compacted version on the
right. Version numbers are adjacent to nodes.

Figure 2 depicts the main components of our tree-based structure used for authentication:
Block-level MACs: To provide file-block integrity, we store a MAC for each file block, and combine block
MACs from the same file in a MAC file. We choose to store MACs for each file block (instead of a single
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MAC for each file) to support random accesses to files. Block MACs are computed by the portal when a
client writes to the file system. For providing freshness, we need to bind a unique version number to each file
block every time it’s updated and include the version number in the block MAC. To protect against rollback
attacks (in which clients are presented with an old state of the file system), version numbers will have to be
authenticated as well.
File version trees: We construct a file version tree per file that authenticates version numbers for all file
blocks in a compressed form. Briefly, the file version tree compresses the versions of a consecutive range
of blocks into a single node, storing the index range of the blocks and their common version number. File
version trees are optimized for sequential access to files. For instance, if a file is always written sequentially
then its file version tree consists of only one root node. An example of a compacted tree is shown in Figure 3.
Directory trees: To authenticate file-system meta-data (or the directory structure of the file system), the
file-system directory tree is transformed into a Merkle tree in which every directory is mapped to a directory
subtree. We have chosen to map our authenticated data structure onto the existing file-system tree in order
to efficiently support file-system operations like delete or move of entire directories. To support directories
with large number of files efficiently, we create a balanced binary tree for each directory that contains file
and subdirectory nodes in the leaves, and includes intermediate, empty internal nodes for balancing. Nodes
in a directory tree have unique identifers assigned to them, chosen as random strings of fixed length. A leaf
for each file and subdirectory is inserted into the directory tree in a position given by a keyed hash applied
to its name and its parent’s identifier (to ensure tree balancing).

At the leaves of the directory tree, we insert the file version trees in compacted form, as described
above. Internal nodes in the Merkle tree contain hash values computed over their children, as well as some
additional information, e.g., node identifiers, their rank (defined as the size of the subtree rooted at the node),
file and directory names.

Our Merkle tree supports the following operations. Clients can insert or delete file-system object nodes
(files or directories) at certain positions in the tree. Those operations trigger updates of the hashes stored on
the path from the inserted/deleted nodes up to the root of the tree. Deleted subtrees are added to the free
list, as explained below. Clients can verify a file block version number, by retrieving all siblings on the path
from the leaf corresponding to that file block up to the root of the tree. Searches of files or directories in the
tree can also be performed, given absolute path names.

We also implement an operation randompath-dir-tree for directory trees. This feature is needed to
execute the challenge-response protocols of the auditing component in Iris. A (pseudo)-random path in the
tree is returned by traversing the tree from the root, and selecting at each node a child uniformly at random,
weighted by rank. In addition, the authentication information for the random path is returned, so the tenant
can verify that the path has been chosen pseudo-randomly.

With this Merkle tree construction, we authenticate both file system meta-data, as well as file block
version numbers. Together with the file block MACs, this mechanism ensures data integrity and freshness,
assuming that the portal always stores the root of the Merkle tree.

Free list: As an optimization, we also maintain in the data structure a free list containing pointers of nodes
deleted from the data structure, i.e., subtrees removed as part of delete or truncate operations. The aim
of the free list is to defer garbage collection of deleted nodes and support remove and truncate file-system
operations efficiently. We omit further details due to space limitations.
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5 Auditing protocol

The authentication mechanism in Iris presented in the previous section can be used to verify the correctness
of all blocks retrieved from the file system during the course of normal operations issued by clients. A
challenging question that we address in this section is how can the enterprise verify infrequently accessed
blocks and detect even small amounts of corruptions spread throughout the file system. We are particularly
interested in offering strong assurances to the enterprise about the correctness and availability of the entire
file system. An important requirement is that auditing of correctness should be performed with minimal
bandwidth and computation. For instance, downloading a substantial fraction of the file system to verify its
correctness would not be an acceptable solution. In addition, a recovery mechanism is needed to reconstruct
the original data once corruptions are detected.

Several different protocols that address to some extent this question have been proposed in the literature.
PoR protocols provide strong assurances about availability of data outsourced to the cloud, and a recovery
mechanism, but they have only been designed for static data (files that do not undergo modifications). PDP
protocols, while supporting updates to data, ensure only detection of a certain amount of data corruption,
but do not implement a recovery mechanism. To the best of our knowledge, our solution here is the first
dynamic PoR protocol over an entire file system, supporting updates and providing an efficient recovery
mechanism in case corruption is detected.

We start by presenting at a high level how existing PoR protocols work, and then describe the chal-
lenges of adapting these ideas to a dynamic setting. We then discuss our main insights and contributions in
constructing a dynamic PoR protocol.

5.1 Static PoR protocols

In a PoR protocol, the tenant encodes a single file with an error-correcting code (ECC) and stores the
encoded file in the cloud. The encoded file contains the original file and some parity blocks, redundant
blocks computed with the ECC that are needed in recovering from corruption. To ensure correctness and
availability of the data, the tenant periodically challenges the cloud for a few randomly selected file blocks,
and verifies their correctness. Through this auditing protocol, the tenant can detect large-scale corruption to
the file (exceeding a certain fixed threshold). Small corruptions, while not detectable through sampling, can
be recovered from the redundancy embedded in the encoded file.

An important parameter in a PoR is the recovery-failure probability ρ. This is the probability, assuming
that the cloud replies correctly to all challenges during an audit, that the tenant can’t recover the file from
the cloud’s storage. The size and frequency of challenges in a PoR may be calibrated to achieve a target
parameter ρ given the file size, and error-correcting code parameters.

5.2 Challenges for dynamic PoRs

The main challenge in adapting a static PoR protocol to a dynamic setting is the construction of an error-
correcting code with several required properties. As a reminder, the error-correcting code is used to recover
from corruptions once the auditing protocol detects missing or corrupted data at the cloud. An additional
requirement our system has compared to previous PoR protocols is that it needs to recover from corruptions
of both data and meta-data in the entire file system (while previous PoR protocols have been designed for
single files).

Our first observation is that we can use in our system an erasure code instead of a more expensive error-
correcting code. The reason is that Iris’s main service is authentication of file system blocks, and, therefore,
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the portal can verify the correctness of file blocks and Merkle tree nodes during recovery and determine the
positions of corrupted blocks. We present the remaining challenges in achieving an efficient dynamic PoR
protocol:
Challenge 1: Update efficiency The erasure code has to support updates to the file system efficiently. In
particular a modification to a file block or Merkle-tree node should require the update of only a small number
of parity blocks. Additionally, it would be desirable to avoid expensive Galois field arithmetic (as employed
by Reed-Solomon codes, for instance) in the parity computation. Instead, efficient, binary operations (e.g.,
XORs) are preferable.

This requirement excludes upfront the use of maximum-distance separable (MDS) codes. While such
codes are attractive for their correction capability, a parity block in an MDS codes depends on all message
blocks, and therefore updates to the codeword are quite impractical.

Thus we must use a non-MDS code, with a lower error-correction capability. For instance, we might
stripe the file system, that is, partition it into a number of smaller components, called stripes, and apply an
erasure code individually to each stripe (striping is a common technique employed in most storage systems
today). With this approach, updates would be more efficient as an update to a file block or Merkle tree node
would involve updating only parity blocks within a single stripe.
Challenge 2: Hiding code structure Nevertheless, striping introduces a problem. When a client updates a
block of the file system along with the corresponding stripe parities, it reveals code-structure information
to the cloud, namely the correspondence between the file blocks and the parity blocks. A malicious cloud
can then create a targeted corruption against the file system, e.g., it can corrupt a single stripe and its
corresponding parity blocks. Such corruption, being focused, will be hard to detect by sampling (since
sampling detects only a large amount of corruption).

We overcome this challenge with two key techniques:

1. Cache parities at the portal We cache the parity information at the enterprise side and only transmit
parities to the cloud at regular time intervals for back up (e.g., at the end of the week). With this
approach, the cloud does not perceive individual updates to the file system, but only the aggregate
parity structure over a large number of updates and can not infer the exact code structure. Moreover,
updates are extremely efficient if parities are stored in main memory at the portal.

2. Randomize code structure Even when parities are stored at the portal, it is important that the stripe
structure is not revealed to the cloud to avoid targeted corruptions. To enforce this, we randomize the
assignment of file blocks to stripes.

