The Equilibrium Genetic Algorithm

Ari Juels*
RSA Laboratories
20 Crosby Drive
Bedford, MA 01730
tel.: (781) 687-7740

E-mail: ari@rsa.com

June 9, 1998

Abstract

We present a simple mathematical abstraction of the genetic algo-
rithm (GA) which we call the Equilibrium Genetic Algorithm (EGA).
The EGA provides useful intuitive insight into the mechanics of evolu-
tionary algorithms like the GA. Moreover, the simplicity of the EGA
enables us to prove results which would be more difficult to obtain in
other models. We prove here that the EGA is able in polynomial time
to find the optimum of an elementary non-linear problem which we
call M AXys15s The appeal of the EGA, however, is not strictly theo-
retical. As we demonstrate through experiments on instances of the
widely studied, NP-hard jobshop scheduling problem, the EGA is a
competitive optimization tool in its own right, and therefore of poten-
tial interest in experimental study.

Key words: genetic algorithm, evolutionary algorithm, jobshop
scheduling, optimization

*Much of this work was performed at U.C. Berkeley under a UC Regents Fellowship
and NSF Grant CCR-9505448

1 Introduction

The problem of rigorously characterizing the behavior of genetic algorithms
is a challenging one. The sticking point is the crossover operator: its pairwise
(“non-linear”) nature yields an algorithm with rather complex behavior,
particularly in conjunction with the operations of mutation and selection.
The aim of this paper is to address the theoretical challenges of genetic
algorithms by investigating a mathematical abstraction which we call the
equilibrium genetic algorithm (EGA). The results presented here were first
elaborated in [15].

The point of embarkation of our approach will be that of Rabinovich,
Sinclair, and Wigderson [22]. These authors examine the behavior of the
crossover operator in the absence of mutation and selection, investigating its
asymptotic properties when it is applied repeatedly to a population of infi-
nite size. Although their results treat a broad range of crossover operators,
we shall concern ourselves in this paper exclusively with the special case
of k-point or uniform crossover on bitstrings — i.e., sample spaces of form
{0,1}". A classical result due to Geiringer [24] characterizes the asymp-
totic behavior of crossover in this setting. This result states loosely that as
crossover is applied repeatedly, bits become mutually independent, so that
in the limit, the population assumes a simple and compactly representable
form.

We shall consider a genetic algorithm in which the population is of infi-
nite size and always retains the asymptotic form specified by Geiringer. In
other words, we shall treat the population as if it is permanently “crossed-
over” to convergence or equilibrium. This assumption will serve as the basis
of the equilibrium genetic algorithm. The equilibrium genetic algorithm is
a deterministic algorithm which computes the fitness on all bitstrings in
{0,1}". Its behavior may be viewed simply in terms of the trajectory of
a point in the interior of an n-dimensional hypercube. Taken as a mathe-
matical and visual model, the EGA will offer a certain degree of intuitive
demystification of the behavior of genetic algorithms in general.

Of course, computing the fitness of every bitstring in {0, 1}" hardly yields
a practical optimization algorithm. For this reason we develop a randomized
simulation of the deterministic EGA known as the stochastic EGA. Unlike
the deterministic algorithm, this form of the EGA may be applied to op-
timization problems in {0,1}" in a computationally efficient manner. By
appealing to the deterministic EGA, it is possible to prove results about the
stochastic EGA with greater ease than is normally possible for conventional

GAs.

To date, the only running-time results on GAs have been for linear prob-
lems. An important result in this area is that of Baum, Boneh, and Garrett
[6], who demonstrate a genetic algorithm which finds the optimum of an
n-bit linear function in O(nloan) time with constant probability. In this
paper, we prove that the stochastic EGA is capable of optimizing a simple,
non-linear function with constant probability in polynomial time. The func-
tion in question, referred to as M AXgs1s, outputs the greater of the number
of ones and the number of zeroes in a bitstring.

We also conduct an experiment in this paper designed to show that the
EGA may be a competitive optimization tool in its own right, and therefore
worth of use in experimental study. We examine the performance of the
EGA on a widely studied, NP-hard problem known as the jobshop scheduling
problem. We find that the performance of the EGA on a standard set of
jobshop problem instances is superior to that of a “canonical” GA.

