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Abstract
Cloud computing denotes an architectural shift toward
thin clients and conveniently centralized provision of
computing resources. Clients’ lack of direct resource
control in the cloud prompts concern about the potential
for data privacy violations, particularly abuse or leakage
of sensitive information by service providers. Cryptog-
raphy is an oft-touted remedy. Among its most power-
ful primitives is fully homomorphic encryption (FHE),
dubbed by some the field’s “Holy Grail,” and recently
realized as a fully functional construct with seeming
promise for cloud privacy.

We argue that cryptography alone can’t enforce the
privacy demanded by common cloud computing ser-
vices, even with such powerful tools as FHE. We for-
mally define a hierarchy of natural classes of private
cloud applications, and show that no cryptographic pro-
tocol can implement those classes where data is shared
among clients. We posit that users of cloud services will
also need to rely on other forms of privacy enforcement,
such as tamperproof hardware, distributed computing,
and complex trust ecosystems.

1 Introduction
Cloud computing is a model of information processing,
storage, and delivery in which highly centralized physi-
cal resources are furnished to remote clients on demand.
Rather than purchasing actual physical devices—servers,
storage, and networking equipment—clients lease these
resources from a cloud provider as a outsourced ser-
vice that abstracts away physical devices. By sharing
infrastructure among tenants, a cloud provider achieves
economies of scale and balances workloads, reducing
per-unit resource costs and giving clients the ability to ra-
chet their resource consumption up or down. Cloud com-
puting is flexible and portable in that it can be accessed
anytime from anywhere. By using redundant sites and
backup storage, cloud providers can also provide greater
reliability than local computing systems.

For all the benefits of cloud computing, though, it de-
prives clients of direct control over the systems that man-
age their data. Thus arises a central concern of cloud
computing: How can clients trust that a cloud provider
will protect the privacy of their data, i.e., not leak their
data or itself use their data inappropriately?

In this paper, we explore privacy protection in cloud
architectures. In particular, we consider the challenge of
having a cloud service run applications over client data
while: (1) Not being able to learn any information itself
and (2) Releasing output values to clients in accordance
with an access-control policy. We argue that by itself,
cryptography—and by implication, any logical layer in-
formation security tool—can’t solve this problem in its
full generality. Yet this privacy-preserving model is ex-
actly the one ultimately desired for cloud applications in-
volving multiple tenants, such as social networking, doc-
ument sharing, and so forth. Given recent excitement
over the potential of new, powerful constructs such as
fully homomorphic encryption (FHE) [11] to support the
privacy needs of cloud computing, we believe that our
negative message is an important and sobering one.

1.1 Cloud Model
We treat a cloud for simplicity as a highly resourced,
monolithic entity S. We denote each entity relying on
S’s resources as a client or tenant. (In usual parlance,
a tenant is a relying entity; a client is a machine. We
use the terms interchangeably.) We denote the set of n
tenants of S by C = {C1, C2, . . . , Cn}.

In our model of cloud computing, clients are thin.
They have limited local computation and storage, del-
egating as much as possible to a cloud provider. And
they are not consistently on-line. They may deposit data
in the cloud and go offline indefinitely. Consequently,
a cloud provider assumes responsibility for processing
data in the absence of its owners.

For the purposes of our exploration here, we treat the
data of each player Ci as a static, private value xi. Ci



stores xi with S. S is tasked with executing various ap-
plications over {xi}. The overarching goal of privacy
preservation we explore in this paper dictates that in no
case should S learn any portion of any piece xi of private
data. Applications that operate over the data of multiple
clients respect access-control policies, as we explain.

1.2 Our Contribution
We explore the challenge of privacy preservation for
clients in the cloud by proposing a (nested) hierarchy of
three classes of privacy-preserving forms of computing.
These classes are meant to characterize natural applica-
tions that S might be called upon to execute in the cloud
over clients’ sensitive data. We define privacy preserva-
tion here to mean that S itself should learn no informa-
tion from any application execution, while select clients
should learn limited output information. (We do not con-
sider bidirectional privacy here, i.e., we do not consider
the privacy of S.) The three classes, in order of increas-
ing generality, are:

1. Private single-client computing: These applica-
tions execute over the data xi of a given client Ci.
Their access-control policy stipulates that only Ci
may learn any output. Note that an access-control
policy restricting Ci’s access to outputs isn’t mean-
ingful: Since xi belongs to Ci, revealing any func-
tion of xi to Ci leaks no information.