If these two design principles are employed, it might seem that after caching the parities locally and
randomizing the assignment of file blocks and tree nodes to stripes, any erasure code could be used for
computing the parity blocks within a stripe. But our system has to overcome another subtle challenge:
Challenge 3: Variable-length encoding Typically, the code parameters for an erasure code, including
the message size, and the size of parity information are fixed and known in advance (before encoding is
performed). However in Iris we need to compute parity blocks over an entire file system data and meta-data
blocks without knowing in advance the total size of the file system. At the same time, we have to enforce a
randomization of the mapping of file system blocks to parity blocks at any given time. Therefore, approaches
in which new parity blocks are created as more data is added to the file system in a streaming fashion (e.g.,
LDPC codes) would not be applicable here.

New sparse randomized erasure code construction Our solution is to set an upper bound on the total size
of the file system, and design a novel erasure code construction that is sparse in the sense that it supports
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incremental updates to the codeword very efficiently, even when only a fraction of the maximum size is used
by the file system. The construction randomizes the mapping of file system blocks to parity blocks, and uses
binary XOR operations. The size of the parity information is also constrained to fit into the main memory
of typical servers today (an important consideration for efficient updates). Lastly, we are able to prove for
this construction an exponentially small bound for the recovery-failure probability.

5.3 Our erasure code

Parameter overview: We first set an upper bound for the entire file system size, denoted n. In our example
parameterization, n is the number of 4KB blocks needed for a file system of maximum size 1PB. Our
erasure code construction is scalable up to that size, but once the file system exceeds the upper bound, the
code parameters need to be changed and the file system has to be re-encoded.

To correct a fraction α of erasures, the storage for parities must be at least s ≥ αn blocks—a coding-
theoretic lower bound. Here s is limited by the sizes of current memories to about s = O(

√
n) for practical

file system sizes and thus α = O(1/
√
n). (To obtain a probabilistic guarantee that at most an α-fraction of

all stored file blocks is missing or corrupted, the tenant must challenge c = O(1/α) = O(
√
n) randomly

selected file blocks.)
To support updates efficiently we split the huge codeword into m ≈ αn stripes; each stripe being

a codeword itself with p parities. With high probability, given an α-fraction of erasures, each stripe is
affected by only O(log n) erasures. Thus to correct and recover stripes, we need p = O(log n) parity
blocks per stripe, leading to s = O(αn log n) = O(

√
n log n) memory. Each write only involves updating

u = O(log n) parities within the corresponding stripe. By using a sparse parity structure, though, we are
able to reduce u to O(log log n).

Figure 4: Randomized mapping of blocks in the file system to erasure code stripes.

Details on our erasure-code construction: Our erasure code is a sparse one based on efficient XOR oper-
ations. Although the new construction is probabilistic in that successful erasure decoding is not guaranteed
for any number of erasures, its main advantage is that it is a binary efficient code scalable to large codeword
lengths.

The portal computes parities over both file blocks and Merkle tree nodes when block values are updated
by a client operation. For the purpose of erasure coding, we view data blocks or tree nodes as identifier-
value pairs δ = (δid; δval), where δid is a unique identifier (a unique block ID in the file system) and δval =
(δ1, . . . , δb) is a sequence of b bits denoting the change in block value. (We assume all blocks are initialized
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Figure 5: New erasure code construction.

with 0.) To randomize the mapping from data blocks to parity blocks, we use a keyed hash function Hk(.)
that maps an identifier δid to a pair (θind, θ), where θind is a random stripe index and θ = (θ1, . . . , θp) is a
binary vector of p bits. The randomization is graphically depicted in Figure 4.

The 1s in vector θ indicate the parity bits that need to be updated. Each update modifies at most u of the
p parities of the stripe to which δ belongs. That is, Hk(δid) is designed to produce a binary random vector θ
of length p with at most u entries equal to 1. For u = O(log p) = O(log log n) this leads to a sparse erasure
code that still permits decoding, but entails relatively few parity updates.
Encoding: We maintain a parity matrix P [i] for each stripe i, 1 ≤ i ≤ m. To change the value of block
δid with δval, the portal computes Hk(δid) = (θind; θ); constructs A = δval ⊗ θ = {δiθj}i∈[1,b],j∈[1,p]; and
updates P [θind]← P [θind]⊕A. The change in parity structure is shown graphically in Figure 5.

Since vector θ has at most u non-zero positions, the number of XOR operations for updating a block is
u. The total storage for all parities is s = bpm bits.
Decoding: Erasure decoding of the multi-striped structure involves decoding each stripe separately. Gaus-
sian elimination is performed m times, each time computing the right inverse of a (≤ p) × p matrix–at a
cost of at most p2 = O((log n)2) XOR operations. As an additional benefit of our construction, decoding
can be done in place, and thus within memory at the portal.
Analysis: Let n denote the maximum number of blocks in the file system. On the assumption of 4KB-
sized blocks, each file block stores b = 215 bits and the file system’s total possible storage equals nb bits
(“storage” denotes the total file-system size).

The sparse erasure code has m stripes, each stripe has p parity blocks, and thus the total amount of
memory needed at the portal in order to store all parity blocks is equal to s = mpb. Here, “memory” refers
to the size of main memory at the portal devoted to parity storage.

Suppose that the portal issues c ≤ n random challenge-response pairs. (We require the technical con-
dition that the challenges contain c/m blocks within each of the m stripes.) Each response includes a
Merkle-tree path as well as a data block. Merkle-tree paths can vary in length, but are no more than 1KB for
reasonable file-system parameterizations. For this reason we assume an upper bound of 5KB communication
per response, i.e., c · 5KB verification bandwidth.

Our goal is to compute the recovery failure probability ρ, defined as the probability that, given c random
challenge-response pairs erasure decoding fails despite all challenge-response pairs verifying correctly. The
following theorem provides a tight upper bound on ρ. We will use this bound to compute an upper bound
on the verification bandwidth in the recovery failure probability ρ, the block size b, the file system’s storage
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Table 1: Examples for recovery failure probability ρ ≤ 0.0074, i.e., ≤ 0.74%, block size 4KB and 5KB
communication per response.

Theorem 1(i) Theorem 1(iii)
Memory/Storage p c p c

4GB/1TB 175∗ 214.2 → 94MB 1667 212.3 → 24MB
4GB/10TB 169 217.5 → 0.9GB 1781 215.6 → 0.23GB

16GB/100TB 186 219.0 → 2.5GB 1965 217.0 → 0.63GB
16GB/1000TB 196 222.3 → 25GB 2014 220.2 → 5.8GB

nb and memory at the portal mpb (Table 1).
We remind the reader that in the sparse erasure code, when updating a file block, at most u out of the

p parity blocks of the stripe to which the block belongs need to be updated. The sparse code is completely
defined by the number of stripes m, the number of parities per stripe p and parameter u (indicating the
”sparsity” of the code).

As a technical preliminary, for integers p and u and 0 ≤ β ≤ 1, let R(p, u, β) be the probability that a
binary βp× p rectangular sparse matrix in which each entry is chosen independently and at random to be 1
with probability u/p does not have full rank. In the purely random case u = p/2 and R(p, u = p/2, β) ≤
2−(1−β)p. Based on extensive simulation and literature, [31] states the conjecture that for u > 2 ln p and
β sufficiently close to 1, R(p, u, β) ≈ R(p, p/2, β) ≤ 2−(1−β)p. One of our bounds is based on this
conjecture.

Theorem 1 In order to achieve a recovery failure probability ρ ≤ 3 · e−l with e = 2.718 for some l ≥ 1 we
can use the following parameter settings:

(i) u = p/2, s/b ≤ 2.0 · √np and

p ≥ 4.6 · (l + ln(1.24 · n) + ln(s/(pb))),

c = 5.1 · (nb/s) · (l + ln(s/(bp))).

(ii) u = p/2 and

p ≥ 4.6 · (l + ln(1.27 · n(n− c)√
c(3n+ c)

) + ln(s/(2pb))),

c = 5.1 · (nb/s) · (l + ln(s/(bp))).

(iii) u > 2 ln p with R(p, u, 0.972) ≤ 2−(1−0.972)p (e.g., u = p/2), s/b ≤ 2.0 · √np and

p ≥ 51.45 · (l + ln(1.71 · n) + ln(s/(pb))),

c = 1.54 · (nb/s) · (l + ln(s/(bp))).