The remainder of this paper is organized as follows. In section 2, we
explain the mechanics of optimization on an infinite population, and describe
the equilibrium genetic algorithm. We introduce the stochastic EGA in
section 3, and prove results about ability to solve the M AXqs15 problem in
section 4. Section 5 describes an encoding of the jobshop scheduling problem
in {0,1}™, and presents an experimental comparison of the EGA and GA
on this problem. We offer some concluding remarks in section 6.

2 Infinite populations and the EGA

2.1 Crossover in an infinite population

The finite population maintained by a genetic algorithm is typically specified
in the form of a multiset. A population P consisting of four individuals might
be described, for instance, by the set {111,000,000,000}. An alternate way
to describe a population, however, is in terms of a probability distribution
mon {0,1}": we let m(v) denote the probability of obtaining v in a random
sampling of P. Thus, the population P = {000,000, 000, 111} may be trans-
lated into a distribution in which 7(000) = 2 and 7(111) = 1. Observe that
the probability distribution 7 describes the proportions in which individuals
are present in the population, but does not specify absolute numbers of in-
dividuals. We may therefore think of 7 as describing a population of infinite
size.

When an operation such as crossover is applied to a finite population P,

the result is a new, randomly-generated population P’ (of the same size).
Recall that the pairs to be crossed-over in a genetic algorithm are gener-
ally selected uniformly at random without replacement. Thus the result of
applying 1-point crossover to P = {111,000, 000,000}, for example, will be
one of the three following populations P’, each with equal probability:

{000,000,000, 111}
{000,000, 100,011}
{000,000, 110,001}

In contrast, the result of applying crossover (or any other operation)
to an infinite population 7 is deterministic. Let @’ denote the population
yielded by applying crossover to 7. The probability 7’(v) on bitstring v in
this population is the probability that crossover, when applied to a randomly
selected pair from 7, yields v. More formally:

'(v) =Y m(a)m(b)Baben (1)

abe

where G5y is the probability that applying crossover to the pair (a,b) yields
the pair (¢,v). This equation assumes a symmetry condition on the crossover
operator in question, namely Buper = Bapve for all choices of a, b, c, and v.
Both k-point and uniform crossover are easily seen to be symmetric in this
sense.

When 1-point crossover is applied to the population 7 in which 7(000) =
% and 7(111) = %, by eqn. 1 the resulting population 7’ is as follows:

7'(000) = 5/8 7'(001) =1/16 ='(011) =1/16
7/(110) = 1/16 #/(100) = 1/16 #/(111) = 1/8

Observe that this is not equivalent to a simple condensation to the set of
possible populations P’ enumerated in the example above. (For example, the
fraction of "000” strings among the possible sets P’ is 1/2, while 7/(000) =
5/8.) This difference may be attributed to the fact that pairs are effectively
picked with replacement in an infinite population.

2.2 Repeated crossover

The population 7’ resulting when crossover is applied to a population 7 can
have a complex structure, even if 7 itself may be characterized simply. This

is because of the non-linear (pairwise) nature of the crossover operator. On
the other hand, repeated application of the crossover operator, as we shall
see, causes convergence to an easily characterized distribution. Let C(m)
denote the population 7’ induced by applying either k-point crossover (for
any k) or uniform crossover to 7, and let C*(7) be the result of ¢ successive
applications of C' to w. A classical result in population genetics due to
Geiringer [24] states the following.

Theorem (Geiringer) Let m; denote the probability that a sample bit-
string u drawn from the distribution m contains a 1 in position ¢ — i.e., that
w; = 1. If w = limy_sCY(), then for any bitstring v,

n

w(v) = [[(wimi + (1 =v) (1 = m)). (2)

i=1

We refer to the limiting population w as an equilibrium population. In-
formally, Geiringer’s theorem states that bits in an equilibrium population
are independent. In other words, whether a given bitstring drawn from w
contains a 1 in position ¢ is independent of whether it contains a 1 in position
j, for i # j. This accords with our intuitive expectation that the crossover
operator, by “severing” bitstrings, should weaken correlations among bits in
the population.