Example: A privacy-preserving tax-preparation
program might be implemented via private single-
client computing. The data xi consists of the finan-
cial statements of Ci—to be hidden from S. The
output of the program is a prepared tax return.

2. Private multi-client computing: These applica-
tions execute over the data {xi}ni=1 of multiple
clients {Ci}ni=1. Since clients may not be mutu-
ally trusting (and might collude with S), a multi-
client application’s access-control policy must stip-
ulate release of information selectively to different
clients. Such release may be asymmetric, i.e., for
a given f , Cj may be granted permission to learn
f(xi, xj), while Ci isn’t.

Example: A social networking system might be de-
signed as a private multi-client system. Here, xi is
the personal profile of client Ci. Ci adlso specifies
which friends are entitled to what portions / func-
tions of her data, i.e., gives an access-control policy.

3. Stateful private multi-client computing: These
are private multi-client applications in which the
access-control policy on a client’s data is stateful,
in the sense that it depends on the history of appli-
cation execution by S.

Example: A healthcare-research system might be
implemented via stateful private multi-client com-
puting in which a client is either a patient or a re-
search facility. A patient Ci furnishes healthcare
record xi. A research facility Ci is permitted to
learn certain aggregate statistics over the full set
of healthcare records in the system. The access-
control policy is stateful in the following sense,
though: The aggregate information a research facil-
ity receives from the system should never be suffi-
cient to reveal individually identifying data. (The
system might enforce a standard privacy metric
such as k-anonymity [25].)

Single-client private computing is realizable via FHE,
as we explain below.

Private multi-client computing is an important class to
consider because it provides natural cloud functionality
that is fairly limited, but, as we prove, still not realizable
by any cryptographic protocol. We prove that private
multi-client computing implies general program obfus-
cation, which is provably unachievable in software alone
[4]. (Special cases are realizable; our impossibility re-
sult applies to the class as a whole.) Thus private multi-
client applications require trustworthy computation of
some type. (Exactly how general such trustworthy com-
putation needs to be is an open problem.) By trustwor-
thy computation, we mean integrity-protected execution
history and integrity-protected application of history to
access control—i.e., functionality equivalent to a fully
trusted party.

Stateful private multi-client applications are an impor-
tant class to study, as they characterize the norm in the
cloud. They include social networks (e.g., Facebook),
shared applications (e.g., Google Apps), customer rela-
tionship management (e.g., Salesforce.com), etc. They
are growing in prevalence. Stateful private multi-client
functions clearly imply trustworthy computation in S.

Organization: In section 2, we discuss FHE and survey
related work. We explore our three privacy-preserving
application classes in detail in section 3, and prove that
the class of private multi-client programs cannot be con-
structed. We conclude in section 4 with a discussion of
practical approaches to cloud privacy.

2 Related Work
Privacy is a well recognized sticking point in the cloud.
Garfinkel [9] discusses how Google Chrome OS realizes
the thin-client / monolithic server model we explore here
and the privacy concerns that the resulting data amalga-
mation and loss of infrastructural control bring to con-
sumers. Enterprises too cite security and privacy as top
challenges in cloud adoption, as shown in surveys, e.g.,
[1], and generally cautious industry adoption [24].
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Researchers tend to advocate a consistent set of ap-
proaches to privacy enforcement in the cloud. Chow
et al. [7] classify these approaches in three major cat-
egories: (1) “Information-centric” security, in which
data objects are tagged with access-control policies—
essentially the mode of operation envisioned in the multi-
client classes of the private computing hierarchy we
propose here; (2) Trusted computing; and (3) Privacy-
preserving cryptographic protocols, which are, of course,
the main focus of our work in this paper.

There are a number of privacy-preserving crypto-
graphic protocols appropriate for specific cloud appli-
cations. Among these is Private Information Retrieval
(PIR) [6], which allows a client to query a database with-
out S learning which queries the client has submitted.
Another example is searchable encryption; see, e.g., [23]
for early work and [22] for more recent results. Search-
able encryption allows the owner of a set of documents
to authorize another party to conduct searches on a pre-
specified set of keywords, without revealing any addi-
tional information. These are special cases of private
multi-player applications.