Example parameters: For a selection of four example system parameters, Table 1 lists parities-per-stripe p
and number of PoR challenges c (together with their corresponding verification bandwidth). This example is
parameterized under a recovery failure upper bound of 0.74% (corresponding to technical parameter l = 6
in Theorem 1). Values in the left column are based on Theorem 1(i) and values in the right column are
based on Theorem 1(iii). For the entry labeled ∗, Theorem 1(i) yields p = 159, which does not satisfy the
condition s/b ≤ 2.0 · √np. In this case we need to use Theorem 1(ii).
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If we assume R(p, u, 0.972) ≤ 2−(1−0.972)p for u > 2 ln p = 2 ln 2000 ≈ 15.2, then for the right
column the values also hold if each block affects an expected u = 16 parity blocks out of the p parity blocks
of the stripe to which it belongs. Thus it suffices that each file-block update induces only an expected u = 16
operations (XORs) over the parity structure. Compared to the left column where u = p/2, this is a factor 5
improvement.
Remark: Notice that p and c are relatively independent of l; e.g., in the left column slightly increasing c
with 5.1 · nb/s (increasing the verification bandwidth by at most several percent) and by adding ≈ 5 more
parities to p, decreases ρ by a factor e.

5.4 Deployment of erasure-coding in the Iris auditing protocol

We now explain how our erasure code functions in Iris.
PoR encoding and update: During encoding, the portal constructs two parity structures: the data parity
structure constructed over the file-system data blocks (including the data blocks in the free list) and the
meta-data parity structure over the meta-data blocks (internal nodes in the data structure comprising the
Merkle tree and free list).
The challenge-response protocol: The portal challenges the cloud to return a set of c (again c = O(

√
n)

randomly selected file-system data blocks, including data blocks from the free list. These blocks are all leaf
nodes in the authenticated data structure containing the Merkle tree and free list. As an optimization, the
portal sends a seed from which the challenge set is pseudo-randomly derived.

The c selected random blocks together with the authenticating paths from the authenticated data structure
are transmitted back to the portal. The portal verifies the correctness of the responses by performing two
checks. First, it verifies the integrity and freshness of the selected blocks, checking the block MACs and the
path to the root in the authenticated data structure. Second, it verifies that the blocks have been correctly
indexed by the challenges according to the node ranks/weights. (This proves that the file-system data blocks
are selected with uniform probability.) As a byproduct of these checks the challenge-response protocol
also verifies the integrity and freshness of the meta-data blocks (internal nodes in the authenticated data
structure). We can immediately infer that if a fraction α of file-system data blocks don’t verify correctly,
then at most a fraction α of internal nodes in the Merkle tree and free list are either missing or corrupted.
Recovery: If the portal ever receives an incorrect response to a PoR challenge (presumably a very rare
event), it can trigger recovery of the file system in a streaming fashion. Assuming that the portal does not
have enough storage to download the full file system, it can download and recover parts of the file system
and stream the corrected version to a new provider. For simplicity of description, we assume full recovery
by the portal itself.

The recovery proceeds in two steps. The portal first needs to decode the Merkle tree and free list structure
containing information about the directory structure of the file system. The portal iterates through the tree in
pre-order, and verifies the authenticity of each tree node. Validated nodes are subtracted from the meta-data
parity structure. While iterating through the tree, the portal creates an authenticated list of the identities of
correctly verified nodes. This list represents a connected subtree rooted at the root of the authenticated data
structure. (A corrupted internal node can not have descendants in its subtree that verify correctly.)

Omissions from the list correspond to erasures. In order to recover these erasures, the portal sorts the
list according to node identities. Since the portal stores a counter indicating the range of all node identities
that have been used, the portal can retrieve, by reading out the sorted list, the identities of all erasures and
store these in its memory. Using the decoding algorithm of the erasure code, the erased tree nodes can
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be recovered from the parity blocks over the authenticated data structure. The recovered tree nodes are
streamed to the new provider.

Second, after the complete tree structure has been recovered, the portal verifies the integrity and fresh-
ness of file-system data blocks. The portal requests blocks in a standard traversal order, and marks as
erasures the blocks whose integrity is not verified. Each correct block is subtracted from the parity structure
computed over file-system data blocks. Block identifiers of missing or corrupted file blocks can be retrieved
from the file-version tree within the recovered authenticated data structure. The portal stores the block iden-
tifiers of missing or corrupted file blocks in its memory. Using the decoding algorithm of the erasure code,
the portal recovers all the corrupted file blocks from the parity blocks computed over the file-system data
blocks.

6 Implementation

Our implementation of Iris is a 25,000-line end-to-end system with all integrity checking in place. The
system is fully asynchronous and never holds a lock while waiting for network or disk I/O operations. The
code runs in user space as a transparent layer that can take advantage of any existing storage system at the
cloud provider. Our implementation uses the open-source .NET framework Mono, which is advantageously
platform-independent: Iris can run on Linux, Windows, and MAC OS.

Our implementation includes the Portal, a simple Cloud storage server, and clients that run traces and
benchmarks, as depicted in the detailed system architecture in Figure 1.

6.1 Cloud

The cloud stores not only regular file system data, but also authenticating meta-data, including MAC files and
our Merkle tree authenticated data structure and checkpointed parities needed for recovery. The repositories
for these data types are shown at the top of Figure 1.

The portal performs reads and writes to the various data repositories by invoking their respective cloud-
side services. The Cloud File System Service handles requests for file blocks, MAC files, and the Merkle
tree (stored in our implementation in an NTFS file system). Operations on file blocks are executed asyn-
chronously at the portal. Sequential access operations to the same file can potentially arrive out of order
at the cloud. (Re-ordering can occur in transit on the network, as our portal and cloud machines are each
equipped with three network cards.) To reduce disk spinning, the Cloud File System Service orders requests
to the same file in increasing order by block offset.

6.2 Portal

The portal interacts with multiple clients. Clients issue file system calls to the Portal Service, shown at the
bottom of the portal component in Figure 1. The portal executes client operations in parallel: Each operation
is executed in a thread pool as a user-scheduled task with asynchronous steps. When an operation is waiting
for a long running step such as disk and network I/O, the task is paused and the current thread switches to
another task. This allows thousands of simultaneously active operations to be handled by the thread pool
with a small number of threads. In our setup, the thread pool had 16 threads—one for each virtual CPU
core, for maximum parallelism.

Operations don’t interact directly with the cloud, but instead with the Merkle Tree and Block Caches.
All data and meta-data requested by the caches is downloaded from the cloud via the Storage Interface in
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the portal, shown in the middle of the portal in Figure 1. While in use by an active operation, blocks and
nodes are retained in the cache. Prior to being cached, however, blocks and nodes downloaded from the
cloud are checked for integrity by the Integrity Checker components.

Our implementation benefits from multi-core functionality available in most modern computers. Oper-
ations performed on active blocks in the cache are split into atomic operations (e.g., hash update for a tree
node, check MAC for a data block or compact nodes in file version trees). These are inserted into various
priority queues maintained at the portal. Multiple threads seize blocks from these queues, lock them and
execute the atomic operations. Operations are always started in order, but may complete out of order. How-
ever, our implementation ensures that the effect of the operations on the system is the same as if they were
executed by a single thread in order.

6.2.1 Merkle tree cache

The Merkle Tree Cache in the portal is Iris’s most complex component. Much of the design effort and com-
plexity of Iris lies in the caching strategy for recently accessed portions of the tree. We designed a generic,
efficient Merkle Tree Cache that ensures consistency across thousands of simultaneous asynchronous client
operations.

When an operation accesses the cache, it first locks it using a mutex and unlocks it when its done. All of
the operations are designed such that they access the cache for a very short period of time for tasks such as
changing the value of a few fields of a Merkle tree node. To ensure a high degree of parallelism, the Merkle
tree mutex is never locked while an operation waits for a long running step such as network and disk I/O.