As a consequence of Geiringer’s Theorem, an equilibrium population w
may be completely characterized by a vector w = <wq,ws,...,w,>, where
w; = 7; is the probability that a bitstring drawn from w has a 1 in position
i. If w=<0.7,0.8,0.3>, for example, then w(110) = 0.7 x 0.3 x (1 —0.8) =
0.035. We refer to w as an equilibrium point. Throughout the remainder of
the paper, we shall also let w stand also for the corresponding equilibrium
population.

It is illuminating to view w as a point in the unit hypercube of n dimen-
sions. The closer w lies to a vertex corresponding to a given bitstring v, the
higher the probability w(v), and vice versa.

Figure 1 depicts the equilibrium point w =<0.7,0.3,0.8>.

110 111

100 101
-
081
a4 i
w__ 011
a,
L 03
000 a, 0‘ 7 001

Figure 1. The equilibrium point w =<0.7,0.3,0.8>

2.3 Selection in an infinite population

Like crossover, selection may be viewed as a deterministic operator which,
when applied to an infinite population m, yields an infinite population .
In this case, given finite population P and corresponding infinite population
m, there an easily definable relationship between P’ and 7/, the populations
yielded by selection on P and 7 respectively. For a given bitstring v, 7'(v)
is simply the expected number of instances of v in the finite population P’.
Roulette wheel selection [12] is the most commonly used type in didactic
descriptions of the GA, although less common in practice. In roulette-wheel
selection, a new population P’ is generated from P by picking individuals in
proportion to their relative fitnesses in the population. The corresponding
operation in an infinite population is easily seen to be the following:

7'(v) = 2 (v) (3)

where f is the weighted average fitness of bitstrings in 7. It is easy to verify
that 7" is a well-defined probability distribution.

A more commonly used type of selection in practice is tournament se-
lection [13]. In k-ary tournament selection, individuals in P’ are generated

by picking k individuals uniformly at random with replacement from P and
discarding all but the fittest one (or an arbitrary fittest individual, if there
are multiple ones). Let m<(v) be the fraction of individuals u in 7 such
that f(u) < f(v) and m<(v) be the fraction of individuals in u such that
f(u) < f(v). Then k-ary tournament selection in an infinite population
reduces to the following formula:

F_m < (U)P (4)

In our construction of the EGA, we shall make use of tournament selec-
tion. The reason for this is twofold. First, tournament selection is mathe-
matically simple, particularly when viewed in conjunction with equilibrium
populations, as we shall see. Second, tournament selection does not rely on
global population characteristics. This is a beneficial quality when dealing
with infinite populations, or simulations of infinite populations. Roulette-
wheel selection, for instance, requires knowledge of the average fitness f over
the population. The quantity f may be efficiently measured in finite popu-
lations, but can effectively only be estimated in infinite populations. In the
interest of simplicity, we shall in fact make us of binary tournament selection
in our construction of the EGA — i.e., tournament selection in which k& = 2.

() = < (v)

2.4 Selection on an equilibrium population: the EGA

We shall construct the equilibrium genetic algorithm using only two oper-
ations: crossover and selection. (Mutation may be included, but merely
complicates analysis, and, in the case of the EGA, doesn’t appear to yield
benefits in practice.) In each iteration, binary tournament selection is ap-
plied to an equilibrium population 7, to yield a new population 7/, which
will not necessarily be in equilibrium. Then, in the interest of obtaining a
new equilibrium population, crossover is (loosely speaking) repeatedly ap-
plied to 7’ until convergence to a population 7 . The population 7 will
again be in equilibrium, as desired. A single iteration of the EGA may thus
be described in two steps that transform a population 7 into a population
7

1. Apply binary tournament selection to population 7 to obtain popula-

tion 7" (not necessarily in equilibrium).