Proposed as a research challenge in 1978 [21], and
long considered the “Holy Grail” of cryptography [19],
Fully Homomorphic Encryption was first realized by
Gentry in 2009 [11]. FHE enables computation over en-
crypted data. In a cloud environment, a client can store
encrypted data on a server. The server can compute over
this data without decrypting, and can send a ciphertext
result to the client for decryption. Thus the server com-
putes “under the covers” in a fully privacy-preserving
way, never learning the client’s data. While not yet ef-
ficient enough for practice, FHE in theory provides gen-
eral privacy protection for a client-server relationship.

FHE provides a general solution for secure two-
party computation, also called secure function evalua-
tion (SFE) [28]. In this sense FHE is a special case of
secure multiparty computation (SMC), first proposed in
[12], and subsequently explored in an extensive litera-
ture. SMC allows a set of (multiple) players to compute
an arbitrary (bounded complexity) function over private
inputs. It realizes, as an interactive protocol, the ideal
functionality provided by a trusted party (or piece of
hardware). In its general form, however, SMC requires
players to be online, and thus isn’t suitable for client en-
forcement of privacy in thin-client cloud architectures.

3 Cloud-Application Class Hierarchy
3.1 Private Single-Client Computing
In the private single-client scenario, client C asks the
cloud S to evaluate a function f over C’s private input
x. S should learn no information from the computation,
so it is necessary that x, f(x), and any intermediate val-
ues in the computation of f(x) remain encrypted under

C’s public key p.1

More generally,C’s private input x can be a composite
x = (x1, . . . , xn) of different values {xi}ni=1 supplied
respectively by other clients {Ci}ni=1. Each xi is en-
crypted underC’s public key p to yield corresponding ci-
phertext ci. Figure 1 depicts this more general scenario.
The cloud S evaluates the resulting ciphertexts ci via
evaluation algorithm EvalE . The final result is a cipher-
text c, an encryption of function value f(xS , x1, . . . , xn)
under p. Here f(xS , x1, . . . , xn) = f(xS , x) is f eval-
uated in C’s private value x together with a value xS
supplied by S.2 The subscript E indicates that the evalu-
ation algorithm EvalE is associated with the encryption
scheme E , which consists of a key-generating, an encryp-
tion, and a decryption algorithm.

Note that the {xi} are private with respect to S, an
important issue when we examine multi-client scenarios.

Figure 1: Private Single-Client Computing

It is possible to construct a semantically secure
(against chosen plaintext attacks) encryption scheme E
together with an evaluation algorithm EvalE that satis-
fies the property shown in Figure 1. Gentry [11] con-
structed the first fully homomorphic encryption (FHE)
scheme, which solves this problem. Non-homomorphic
or partially homomorphic, i.e., ordinary encryption of
data doesn’t allow someone without knowledge of the
secret decryption key to manipulate underlying data in
a general way. In an FHE scheme, any f realizable as
a (polynomial-size) circuit can be executed without leak-
ing information about inputs, intermediate values, or out-
puts.

FHE can be used by a single client to outsource pri-
vate computation to the cloud. But the range of cloud

1In single-client applications where only the client encrypts her
data, symmetric-key encryption suffices, because a single entity en-
crypts and decrypts the data. If other entities contribute data, then pub-
lic key encryption is necessary.

2Function f may discard xS . Value xS can also be encrypted input
if the cloud also plays the role of another entity who contributes private
data.
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operations enabled by FHE is restricted to an encryption
domain defined by the public key p of a single client.
For more general cloud applications, we need to define a
more general class.

3.2 Private Multi-Client Computing
The objective in a multi-client setting is to compute
across data supplied by multiple clients, but also to reveal
output values to multiple clients in a privacy-preserving
way. To achieve this goal, we need a new primitive that
has functionality beyond FHE. In particular, there are
two new requirements:

1. Access-controlled ciphertexts: Because computa-
tion takes place across multiple clients, it’s impor-
tant that a client Ci be able to stipulate what func-
tions may be computed on its private input xi. If ar-
bitrary computation is permitted, then xi itself may
be revealed to all other clients (and a colluding S).
We refer to this privacy requirement as functional
privacy.

2. Re-encryption: Privacy-protected transformation
of a ciphertext under a key p′ to a key p is required to
enforce functional privacy. If the encryption keys p′

and p are identical, then any client that can decrypt
outputs can also decrypt and learn inputs, prevent-
ing any kind of access control.