When executing operations in parallel, a real challenge is to handle dependencies among tree nodes and
maintain data structure consistency and integrity. We do this by imposing several orderings of operations.
Nodes are brought into the cache in a top-down order and are evicted in a bottom-up order. The top-down
ordering is necessary because when a node is read from the untrusted storage, it can only be verified once
all of its ancestors have also been cached in and verified. Likewise, a node can only be written out to
the untrusted storage after the hash of its subtree has been computed. If multiple nodes in a sub-tree are
modified, the Merkle Tree Cache will only hash the shared path to the root once, thereby significantly
reducing the number of hashes that need to be performed.
Phases. To enforce the ordering, each node is always in one of the following phases: Reading, Verifying,
Neutral, Compacting, UpdatingHash, or Writing. A node always traverses these phases in order and only
after its parent or children have reached a certain phase. For example, a node only enters the verifying phase
after its parent has completed the verifying phase. The Reading and Verifying phases are applied top-down
and the Compacting, UpdatingHash, and Writing phases are applied bottom-up. When a node is in the
Neutral phase, it is in the cache and available to be used by operations.
Pinning. Operations oftentimes need to access multiple nodes. For example, a WriteFile operation needs to
access the path in the version tree that descends all the way to the version node corresponding to a specific
block. The operations first pin all of the nodes they need and then proceed to execute. If a node is pinned
that is not currently in the cache, the operation is paused and resumed when all of its pinned nodes have
been loaded into the cache. Once a node is pinned, it is not cached out until it is unpinned (e.g., when the
operation completes). A node may be pinned multiple times, in which case it must be unpinned the same
number of times until it is considered in the unpinned state and may be cached out.

If a node is pinned, its ancestors, sibling, and siblings of the ancestors are automatically indirectly
pinned. This is necessary because if the node is modified, the indirectly pinned nodes will be needed when
updating the hashes of the path to that node.
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Eviction. When the cache reaches its maximum allowed size, it repeatedly evicts least-recently-used (LRU)
leaf nodes, causing a bottom-up wave of evictions. Evicting a node consists of transitioning its phase from
the Neutral to Compacting. The node then goes through the UpdatingHash and Writing phases until it is
finally removed from the cache. If a node and its subtree were not modified, then the UpdatingHash and
Writing phases are skipped.

6.2.2 Other components

The Block Cache functions much like the Merkle Tree Cache except that blocks don’t have parents/children
so there are no dependencies between blocks.

The Merkle Tree and Block Caches keep track of two items per node/block: The old and new data. The
old data is the value of the node/block when it was fetched from the cloud. The new data is its value after it
was (possibly) modified by an operation. When a node/block is evicted, the portal computes the difference
of the byte representations of the old and new data and updates the parities.

Another component of the portal is the auditing module. This service, periodically invoked by the portal,
transmits a PoR challenge to the cloud and receives and verifies the response, consisting simply of a set of
randomly selected data blocks in the file system and their associated Merkle tree paths. The portal also
maintains a repository of Parities to recover from file-system corruptions detected in a PoR, seen in the
portal cache module in Figure 1. Parities undergo frequent modification: Multiple parities are updated with
every file-block write. Thus, the Parities repository sits in the main memory of the portal.

The portal can include a checkpointing service that backs up data stored in the main memory at the
portal to local permanent storage. To enable recovery in the advent of a portal crash, checkpointed data can
be periodically transmitted to the cloud (with a MAC for integrity). While we have not implemented this
component, it can rely on well known checkpointing techniques.

7 Experimental evaluation

We ran several experiments to test different aspects of Iris. We first describe our setup and then present our
results. Two machines ran the full end-to-end system implementation described in Section 6: The Portal and
the Cloud.

Portal Computer. The Portal computer has an Intel Core i7 processor and 12 GB of RAM. The experiments
were run on Windows 7 64-bit installed on a rotational disk, but no data was written to the Portal’s hard drive
for the purpose of our experiments.
Cloud Computer. The Cloud computer has seven rotational hard drives with 1TB of storage each. The file
system and MAC files reside on these disks. The disks are used as separate devices and are not configured
as a RAID array. This configuration mimics a cloud where each disk could potentially be on a separate
physical machine. The operating system (Windows 7 64-bit) runs on an separate additional hard drive to
avoid interfering with our experiment.
Networking. Because our file system can handle very large throughput, we used three 1Gbps cables to
connect the two computers. Each computer had one network port on the motherboard and two additional
network cards. After accounting for networking overhead, the 3 Gbps combined connections between the
two computers can handle about 280 MB/s of data transfer as our experiments show.
Configuration. In our configuration, write operations originate from clients (simulated as threads on the
Portal). Then they are processed by the Portal and multiplexed over the three network connections. Finally,
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data reaches the Cloud computer and is written to the appropriate disk. Reads are similarly processed, but
the data flow is in the opposite direction (from the Cloud machine to the Portal).
Simulated Latency. To obtain more realistic results, we deliberately simulated 20ms round-trip time (RTT)
latency between the clients and Portal, and 100ms RTT latency between the Portal and Cloud. This setting
aims to resemble the scenario where the clients and Portal are both part of the same corporate network and
the Cloud is a data center located elsewhere on the same continent.

7.1 Workloads

To evaluate Iris, we used the following workloads. Each workload was recorded as a trace and played back
exactly under different parameterizations of our system.

• Tar/Untar (directory structure): A workload to measure the performance of operations that access
and modify a realistic directory structure. The tarball consists of the source code for the entire Linux
kernel (about 420 MB, 37,000 files, and 2,300 directories).

• IOZone (various file access patterns): This workload tested the performance of combining various
access patterns such as read, write, reread/rewrite, random read/write, backwards read, and strided
read. We used the popular I/O benchmarking tool IOZone [1].

• Sequential Read/Write (throughput): Measures the performance of sequentially reading/writing ten
files simultaneously, each of size 10 GB.

• Random Read/Write (seeks): Measures the performance of randomly reading/writing ten files si-
multaneously, each of size 1 GB. Reads and writes are uniformly random, and trigger seeks with
almost every operation. For the random read workload, the file is first randomly written and then only
the random read portion of the trace is benchmarked.

7.2 Results

Our experimental results show how Iris performs under the above workloads on the full end-to-end system
described in Section 6. We note that even with seven hard drives for storage and three 1 Gbps network
links between the Portal and Cloud, under no workload was the Portal the bottleneck. Depending on the
workload, the limiting factor was either the network or hard drives.

Varying the Merkle Tree Cache Size: The parallel Merkle Tree Cache is crucial for the performance of
our system. The cache allows the Portal to perform file operations without having to read and write entire
Merkle tree paths from the server for each operation. The asynchronous cache also allows for pausing
operations that are waiting to retrieve Merkle tree nodes while other operations actively use the cache.

Multiple paths can be loaded into the Merkle Tree Cache at once while maintaining consistency. In order
to demonstrate the usefulness of the cache, in this experiment we varied its size (i.e., how many nodes it can
hold at once) and we timed each of the workloads under different cache sizes. The results are in Figure 6.

Interpretation: As demonstrated in the figure, the Tar, Untar, and IOZone workloads greatly benefit from
having a Merkle tree cache of 5 to 10 MB (about 10,000 to 20,000 nodes), whereas the sequential and
random read/write workloads are mostly unaffected by the cache size.

The reason is quite simple: The Tar, Untar, and IOZone benchmarks frequently revisit the same part
of the Merkle tree. For example, the Tar/Untar workloads often read/write multiple files within the same
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Figure 6: Workloads under different Merkle Tree Cache sizes. In each plot, the horizontal axis is the Merkle
Tree Cache size (in MB) and the vertical axis is the time (in seconds) for the workload to complete.

directory (and hence their Merkle tree paths share many nodes). Likewise, the random write portion of the
IOZone benchmark creates a file with a large uncompactable Merkle tree which is then read sequentially and
the sequential read portion of the workload yields an in-order traversal of the Merkle tree that is significantly
sped up by the cache.

On the other hand, the sequential read and write workloads generate version tree nodes that are quickly
compacted. Hence the Merkle Tree Cache only needs to hold a few dozen nodes at a time. The random
read/write workloads are extremely intensive on the Cloud’s disks. Almost every operation causes a seek,
so the Cloud’s disks are the bottleneck. Because the random read/write operations are executed very slowly
by the Cloud’s disks and the Portal parallelizes requests for the Merkle tree nodes, there is plenty of time for
the Merkle tree nodes to be fetched without delaying the workload.

Scalability: In Iris, all operations are handled by the same thread pool and each file has its own queue of
pending/active operations. From the Portal’s perspective, there is little difference between each operation
being issued by a different client and all operations being issued by the same client. Most of the overhead
of having multiple clients comes from having to manage multiple TCP sockets and their associated buffers.

We wanted then to show that Iris can easily scale to 100 clients accessing it simultaneously. To maximize
both strain on the Portal’s CPU and the number of cryptographic operations performed, each client generated
a sequential access pattern. (With more seek-intensive access, the bottleneck would be disk seeks on the
Cloud.)