2. Construct population 7 = lim;_.,C*(7").

By restricting the EGA to operation exclusively on equilibrium popula-
tions w, it is possible to condense this description further. Let f;—p be a
random variable denoting the result of drawing a bitstring v from population
w, forcing v; to b, and applying the objective function f to the resulting
bitstring. A single iteration of the deterministic EGA, then, transforms an
equilibrium population w into a new equilibrium population w’ such that:

w) = w? + 2(w; — w?)[z1] (5)

where

2z = Pr{fic1 > ficol + %Pr[fm1 = fiol- (6)

Intuitively, the value z; may be viewed as a global measure in population w
of how much fitter a 1 is in position ¢ than a 0. The EGA seeks to modulate
w; — and hence the proportion of 1s in position 7 — in accordance with the
value of z;.

Let w© denote the equilibrium population at time 0, and wt the popula-
tion after ¢ iterations of the deterministic EGA. Observe that the trajectory
wl wl w2 ..., wt is deterministic, and describes a series of points in the
unit hypercube of n dimensions. An example of such a trajectory is shown

in Figure 2.

110 111

100 101 @

010

011

000 001

Figure 2. A trajectory of the deterministic EGA

3 The stochastic EGA

The deterministic EGA, as we have seen in the previous section, has a
simple mathematical and visual characterization, and is thus a convenient
and intuitively natural abstraction of the behavior of genetic algorithms. It
is clearly not a feasible optimization tool, however: computing the trajectory
of the deterministic EGA requires that we compute the fitness of every
bitstring in {0,1}". On the other hand, as we explain in this section, it is
possible to simulate the deterministic EGA by means of limited sampling
from the population. This simulation, known as the stochastic EGA, is an
efficiently executable algorithm which, like other GAs, may be studied in
the context of combinatorial optimization.

3.1 Description of the stochastic EGA

Let y denote the equilibrium point maintained by the stochastic EGA in
a given iteration. In general, we shall use y to denote the equilibrium
point of a stochastic EGA, and w to denote that of the deterministic EGA
being simulated by the stochastic EGA. A single iteration of the algorithm
transforms a population y into a new population y’ through the following
sequence of operations:

1. Sample S elements from distribution y to obtain a multiset P.

2. Hold % binary tournaments in P by selecting pairs uniformly at ran-
dom without replacement. Let P’ be the resulting multiset.

3. Collapse P’ into a new equilibrium point y’.

The finite population P’ is collapsed to the equilibrium point y’ in this last
step by letting y; be the total fraction of ones in position 7 in P’.

3.2 How well does the stochastic EGA track the infinite pop-
ulation EGA?

Given a sufficiently large sample size S, the stochastic EGA, as we shall
see, provides an accurate simulation of the behavior of the deterministic
EGA. To begin with, it is easy to verify that the stochastic EGA provides
an unbiased simulation of the infinite population. Suppose that w is the
equilibrium point in the deterministic EGA and y that in the stochastic
EGA in a given iteration. Let w’ and y’ be the resulting populations of a
single iteration of the respective algorithms. It is easy to see the following:

Claim 1 The vector w' is an unbiased estimator of y'. In particular, if
w =Yy, then Ely;] = w, for all1 <i<n.

When S is sufficiently large, a stronger statement than this claim is
possible. In particular, we can show that the stepwise behavior of the fi-
nite simulation is very likely to be close to that of the deterministic EGA.
We shall let the term w.o.p. (“with overwhelming probability”) denote a
probability of 1 — O(n~¢) for € > 0. Furthermore, we shall make use of
the following definition of the Lo, norm: ||[w — W' || = >, w; — w,. We
shall discard the subscript throughout the remainder of this paper, and also
abbreviate ||w —0]/o by ||w]|.

Lemma 2 Suppose that w =y, and that ||w —w'| > 5. Suppose further
that S > n°d?. Then, w.o.p. |W —y'||< 5.

Proof. By Claim 1, y; may be viewed as the sum of S Bernoulli random
variables with mean w]. To obtain deviation bounds on this sum, we make
use of the following Chernoff-style inequality, which may be found in [1, 17].