In the private multi-client setting, then, S evaluates
function f on private inputs {xi} encrypted under (po-
tentially) different clients’ public keys pi. We let ci de-
note the ciphertext of Ci. Functional privacy is enforced
by allowing Ci to tag ciphertext ci with access-control
policy Ai that indicates whether xi can be used as input
to a given function f with output encrypted under public
key p. We write ci = Encpi(xi, Ai). We model Ai as a
membership circuit that takes as input triples (i, f, p). If
Ai(i, f, p) = true, then client Ci allows xi to be used
as the ith input to f if its final result is encrypted under
p. (Note that any client Ci can be a permitted receiver of
output in this model, namely when p = pi.)

Figure 2 depicts the new situation. If and only if
access-control policies on all ciphertexts {ci} are met,
the evaluation algorithm EvalE returns a ciphertext c =
Encp(f(xS , x1, . . . , xn)).

We now prove that private multi-client computing is in
general unachievable using cryptography.

Two-player setting: For the purposes of our proof, it is
simplest to consider a special case of the private multi-
client computing class, namely a two-player setting as
depicted in Figure 3. There is one sender and one re-
ceiver. The function f takes only two inputs, xS and x1.
The sender uses a simple access-control policy A(1,f,p),
a membership circuit that outputs true only for input

Figure 2: Private Multi-Client Computing

(1, f, p), i.e., allows only one function f and one output
key p. The receiver knows the secret key s corresponding
to p and is able to decrypt the result and retrieve the func-
tion output f(xS , x1) for any xS . In this sense the re-
ceiver has oracle access to the function xS → f(xS , x1).
(Observe that this two-player scheme may be viewed as
a multi-player application in which there are two clients
and S learns the decryption key of or colludes with one
client.)

Figure 3: 2-Player Setting

Definition 1 A two-player private computing scheme
has functional privacy over circuits if: For all ppt ad-
versaries A, there exists a ppt simulator S, and a neg-
ligible function α, such that for all (p1, s1), (p, s) ←
Gen(1λ), for all circuits f , for all ciphertexts c1 ←
Encp1(x1, A(1,f,p)) and for all poly-time computable bi-
nary predicates π,

Pr[A(p1, f, p, c1, s) = π(x1)]

≤ Pr[S{xS→f(xS ,x1)}(1λ) = π(x1)] + α(λ).

Here, λ is a security parameter; all asymptotics are in λ.
S represents a simulator with oracle access to function
xS → f(xS , x1).

The definition formalizes the intuition that privacy
means that an adversary learns no more about x1 than
a simulator can learn using oracle access to xS →
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f(xS , x1). That is, an adversary learns about x1 only
what the access control policy A(1,f,p) dictates.

Note that functional privacy does not imply semantic
security. Two-player private computing —and by im-
plication, full multi-client private computing—is not se-
mantically secure against chosen-plaintext attacks. The
receiver can distinguish between plaintexts by choosing
x1, x

′
1, xS and f such that f(xs, x1) 6= f(xs, x

′
1).

Reducing two-player scheme to program obfuscation:
Figure 4 shows a reduction from a two-player private
computing scheme with functional privacy to an efficient
circuit obfuscator O which takes any circuit g as input
and outputs an obfuscated circuit Og . In this reduction,
all circuit sizes and running times are polynomial in λ
where λ is set as |g|, the circuit size of g.

The main idea (detailed in the appendix) is to create an
execution environment that evaluates a given program g
over an input x “under the covers,” i.e., in the domain of
encryption under key p1. This is accomplished by feed-
ing a representation 〈g〉 of g into EvalE (expressed as an
evaluation circuit3) in x1 and setting input value x = xS .
The actual function evaluation g(x) is performed by a
“meta-circuit” F that takes as input x and 〈g〉, i.e., F is a
generic circuit that runs any circuit g on any input value.4

F is the homomorphically computed function here. (Ci-
phertext x1 is tagged with access-control policyA(1,F,p),
which permits application of F .) The computation result
g(x) is output by a decryption circuit.5

The setBB = (p1, F, p, c1 = Encp1(〈g〉, A(1,F,p)), s)
of values circled in Figure 4 fully defines the execution
environment, i.e., is all the data needed to realize it. The
only variable value is the input x. Thus, running the two-
player scheme on BB gives us a “black box” that takes
input x and outputs g(x)—an obfuscated circuit Og that
executes g.6

By definition 1, it is easy to show that for execution of
BB, we have

Pr[A(Og) = π(g)] ≤ Pr[Sg(1|g|) = π(g)] + α(|g|).