19



Figure 7: Avg sequential read & write
speed.

Figure 8: PoR Encoding Rate.

Total Latency (ms) Network I/O Cloud Disk I/O Portal Processing
Portal Cache: Hot Cold Hot Cold Hot Cold Hot Cold

Create file in directory of depth 0 20.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0
Create file in directory of depth 1 20.0 144.0 20.0 120.0 0.0 9.6 0.0 14.4
Create file in directory of depth 2 20.0 254.0 20.0 220.0 0.0 16.5 0.0 17.5
Create file in directory of depth 3 20.0 363.0 20.0 320.0 0.0 23.4 0.0 19.6
List directory with 10 files at depth 1 27.7 678.9 20.0 620.3 0.0 32.6 7.7 26.0
Write 1 MB file at depth 1, wait completed 24.8 138.8 20.0 120.0 0.0 0.0 4.8 18.8
Read 1 MB file at depth 1 20.0 284.2 20.0 220.0 0.0 43.7 0.0 20.5

Figure 9: Latency for different operations in Iris.

We averaged the sequential read and sequential write speeds for 10 to 100 clients. Figure 7 shows the
results. As can be seen, Iris consistently reads/writes at 250 MB/s to 280 MB/s. The slight performance
degradation for 100 clients is due to the fact that many files are accessed at once and that causes a larger
portion of disk seeks.

Latency: Figure 9 shows the latency for several basic operations in Iris. The latency is measured under two
scenarios: when the portal cache is hot and cold. A hot cache means that the cache already contains all of
the data (Merkle tree nodes and blocks) necessary to perform the operation on the portal alone. A cold cache
means that all of the data has been evicted from the portal’s cache.

The bulk of the latency (over 84%) comes from the portal-cloud and client-portal network latencies. Our
results show that the latency introduced by the portal for integrity checking and cache management (denoted
as portal processing time) is much smaller in comparison: less than 14% for a cold cache and less than 29%
for a hot cache.

The 1 MB read operation takes about half of the time of the 1 MB write operation because the por-
tal notifies the client that the write operation has completed while uploading the file to the cloud in the
background. For the read operation, the portal must first read the file from the cloud.

The high cold cache latency for high depth operations (e.g., create depth 3 and list directory) is due to
the fact that each file is represented as a separate node in the Merkle tree and tree paths are fetched one node
at a time. It should be noted that this latency can be significantly reduced by having the portal fetch all nodes
in a path in parallel or grouping multiple files into a single file node.
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PoR Encoding Rate: Finally, we measure the rate at which the Portal can perform erasure-encoding for file-
system recovery if auditing detects corruption. Figure 8 shows encoding speeds for data blocks of different
sizes.

8 Conclusions

We have presented Iris, an authenticated file-system designed to outsource enterprise-class file systems to
the cloud. Iris goes beyond basic data-integrity verification to achieve two stronger properties: File freshness
and retrievability. Using a lightweight, tenant-side portal as a point of aggregation, Iris efficiently processes
asynchronous requests from multiple clients transparently, i.e., with no underlying file-system interface
changes.

Iris achieves a degree of end-to-end optimization possible only through a carefully crafted, holistic
architecture, one of the systems’s major contributions. Iris’s architecture also relies on several technical
novelties: The authenticating data-structure design and management, caching techniques, sequential-file-
access optimizations, and a new erasure code enabling the first efficient dynamic PoR.

In practice, a common impediment to security-system deployment is performance overhead. It is our
hope to see Iris become the first authenticated file-system to break through this barrier thanks to a combina-
tion of strong integrity assurances with high performance.
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A Detailed analysis of erasure code construction

We will first explain and analyze the new erasure code together with its encoding and decoding for a single
stripe, i.e., m = 1. Next we will generalize and analyze multiple stripes, we will prove a tight bound on the
recovery failure probability ρ and compare our bounds with our analysis of a single stripe. Finally, we apply
the bound to derive the theorem used in our analysis for practical example parameters (Theorem 1).

A.1 Single Stripe (m = 1)

Encoding: For the purpose of erasure coding, we view data blocks or tree nodes as identifier-value pairs
δ = (δid; δval), where δval = (δ1, . . . , δb) is a sequence of b bits δ1, . . ., δb and δid is a unique identifier. To
randomize the mapping from data blocks to parity blocks, we use a keyed hash function Hk(.) that maps an
identifier δid to a binary pseudo random vector θ = (θ1, . . . , θp) of p bits.

The parity structure is represented by a b × p binary matrix P . Initially, no blocks are encoded into P
and P equals the all-zero matrix. We describe two operations; adding a block δ into P and subtracting a
block δ from P . To add δ, the client computes Hk(δid) = θ = (θ1, . . . , θp), constructs the b × p matrix
A = δval ⊗ θ = {δiθj}i,j and updates the parity structure to P ← P + A. If the portal subtracts δ, then A
is subtracted from P , that is, P ← P −A, or equivalently P ← P +A, since addition is modulo 2.

Notice that P corresponds to blocks in B if

P =
∑
δ∈B

δval ⊗Hk(δid). (1)

Let Bval be the matrix for which the columns correspond δval, and let Bid be the matrix for which the rows
correspond to Hk(δid). Then (1) can be rewritten as

P = BvalBid. (2)

Notice that Bval has b rows and Bid has p columns. Since Hk(.) is a keyed hash function, Bid is a pseudo
random binary matrix. Finally, notice that the parity structure P is a binary b × p matrix which requires
s = b · p bits storage.
Decoding: We assume that the portal retrieves complete blocks from the server for which the correctness
can be verified (blocks are part of an authenticated data structure which can be used to verify the integrity
and freshness of blocks). Those blocks that verify correctly are subtracted from P . Let I be the set of all
block identities of blocks that are corrupted (did not verify correctly) or missing (that were not send by
the server). The blocks corresponding to I are called erasures. During recovery the portal knows all the
identities of blocks that were added to the parity structure P , that is, the portal is able to reconstruct set
I . Let B be the set of blocks that correspond to the unique identities in I . After subtraction of the correct
blocks from P , matrix P corresponds to (1) where the δid’s are known to the client and the δval’s need to
be reconstructed by the portal during decoding. This can be done by a simple Gaussian elimination. Since
the portal stores the parity structure, the portal knows P . The portal knows I and therefore Bid. See (2), the
portal needs to solve the linear system of equations P = BvalBid for Bval. This is only possible if Bid has
a right inverse (such that Gaussian elimination works fine).

If the number of blocks in B (that is, the number of rows in Bid) is more than a (the number of columns
of Bid), then Bid does not have a right inverse. If the number of erasures, that is, the number of blocks in
B, is less than or equal to p, then Bid may have a right inverse: over random binary matrices Bid with equal
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probability of a 1 or 0 in each of its entries, the probability that all rows in Bid are linearly independent is
equal to

|B|−1∏
i=0

(1− 2−(p−i)) ≥ 1−
|B|−1∑
i=0

2−(p−i) ≥ 1− 2−(p−|B|). (3)

Summarizing, the probability that erasure decoding fails is at most 2−(p−|B|).
Analysis: In our dynamic POR solution, the client queries/challenges random blocks, which the server
needs to correctly respond to (the client verifies the responses by using the authenticated data structure). If
all n file blocks are in a single stripe and if the client checks c random challenge response pairs, then, given
j = |B| erasures, the probability (taken over a uniform distribution of challenge response pairs) that none
of the challenge response pairs detects an erasure is equal to(

n− j
c

)
/

(
n

c

)
=

(
n− c
j

)
/

(
n

j

)
≤ n− c

n
· · · n− c− j + 1

n− j + 1
≤ (1− c/n)j .

For c/n < 1/2, given j erasures, the probability of decoding failure while all c challenge response pairs
verify correctly is at most (see (3))

min{2−(p−j), 1}(1− c/n)j ≤ (1− c/n)p ≤ e−pc/n. (4)

Hence, the probability ρ that not all blocks can be fully recovered, that is, the probability that erasure
decoding fails while all c challenge response pairs verify correctly is at most

ρ ≤ e−pc/n. (5)

E.g., for c = l
√
n and p = h

√
n, ρ ≤ e−lh, storage is s = b · p = O(

√
n) bits and verification bandwidth

equals c = O(
√
n) number of challenge response pairs.