Theorem (Chernoff Bound). Let X, X»,..., X, beindependent Bernoulli
random variables. Let X = %Z?ﬁ X and p be the expected value of X.
Then for 0 < e < 1,

L opr{X —p>ep] < e 3¢

2. pr{X —p < —ep] <e 7€M, 0

The first of these Chernoff-style inequalities implies that Pr{|y; — w}| >
1

ew)] < e~3¢wiS | By letting € = #w;’ we obtain Pr{|yl —wj| > 2] < e "),

10

Since there are n distinct w, it follows that Pr[||w’ —y’[| > 5] < ne=""),

This proves the lemma. O

As illustrated in Figure 3, the region in which y’ may be found w.o.p.
describes a small hypercube around w’. Note that by adjusting the sample
size S, the lemma may be modified in such a way to achieve any desired
constant size for the length of the sides of the hypercube — e.g., sides of
length % instead of 2_1d'

110 111

100 101

011

000 Y 001

Region containing y* w.0.p.

Figure 3. Stepwise tracking of the deterministic EGA

The ability of the stochastic EGA to track the deterministic EGA when
S is sufficiently large enables us to construct relatively simple proofs about
the behavior of the stochastic EGA on elementary problems. In the next
section, we shall show that the stochastic EGA is able to solve a simple,
non-linear problem — the M AX¢415 problem — in expected polynomial time
with constant probability.

4 The MAX)ss Problem

Recall that the objective function f = M AXgs1s computes the larger of the
number of 1s and the number of Os in a given bitstring. The function f has
two optima: the string 00...0 and the string 11...1, which we denote by
0 and 1 respectively. Thus, f is a non-linear function. In particular, to set
a given bit optimally, it is necessary to know the values of the other bits in

11

the string. This makes finding the optima of f somewhat more challenging
than finding the optima (or optimum) of a simple, linear function.

4.1 Sketch of proof

Our aim now is to show that the stochastic EGA is capable of finding an
optimum of f with constant probability in polynomial time. Owur proof
will begin with by examining the deterministic EGA. We shall initialize the
deterministic EGA at a point w® lying a small distance from the midpoint of
the EGA hypercube — in particular, w® will be selected uniformly at random
from the small hypercube [% — €, % + €|™. We shall show that with constant
probability, w® is chosen so as to give a “head start” in the direction of the
optimum 1: more precisely, we will show that the norm ||w®|| is large. We
shall demonstrate further that in later time steps when ||w || is large, the
w; rise appreciably, promoting convergence to 1. Thus the optimum T will
be sampled w.o.p. in O(n) iterations. shall see.

We turn then consider the stochastic EGA. Recall Lemma, 2, which states
that the stochastic EGA performs a close, stepwise tracking of the determin-
istic EGA when the sample size S is sufficiently large. We invoke this lemma,
to demonstrate that the stochastic EGA with a sample size S = Q(n?*¢) fol-
lows a trajectory like that of the deterministic EGA, and therefore achieves
the optimum 1 w.o.p. in O(n) iterations. We shall prove the following
theorem:

Theorem 3 Suppose that the stochastic EGA is initialized to an equilibrium
point selected uniformly at random from the hypercube [% — €, % +¢€]™. Then
the EGA will find an optimum of the n-bit objective function f = M AXys1s
in time O(n3%€) with probability Q(1).

4.2 Proof of theorem: the deterministic EGA

Let us first examine the behavior of the deterministic EGA. As an initial
condition for the success of the algorithm, we shall require that ||w?|| be
relatively large. Thus, we make use of the following lemma:

Claim 4 With probability Q(1), ||[w®| > % + 3/n.

Proof. Since the w) range uniformly over [§—¢, $+¢], ||[w?||= X w! is the
sum of independent, identically-distributed random variables with mean %

By the Central Limit Theorem, ||w?® || converges to a normal distribution

12

N with mean § and standard deviation %\/ﬁ as n — oo. Since § + 3/n
lies only a constant number of standard deviations from the mean of N, the

lemma follows. O

We will now show that in time steps when the deterministic EGA has
| w| > %+ 3y/n, the values w; rise. In order to do this, we shall need
some technical lemmas characterizing the distribution of the number of 1s
in a bitstring drawn from w. In particular, we shall examine g%, which
is defined as follows. Let v be a bitstring drawn from w. Then g™ is the
density function on },; vj, the tofual number of 1s in v, excluding the ¥ bit.
We shall drop the subscript in g™ in our proofs, and simply write g. Since
these next few lemmas are subordinate to the structure of the overall proof,
the reader may wish to bypass them and skip to Lemma 9. We shall require
the following notation: let g(z) = Prlg = z|, g([z,y]) = Pr|z < g <y, and

pi = lIwll +ivi.
Lemma 5 For any value of |w||, g([p—2,p2]) > 5.