That is, execution of BB obfuscates any (poly-size) pro-
gram g, which we know is not achievable [4]. We con-
clude that general multi-client private computing based
solely on cryptographical assumptions is impossible.

Remarks: Our proof technique is general: it can be
used to prove the impossibility of multi-client comput-

3We assume that evaluation is compact, i.e., there exists a polyno-
mial h such that for every value of λ, EvalE can be expressed as a
circuit E of size |E| ≤ h(λ).

4F can be constructed such that its size is polynomial in λ, i.e.,
polynomial in the size of its inputs.

5We assume that decryption Dec is compact.
6This procedure describes a circuit obfuscatorO, which is efficient

in that O itself is a polynomial time algorithm, and its output Og has
circuit size polynomial in |g|.

Figure 4: Obfuscated circuit Og

ing schemes with functional privacy defined over Tur-
ing Machines (TM) or constant depth threshold circuits
(TC0) (for which obfuscation impossibility results exist
[4]).

While general program obfuscation is impossible, the
literature does include positive results for specific forms
of obfuscation, including point functions [18, 27, 13] and
certain cryptographic primitives [15, 14].

3.3 Private Stateful Multi-Client
Due to lack of space, we omit a formal definition of pri-
vate stateful multi-client computing. We remark only
that in this class, the access control policies for a cipher-
text include the full history of computation of S over the
data of the client C that owns the ciphertext. A trust-
worthy computation environment is clearly necessary to
realize this class of applications. As remarked above, this
class includes many important applications in the cloud.

A key question, then, regards the relationship be-
tween private multi-client computing and stateful private
multi-client computing. We proved above that private
multi-client computing cannot be realized with cryptog-
raphy (i.e., software) alone; thus such applications re-
quire trusted state / execution of some sort. Are the two
application classes equivalent, then, in the sense of hav-
ing identical trusted execution requirements? This as an
important open problem.

4 Conclusion: How to Get Cloud Privacy?
We have shown the limitations of cryptography alone
in meeting the challenges of cloud privacy. So what
practical options are there for trustworthy computation?
One frequently advocated tool is trusted computing, i.e.,
privacy (and security) enforcement via tamper-resistant
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hardware. The limitations of that approach too are le-
gion. They include vulnerability to low-resource hard-
ware attacks [2] and man-in-the-middle attacks during
bootstrapping [20]. Even well-functioning hardware
cannot guarantee system integrity. Trusted Platform
Modules (TPMs) [26], the most prevalent form of trusted
hardware, provide only a root of trust: They help ensure
the execution of a given software stack, but don’t protect
against software vulnerabilities. Newer trusted comput-
ing technologies such as Intel TXT protect executables,
but of course cannot ensure the trustworthiness of appli-
cations themselves [16]. Software introspection via, e.g.,
a trusted hypervisor, can help [10], but also falls far short
of comprehensive security assurance.

Additionally, a meaningful trusted computing archi-
tecture for the cloud presumes an external entity that
can verify the security and privacy posture of a provider.
Cloud infrastructure providers are already developing ar-
chitectures that presume such distributed trust: Trusted
hardware and software logging tools generate attesta-
tions for consumption by an auditing or compliance-
verification system [8].

An alternative to trust in a single provider is trust in
a collection of providers. Clients can distribute their
data across such a collection and delegate privacy en-
forcement to it. By executing applications via SMC, the
providers can process client data in a privacy-preserving
manner (in a stateful multi-client model). Correct exe-
cution is ensured given an honest majority. In its gen-
eral form, though, SMC demands impractically inten-
sive computation and communication. We believe that in
the short-to-medium term, limited-capability distributed
trust models will prevail. While as always helping de-
marcate trust boundaries, cryptography will also help
verify specific security requirements of cloud deploy-
ments, e.g., correctly configured storage [3, 5, 17]. It
will be one supporting component in a complex ecosys-
tem of trust that depends on interlocking technical, regu-
latory, and commercial security and privacy enforcement
approaches.
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