If a file block is written, then its old version is subtracted from parity structure P and the new version
is added to P . These operations are efficient if matrix A = δval ⊗ Hk(δid) in (1) can be represented and
computed in an efficient way. The length of vector δval is the size b of a block value; b is a fixed system
parameter (e.g., b equals 4KB or 32768 bits). Vector Hk(δid) has size1 p = h

√
n. Vector Hk(δid) has an

efficient representation if it has O(log p) = O(log n) ones in which case updating P only costs O(b log p)
XOR operations together with one hash evaluation. That is, the fraction of ones in Hk(δid) is O((log p)/p).
As a result matrix Bid is a random sparse binary matrix in which each entry is equal to 1 with probability
O((log p)/p).

For a random sparse binary matrix Bid, inequality (3) may not hold. The rank of sparse matrices over
finite fields has been well studied, see [31] for a survey. If each entry is chosen independently and at
random to be 1 with probability q ≤ (ln p)/p, then the rank properties of Bid are not indistinguishable from
the purely random case q = 1/2. Based on extensive simulation and literature, [31] conjectures that for
q > 2(ln p)/p and p large enough the rank properties of Bid are indistinguishable from the purely random
case, in particular a bound similar to (3) should hold.

During decoding the client needs to solve the linear system of equations P = BvalBid for Bval. If the
server imposes j = |B| = p erasures, then probability ρ of recovery failure is maximized (see (4)). For p

1If we design p = O(logn), then Hk(δid) can be efficiently computed. However, for p = O(logn), ρ is small only if c scales
linearly in n (see (4)), which is not practical.
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erasures straightforward Gaussian elimination needs p2 = h2n storage (matrix Bid has j = |B| = p rows
and p columns). Notice that we only allow O(

√
n) storage at the client’s site. In order to improve on the

amount of required storage for Gaussian elimination, the client needs to use Bid’s sparse structure.
Belief propagation [27] works well (in O(p) time and within the allowed storage) for any sparse matrix

Bid that is sufficiently rectangular. In our application we need an exponentially small upper bound on ρ, so,
we need to know an accurate estimate on the probability that decoding fails which current literature does
not provide:
Belief propagation: If the number of rows in Bid is j ≤ 1/q = O(p/ log p) with q ≈ 2(ln p)/p, then Bid
is expected to have a positive fraction of columns with a single 1. For such a sparse rectangular j× p matrix
Bid, Gaussian elimination is efficient: As explained in [27], we may use belief propagation over the Binary
Erasure Channel (BEC) for LDPC codes. The generator matrix of the LDPC code is the n× p matrix with
rows Hk(δid) for each of the n blocks δ (notice that it has Bid as a submatrix). The construction of matrix
Bid is equivalent to the first iteration in the belief propagation algorithm. The decoding graph after the first
iteration is a bipartite graph with nodes representing the rows of Bid and nodes representing the columns
of Bid; a row node and a column node are connected by an edge only if the corresponding entry in Bid is
1. Since qjp equals the number of 1s in Bid, that is, the number of edges in the decoding graph after the
first iteration, the remaining iterations cost qjp = O(p) blocks storage and run in qjp = O(p) time (as is
explained in [27], each edge is considered once).

We notice that for j ≤ 1/q, it is very likely that before every iteration the decoding graph is represented
by a matrix having a positive fraction of columns with a single 1. This is a necessary condition for belief
propagation to successfully complete erasure decoding. This corresponds to the independence assumption
in [27], which is the assumption that each iteration is statistically independent of previous iterations in
that the decoding graph at each iteration has the same edge degree distributions for row nodes and column
nodes. Based on the independence assumption, a condition for successful erasure decoding using edge
degree distributions can be derived (inequality (7) in [27]). In particular, if j ≤ 1/p, then the independence
assumption implies successful erasure decoding. The independence assumption is correct for the r first
iterations only if the neighborhood of a row node in the bipartite graph represented by Bid up to depth r is a
tree. After r iterations at most a small fraction of erasures (less than a constant) needs to be decoded using
Gaussian elimination. It is likely that this can be done within the available amount of storage. However, if
the set of linear equations after r iterations does not have full rank, then Gaussian elimination will fail.

Belief propagation works well for any sparse matrix Bid that is sufficiently rectangular. Unfortunately,
current literature does not provide an exact analysis. Gaussian elimination fails with an exponentially small
probability. For this reason, an analysis based on the independence assumption closely fits simulation results
for LDPC codes in communication theory. However, in our application we need an exponentially small
upper bound on ρ, so, we need to know an accurate estimate on the probability that Gaussian elimination
fails. For example, suppose that f is such that for j ≤ p/(f log p) (the larger f the more rectangularBid) the
probability of failing Gaussian elimination is ≤ 2−p/(f log p)−j . Then, by using the arguments from which
(4) and (5) are obtained,

ρ ≤ (1− c/n)p/(f log p) ≤ e−pc/(nf log p).

A.2 Multiple Stripes

Rather than using belief propagation, we design a specific sparse structure in combination with 1) an efficient
decoding algorithm that meets the storage requirements, together with 2) an efficient updating algorithm
having u = O(log n), and for which 3) we can provide a tight upper bound on ρ without assuming any

26



conjecture.
We propose to split the single stripe into m independent stripes each being a code word having p =

O(log n) parities. Each block is assigned to exactly one stripe, hence, if the client updates a block, then on
average only u = p/2 = O(log n) parities of the corresponding stripe need to be updated (the multi-striped
structure is indeed sparse).

We need a keyed hash functionHk(.) that maps an identity δid to a pseudo random bit string representing
a pair (θind; θ), where θ = (θ1, . . . , θp) and θind is the index of the stripe to which block δ = (δid; δval) is
added.

Each stripe i, 1 ≤ i ≤ m, has its own parity structure P [i]. To add or subtract a block δ, the client
computes Hk(δid) = (θind; θ), constructs A = δval ⊗ θ as before, and updates P [θind]← P [θind] +A.

Erasure decoding of the multi-striped structure consists of decoding each stripe separately. Successful
decoding involves m times a Gaussian elimination, each time computing the right inverse of a (≤ p) × p
matrix costing at most p2 = (a/m)2 = O((log n)2) XOR operations. Decoding can be done within the
allowed storage.
Recovery failure probability: The recovery failure probability ρ is equal to the probability that erasure
decoding fails while all challenge response pairs verify correctly. As a technical preliminary, for integers
p and u and 0 ≤ β ≤ 1, let R(p, u, β) be the probability that a binary βp × p rectangular sparse matrix
in which each entry is chosen independently and at random to be 1 with probability u/p does not have full
rank. The following theorem expresses the upper bound on ρ in terms of R(p, u, β).

In the purely random case u = p/2 and R(p, u = p/2, β) ≤ 2−(1−β)p, see (3). Based on exten-
sive simulation and literature, [31] states the conjecture that for u > 2 ln p and β sufficiently close to 1,
R(p, u, β) ≈ R(p, p/2, β) ≤ 2−(1−β)p.

We define h(x) = −x log2 x− (1− x) log2(1− x) as the binary entropy function.

Theorem 2 For any value of technical parameters 0 ≤ β, ε ≤ 1 and 0 ≤ κ ≤ e1/4/(2π),

ρ ≤ s

pb
·

[
e1/8√
π

√
(2−ε)3(1−κ)2
2κ(κ+ε−εκ) n2

−(1−h((1−ε)/(2−ε)))·βp+

+R(p, u, β) + e−(1−ε)βcs/(nb) + e−(1−κ)cpb/s

]
.

For κ ≤ c/n, the inequality holds with the term e−(1−κ)cpb/s removed.

By substituting R(p, u, β) ≤ 2−(1−β)p and β = 1/(2−h((1− ε)/(2− ε))), we obtain the next theorem,
where we use the monotonically increasing function f ∈ [0, 1) → [0,∞) and monotonically decreasing
function g ∈ [0, 1]→ [0, 1] defined as

f(ε) = (ln 2)(1− h((1− ε)/(2− ε)))/(1− ε),
g(ε) = (1− ε)/(2− h((1− ε)/(2− ε))).

Theorem 3 Let u = p/2 or let u > 2 ln p and β = 1/(2− h((1− ε)/(2− ε))) sufficiently close to 1 such
that R(p, u, β) ≈ R(p, p/2, β) ≤ 2−(1−β)p. Then, for any value of technical parameters 0 ≤ ε ≤ 1 and
0 ≤ κ ≤ e1/4/(2π),

ρ ≤ s

pb
·

[ (
1 + e1/8√

π

√
(2−ε)3(1−κ)2
2κ(κ+ε−εκ) n

)
e−f(ε)g(ε)·p+

+e−g(ε)·cs/(nb) + e−(1−κ)cpb/s

]
.