Proof. Since g = Z?# X;, where X; is a Bernoulli random variable with

mean w;, by Chernoff Bound 2, ¢([0, p—2]) + g([p2,n]) < 262 < 11—0. The
lemma follows. O

Lemma 6 The distribution g is unimodal.

Proof. Let g, = 22?21 X; (and treat X; as having mean 0). Hence g = gy.
We shall prove the result by induction.

Clearly the lemma holds for £k = 1. Assume that it holds for £ < n —
hence g, is unimodal. Since g;(—1) = 0 and g;(n+1) = 0 for any j, if there
are an a, b, and c such that a < b < ¢ and g;(b) < g;(a) and g;(b) < g;(c),
then g; is multimodal. Now, g, (z) = wp(gn—1(x — 1)) + (1 — wy)(gn—1(x)).
Therefore, g, (b) < gn(a) and gn(b) < gn(c) implies:

1. (gn-1(a) > gn-1(b)) or (gn-1(a—1) > go1(b—1))
2. (9o 1(6) > gu 1 (8)) 0 (gn1(e— 1) > gur(b— 1))

Case by case analysis shows that any combination of these conditions
implies the multimodality of g,—1, which is a contradiction. Therefore,
gn = g is unimodal. O

13

1
Lemma 7 For any value of ||[w]|, g(z) < 0vm for x < p_s.

Proof. By Lemma 5, g([p—2, p2]) >]0 Therefore there must exist an z* €
[p—2, p2] such that g(z*) > ﬁ\/ﬁ) 10\/— Hence, if g(z) >]0\/— for z <
p—3, then since g(—1) = 0, the unimodality of g implies that g([p_3,p—_2]) >

% — a contradiction of Lemma 5. O

Let us define ¢’ as follows:

n—1 % 7
g => g¢z) - Z g(z)g(z+1) = > glz)gz+1)]. (7)
=2 i:O =0

Lemma 8 Suppose that |w||> % 4 3y/n. Then g’ = Q(ﬁ)
Proof. Let z* be the smallest value of x on which ¢ is maximal. We shall
consider two cases.

Case 1: g(x*) > {5 Let a = g(Z). Since g(z*) > -5 by assumption,
Lemma 7 implies that z* > p_3. Therefore, by the monotonicity of g,

Z;]% g%(z) and ZZ;]% g(z)g(x + 1) are strictly bounded below by {5. By
Lemma 7, a < 10]_\/5’ implying, by the monotonicity of g that g(z) < m

59 ' 2
observations, it is clear that 3°2 ,¢?(z) and Zm 09(x)g(x + 1) are strictly
bounded above by 15. The lemma follows.

for x € [0,%]. By Lemma 5, g([0,%]) < %. Combining these last two

Case 2: g(x*) < 15 By Lemma 5, g([p_2,p2]) > 190 Since ||w | > § +

3y/n, observe that the interval [p_z, po] is contained in the interval [%,n].
Since g(z*) <]10, by the monotonicity of g 1t 1s easy to see that a lower
bound may be obtained on Z;]% g%(z) and x_ﬂ g(x)g(z+1) by assuming
a uniform distribution on the interval [p_2, pa]. Thrs may be seen to yield a
lower bound of ES]W on ZZ;]% g%(z) and ZZ;]% g(x)g(x +1). (In the case of
the latter quantity, we are ignoring boundary values for the sake of simplicity,
but this does not affect our calculations.) Since, as explained for Case 1,
g(z) < # for z € [(O, £] and g[(0, %] < %, it is easy to obtain an upper

bound of]00\/— on ZZ 0 g% (x) and Zm 09(z)g(x +1). The lemma follows.
O

14

This next lemma now characterizes the stepwise behavior of the deter-
ministic EGA. In particular, it shows that when 1s are prevalent enough in
the population — more precisely, when [|w||> % + 3y/n — the w; will rise in
the next time step.