For κ ≤ c/n, the inequality holds with the term e−(1−κ)cpb/s removed.
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We will first prove Theorem 3 from which the proof of Theorem 2 will follow as a direct consequence.
Proof of Theorem 3: Suppose that the client checks c ≤ n random challenge response pairs such that c/m
blocks within each of the m stripes are verified. Suppose that there are j erasures. We want to compute the
probability ρ that not all blocks can be fully recovered given c challenge response pairs and j erasures. The
recovery failure probability ρ is equal to the probability that, given c challenge response pairs and j erasures,
erasure decoding fails while all challenge response pairs verify correctly. We will prove a tight upper bound
on ρ.

Let wi be the number of blocks added to a stripe i. Notice that wi is binomially distributed with length
n and probability 1/m; the expected number of blocks added to a single stripe is w = n/m with standard
deviation

√
(1− 1/m)n/m ≤

√
w. By using Chernoff’s bounds for the lower and upper tail of the binomial

distribution, we obtain, for t ≥ 0,

Pr(wi < w − t
√
w) < e−t

2/2

and

Pr(wi > w + t
√
w) < (et/

√
w/(1 + t/

√
w)(1+t/

√
w))w

≤ e−t
2/4 for t/

√
w < 2e− 1.

If e−t
2/4 = ρ/r, then |w − wi| ≤ 2

√
(log r/ρ)/w with probability ≥ 1 − ρ/r. If w � log(r/ρ), then the

approximation wi = w = n/m for each stripe holds with probability ≥ 1− ρ/r. In our analysis we use this
approximation. We choose not to include the bounds on wi given by |w − wi| ≤ 2

√
(log r/ρ)/w in order

to keep our analysis presentable.
Let Pr(j1, . . . , jm) with j = j1 + . . .+ jm be the probability that the distribution of the j erasures over

stripes is such that, for 1 ≤ i ≤ m, stripe i has ji erasures. Since the keyed hash function outputs pseudo
random sequences, the server cannot distinguish the actual assignment of blocks to stripes from a random
assignment. Therefore,

Pr(j1, . . . , jm) =

[
m∏
i=1

(
w

ji

)]
/

(
wm

j1 + . . .+ jm

)
.

We define J as the set of sequences of non-negative integers that sum up to j (notice that J has sequences
of variable length).

Our analysis for a single stripe generalizes: given a distribution of (j1, . . . , jm) ∈ J erasures, the
probability of decoding failure is equal to

Pr(failure|j1, . . . , jm) ≤
m∑
i=1

min{1, 2−(p−ji)}. (6)

If ji ≤ w − c/m for all 1 ≤ i ≤ m, then the probability of not detecting any erasure during the verification
of all challenge response pairs is equal to

Pr(no-detection|j1, . . . , jm) =
m∏
i=1

[(
w − ji
c/m

)
/

(
w

c/m

)]
. (7)

If there exists an index i such that ji > w − c/m, then Pr(no-detection|j1, . . . , jm) = 0.
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Since ”failure” and ”no-detection” are independent statistical events,

ρ =
∑

(j1,...,jm)∈J

Pr(j1, . . . , jm)
·Pr(failure|j1, . . . , jm)
·Pr(no-detection|j1, . . . , jm).

(8)

The following lemmas derive tight upper bounds on each of the three probabilities in ρ.

Lemma 1 Let 0 ≤ x ≤ 1 and let

A ⊆
{
(j1, j2) s.t.

(
w

j1

)(
w

j2

)
/

(
2w

j1 + j2

)
≤ x

}
.

Define
z = max

(j1,j2)∈A
j1 + j2.

Then, ∑
(j1,...,jm)∈J s.t. (j1,j2)∈A

Pr(j1, . . . , jm) ≤ xz. (9)

Proof. We first substitute

Pr(j1, . . . , jm) =

(
w
j1

)(
w
j2

)(
2w

j1+j2

) ( 2w
j1+j2

)(
w
j3

)
· · ·
(
w
jm

)(
2w+w+...+w

(j1+j2)+j3+...+jm

)
into the left side of inequality (9). By using the stated assumption on set A, this yields the upper bound

∑
(j1,...,jm)∈J s.t. (j1,j2)∈A

x

(
2w

j1+j2

)(
w
j3

)
· · ·
(
w
jm

)(
2w+w+...+w

(j1+j2)+j3+...+jm

)
Since |{(j1, j2) ∈ A s.t. j1 + j2 = j′}| ≤ z for any j′, we obtain the upper bound

∑
(j′,j3,...,jm)∈J

xz

(
2w
j′

)(
w
j3

)
· · ·
(
w
jm

)(
2w+w+...+w
j′+j3+...+jm

) = xz.

QED

Lemma 2 For j1 ≤ (1− κ)w with 0 ≤ κ ≤ e1/4/(2π) and j2 ≤ γj1 with 0 ≤ γ ≤ 1,(
w
j1

)(
w
j2

)(
2w

j1+j2

) < e1/8√
π

√
1 + γ

2κ(1− γ(1− κ))
2−(1−h(γ/(1+γ)))·j1 .

Proof. The limiting case j2 = 0 with γ = 0 follows from(
w

j1

)
/

(
2w

j1

)
≤ (1− w/(2w))j1 = 2−j1 .
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For the general case we use the following upper and lower bound from [29, Theorem 2.6 with n = 1]: for
v0 > v1 ≥ 1,

e−1/8√
2π

C(v0, v1) <

(
v0
v1

)
<

1√
2π
C(v0, v1),

where

C(v0, v1) =
v
v0+1/2
0

v
v1+1/2
1 (v0 − v1)v0−v1+1/2

.

For j2 6= 0 (implying j1 6= 0), these bounds yield (after a reordering of terms) the upper bound

(
w
j1

)(
w
j2

)(
2w

j1+j2

) <
e1/8√
π

√
w
√

j1+j2
2j1j2

√
(w−j1)+(w−j2)
2(w−j1)(w−j2)

·L
[
j1−j2
j1+j2

]−(j1+j2)/2
·L
[
(w−j2)−(w−j1)
(w−j2)+(w−j1)

]−((w−j2)+(w−j1))/2

where
L[y] = (1 + y)1+y(1− y)1−y = 22(1−h((1−y)/2))

for the binary entropy function h(.).
The lemma follows after applying each of the following bounds: L[y] ≥ 1, from (j1 − j2)/(j1 + j2) ≥

(1−γ)/(1+γ) we obtainL[(j1−j2)/(j1+j2)] ≥ L[(1−γ)/(1+γ)], (j1+j2)/2 ≥ j1/2, from 1 ≤ j2 ≤ γj1
we obtain

√
(j1 + j2)/(2j1j2) ≤

√
(1 + γ)/2, and from 0 ≤ j1 ≤ (1−κ)w and 0 ≤ j2 ≤ γj1 ≤ γ(1−κ)w

we obtain
√

(2w − j1 − j2)/(2(w − j1)(w − j2)) ≤ 1/
√
κ(1− γ(1− κ))w. QED

From the two previous lemmas we obtain:

Lemma 3 Let 0 ≤ β, γ ≤ 1 and 0 ≤ κ ≤ e1/4/(2π), and define

B =

{
(j1, . . . , jm) ∈ J s.t.

βp ≤ j1 ≤ (1− κ)w
and ∃iji ≤ γj1

}
.

Then,
∑

(j1,...,jm)∈B Pr(j1, . . . , jm) is at most equal to

e1/8√
π

√
(1 + γ)3(1− κ)2
2κ(1− γ(1− κ))

n2−(1−h(γ/(1+γ)))·βp.

Proof. Let x be the upper bound of Lemma 2 with j1 lower bounded by βp. By symmetry arguments, the
bound in Lemma 2 holds for j1 ≤ (1− κ)w and any index i such that ji ≤ γj1. So, set B is a subset of

m⋃
i=2

(j1, . . . , jm) ∈ J s.t.
βp ≤ j1 ≤ (1− κ)w,
ji ≤ γj1 and(
w
j1

)(
w
ji

)
/
(

2w
j1+ji

)
≤ x

 .

For each index pair (1, i) in this union, we define a set A as in Lemma 1, where z ≤ (1 + γ)(1 − κ)w.
Application of Lemma 1 for each pair (1, i) proves that∑

(j1,...,jm)∈B

Pr(j1, . . . , jm) ≤ (m− 1)xz ≤ (1 + γ)(1− κ)nx.

QED
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Lemma 4 Let 0 ≤ β, γ ≤ 1, and define

B =

{
(j1, . . . , jm) ∈ J s.t.

βp ≤ j1
and ∀iji ≥ γj1

}
.

Then, for (j1, . . . , jm) ∈ B,

Pr(no-detection|j1, . . . , jm) ≤ e−γβcpm/n.

Proof. If (j1, . . . , jm) ∈ B, then all ji ≥ γβp. Hence, probability Pr(no-detection|j1, . . . , jm) is equal to
(notice that c ≤ mw = n)

m∏
i=1

[(
w − ji
c/m

)
/

(
w

c/m

)]
≤

[
(1− (c/m)/w)γβp

]m
≤ e−γβcpm/n.

QED

Lemma 5 Let j1 > (1− κ)w with 0 ≤ κ ≤ e1/4/(2π). For (j1, . . . , jm) ∈ J and κ > c/n,

Pr(no-detection|j1, . . . , jm) ≤ e−(1−κ)c/m.

If κ ≤ c/n, then Pr(no-detection|j1, . . . , jm) = 0.

Proof. If κ ≤ c/n, then j1 ≥ (1−κ)w ≥ (1−c/n)w = w−c/m, hence, Pr(no-detection|j1, . . . , jm) = 0.
For κ > c/n, Pr(no-detection|j1, . . . , jm) is at most equal to, see (7),(

w − j1
c/m

)
/

(
w

c/m

)
≤ (1− (c/m)/w)j1

≤ e−j1c/n ≤ e−(1−κ)c/m.

QED

Lemma 6 For any 0 ≤ β, γ ≤ 1 and 0 ≤ κ ≤ e1/4/(2π),

ρ ≤ m ·

[
e1/8√
π

√
(1+γ)3(1−κ)2
2κ(1−γ(1−κ))n2

−(1−h(γ/(1+γ)))·βp+

+2−(1−β)p + e−γβcpm/n + e−(1−κ)c/m

]
.

For κ ≤ c/n, we may remove the term e−(1−κ)c/m from the bound.

Proof. We first notice that if all ji ≤ βp, 1 ≤ i ≤ m, then Pr(failure|j1, . . . , jm) is at most equal to, see
(6),

m∑
i=1

min{1, 2−(p−ji)} ≤ m2−(1−β)p. (10)

Secondly, by symmetry Lemmas 3, 4 and 5 hold for j1 replaced by any ji. By combining all observations,
ρ, see (8), is at most the right side of (10) plus m times the sum of the upper bounds stated in Lemmas 3, 4
and 5. This proves the lemma. QED
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Theorem 3 follows immediately from Lemma 6 by choosing β such that (1− h(γ/(1 + γ)))β = 1− β,
that is,

β = 1/(2− h(γ/(1 + γ))),

and by substituting m = s/(pb) and γ = 1− ε, for 0 ≤ ε ≤ 1.
Proof of Theorem 2: Rank properties only play a role in (6) and in (10). By replacing the bound in (10) by
m ·R(p, u, β) we obtain Theorem 2.

Asymptotic: We will now analyze the strength of the derived upper bound on ρ and argue that for large n,
the bound is tight.

Let κ = c/n. Notice that (2 − ε)3(1 − κ)2 ≤ 8 and 2κ(κ + ε − εκ) ≥ 2κ2. For ε ≥ f−1(cs/(npb)),
f(ε)g(ε) > g(ε)cs/(npb) and the terms in the upper bound of ρ collapse leading to

ρ ≤ s

pb
(2 +

2 · e1/8√
π

n2

c
)e−g(ε)·cs/(nb).

Notice that if we have a single stripe, then s = pb and f−1(cs/(npb)) = f−1(c/n) which is close to 0
for c = O(

√
n). Notice that g(0) = 1, so the bound in the theorem corresponds to (5).

A more precise analysis uses the Taylor expansion around 1/2 of the binary entropy function,

h(x) = 1− 1

2 ln 2

∞∑
i=1

(1− 2x)2i

i(2i− 1)
,

hence, for 0 ≤ ε ≤ 1,

h

(
1− ε
2− ε

)
= 1− 1

2 ln 2

∞∑
i=1

(ε/(2− ε))2i

i(2i− 1)
≤ 1− ε2

8 ln 2

and

h

(
1− ε
2− ε

)
= 1− 1

2 ln 2

∞∑
i=1

(ε/(2− ε))2i

i(2i− 1)

≥ 1− 1

2 ln 2

∞∑
i=1

(ε/(2− ε))2i

= 1− 1

2 ln 2

(
1

1− ε
2−ε
− 1

)
= 1− ε

4 ln 2(1− ε)
.

The upper bound proves
f(ε) ≥ ε2/(8(1− ε)) ≥ ε2/8.

So, ε2/8 ≥ cs/(npb) implies ε ≥ f−1(cs/(npb)). The lower bound proves

g(ε) ≥ (1− ε)/
(
1 +

ε

4 ln 2(1− ε)

)
≥ 1− 1 + 4 ln 2

4 ln 2
ε.
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So,

ρ ≤ s

pb
(2 +

2 · e1/8√
π

n2

c
)e−(1−

1+4 ln 2
4 ln 2

√
8cs/(npb))·cs/(nb).

For a single stripe, s = pb and we obtain

ρ ≤ (2 + 1.278 · n
2

c
)e−(1−3.849·

√
c/n)·cp/n

showing into what extend our bounding techniques weakened the bound in (5).

Remark: In a further refinement of the multi-striping structure, we may decide to assign each block to two
arbitrary stripes each having half the number of parities (such that the cost of updating parities remains the
same). Such a ”two-dimensional” striping structure has the characteristics of a product code; successful
erasure decoding is more likely. Notice that a ”multi-dimensional” striping structure tends to become the
random sparse structure as discussed for the single stripe with the bound (5).

A.3 Example Parameters

If we set κ = e1/4/(2π) = 0.204 and ε = 3/4 (resulting in f(ε) = 1.11, g(ε) = 0.196, and β = 0.687 �
1), the upper bound of Theorem 3 yields

ρ ≤ s

pb
·
[
(1 + 1.24 · n)e−p/4.6 + e−cs/(5.1·nb) + e−0.8·cpb/s

]
.

Notice that under the condition s/b ≤ 2.0 · √np, we have cs/(5.1 · nb) ≤ 0.8 · cpb/s. Thus, letting
c = 5.1 · (nb/s) · (l + ln(s/(bp))) for technical parameter l, we obtain the following corollary:

Corollary 1 Let u = p/2. Then, for any l > 1, if s/b ≤ 2.0 · √np, c = 5.1 · (nb/s) · (l + ln(s/(bp))) and
p ≥ 4.6 · (l + ln(1.24 · n) + ln(s/(pb))), then

ρ ≤ 3 · e−l.

If we set κ = e1/4/(2π) = 0.204 and ε = 1/3 (resulting in f(ε) = 0.03, g(ε) = 0.648, and β = 0.972),
we obtain the following corollary:

Corollary 2 Let u > 2 ln p such that R(p, u, 0.972) ≈ R(p, p/2, 0.972) ≤ 2−(1−0.972)p. Then, for any
l > 1, if s/b ≤ 2.0 ·√np, c = 1.54 · (nb/s) · (l+ln(s/(bp))) and p ≥ 51.45 · (l+ln(1.71 ·n)+ln(s/(pb))),
then

ρ ≤ 3 · e−l.

If condition s/b ≤ 2.0 · √np in Corollary 1 is not satisfied, then we need to use κ = c/n in Theorem 3.

Together with ε = 3/4, this gives the slightly weaker bound ρ ≤ s
bp ·
[
(1 + 1.27 · n(n−c)√

c(3n+c)
)e−p/4.6 + e−cs/(5.1·nb)

]
:

Corollary 3 Let u = p/2. Then, for any l > 1, if c = 5.1 · (nb/s) · (l + ln(s/(bp))) and p ≥ 4.6 · (l +
ln(1.27 · n(n−c)√

c(3n+c)
) + ln(s/(2pb))), then

ρ ≤ 3 · e−l.

The three corollaries combined prove Theorem 1.
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