Lemma 9 If [|w| > & +3/n, then w; — w; = Q(ﬁ)(wZ — (w;)?) for all 4.

Proof. Recall from eqn. 5 that:
1
wi = 2(wi)(1 —wi)lzl, where z; = Prfi—1 > fico] + 5 Prlfic1 = fi—ol.

Observing by symmetry that

1

Pr[le—o > f’LHO] + %Pr[fu—o = f’LHO] = 55

we can write:

zi= 5+ 5[Pr((fico = fico) A(fic1 > fico)] = Pr{(fico = fico) AN(fic1 < fico)] +
(Pr((fio < fico) A(fie1 = fie0)] = Pr{(fico > fi0) A(fic1 = fio)]] (8)

For the M AXs1s problem, algebraic manipulation enables us to rewrite the
above as:

n
2

zi = 3+ ZZ;%(gﬂi(x))Q — Y Zolg7 () +

ISk g @)g i@+ 1) - Sl @ @)] (9)

By Lemma 8, it follows that z; = % + Q(ﬁ) Therefore, by eqn. 5:

w; = wi + Q=) (wi — (wi)?). (10)

15

4.3 Proof of theorem: the stochastic EGA

This last lemma shows that when || w || is large enough, the equilibrium
point of the deterministic EGA will move bitwise in the direction of the
optimum 1. By applying this knowledge of the behavior of the deterministic
EGA to the stochastic EGA, we are equipped to prove our theorem.

Theorem 10 Let y° be chosen uniformly at random from [% — €, % + €| for

some € > 0. The stochastic EGA initialized at y© will find an optimum of
the n-bit objective function f = M AXos1s in time O(n3+€) with probability
Q(1).

Proof. Let us choose S = n?T¢, and consider the first step of the stochastic
EGA. With some constant probability c, we will have [|y®| > % + 3/n. If
we let w0 = y0, then by the previous lemma, v} = w? + Q(%)(w? — (w)?).
Since w? < 1 +¢, this means that w, —w = Q(L) for all i. Now, by Lemma
2, since S = n**¢, we will have |y} —w}| < %;—wg = Q(%) w.o.p. Therefore,
yl -0 = Q(%) w.o.p. for all 7.

By similar work, we can show that w.o.p. for all i, the sequence y9, y!, ...,y
will be monotonically increasing, with y! > 1 — 2]—” for some t = O(n). It
is also easy to see that for all s =t + poly(n), yi > 1 — % w.o.p. for all 7.
Therefore, w.o.p. in time O(n), y; > 1 — % for all <.

When y; > 1 — % for all i, the probability that the bitstring T will be

obtained in a single sample is > (1 — %)” > %. Therefore, the probability

that we will obtain 1 in S = n?T¢ samples is > 1 — (%)”HE. Thus, T is

sampled w.o.p.

Since the algorithm locates the optimum T in O(n) iterations w.o.p.,
and the sample size of the stochastic EGA is S = n?T¢, the total number of
function evaluations will be O(n3t¢) w.o.p. This proves the theorem.]

5 The Jobshop Scheduling Problem

An obvious objection to the EGA’s suitability as a combinatorial optimiza-
tion tool is the simplistic structure of the equilibrium population. The foun-
dation of genetic algorithms’ optimization ability is their supposed mainte-
nance of a pool of highly fit, overlapping schemata [12]. The EGA, being
unable to maintain correlations among bits in its population, cannot include
such schemata.

16

Consider the case of the M AXps1s problem. A GA might arrive at
a population like {000,000,111,111}, in which only the two optima are
represented. The EGA cannot maintain a population with this type of
structure: if crossed over to equilibrium, the population {000,000, 111,111}
would become <%, %, %> — the uniform distribution over {0, 1}".

Two questions arise, then. First, is a more complex population structure
than that of the equilibrium population necessary for sophisticated optimiza-
tion tasks? Second, do genetic algorithms in general maintain a population
with such complex structure? We will not take up either of these rather
involved questions. Instead, we shall confine ourselves to an experimental
demonstration of the fact that the EGA may be competitive with a “canon-
ical” GA on hard, naturally arising combinatorial optimization problems.

We wish to choose for our comparison a problem on which the genetic
algorithm represents a suitable choice of black-box optimization method.
Juels and Wattenberg [16, 15] demonstrated a range of combinatorial op-
timization problems for which genetic algorithms were inappropriate given
the proposed encodings, in the sense that simple hillclimbing algorithms
were more effective optimization tools. Here we shall compare the EGA and
the GA on the jobshop scheduling problem. At the end of [16, 15] it was
demonstrated that a carefully constructed neighborhood structure for this
problem renders the genetic algorithm more effective than hillclimbing.

5.1 Jobshop problem description

The jobshop problem is widely studied in the field of management science.
It is a notoriously difficult NP-complete problem [11] that is hard to solve
even for small instances. A great deal of effort over the course of thirty
years has gone into finding efficient approximation algorithms for it. See,
for example, [4, 5, 9, 18, 8, 21, 10, 20].

In this problem, a collection of J jobs are to be scheduled on M machines
(or processors), each of which can process only one task at a time. Fach
job is a list of M tasks which must be performed in order. Each task must
be performed on a specific machine, and no two tasks in a given job are
assigned to the same machine. Every task has a fixed (integer) processing
time. The problem is to schedule the jobs on the machines so that all jobs
are completed in the shortest overall time. This time is referred to as the
makespan.

Three instances formulated in [20] constitute a standard benchmark for
this problem: a 6 job, 6 machine instance, a 10 job, 10 machine instance,

17

and a 20 job, 5 machine instance. The 6x6 instance is now known to have an
optimal makespan of 55. This is very easy to achieve. While the optimum
value for the 10x10 problem is known to be 930, this is a difficult problem
which remained unsolved for over 20 years [2]. A great deal of research has
also been invested in the similarly challenging 20x5 problem, for which an
optimal value of 1165 has been achieved, and a lower bound of 1164 [8].

A number of papers have considered the application of GAs to scheduling
problems. In particular, Nakano and Yamada [21], Davidor et al. [9], and
Fang et al. [10] have described GAs designed to address the three bench-
mark instances for the jobshop problem. We compare our results with those
obtained in Fang et al., one of the more recent of these articles.

5.2 Jobshop problem encoding

Juels and Wattenberg [15, 16] proposed the following encoding of the job-
shop scheduling problem. A schedule is encoded in the form of an ordering
01,09,...,07p of JM markers. These markers have colors associated with
them: there are exactly M markers of each color of 1,...,J. To construct
a schedule, o is read from left to right. Whenever a marker with color & is
encountered, the next uncompleted task in job k is scheduled in the earliest
plausible time slot. Since there are exactly M markers of each color, and
since every job contains exactly M tasks, this decoding of ¢ yields a complete
schedule. Observe that since markers of the same color are interchangeable,
many different ordering o will correspond to the same scheduling of tasks.

Hillclimbing algorithm Juels and Wattenberg first demonstrate a hill-
climbing algorithm using this encoding. We present this algorithm as first
step in presenting the GA for the problem. To generate a neighbor of ¢ in
this algorithm, a marker o; is selected uniformly at random and moved to a
new position j chosen uniformly at random. To achieve this, it is necessary
to shift the subsequence of markers between o; and o; (including o) one
position in the appropriate direction. If i < j, then 0;41,0:42,...,0; are
shifted one position to the left in o. If 7 > j, then 0j,0541,...,0,_1 are
shifted one position to the right. (If ¢ = j, then the generated neighbor is
of course identical to o.)

Suppose, for example, that J = 2 and M = 3. One possible ordering
o corresponds to the sequence of colors 111222. (Note that in the above
formulation, it is only the colors of the markers that are significant.) If we

18

choose to move o7 (here, the first marker of color 1) to position 6, then we
obtain the sequence 112221.

GA encoding The basic step in the crossover operator for a GA as applied
to a pair (o,7) of orderings is as follows. A label ¢ is chosen uniformly at
random from {1,2,...,JM}. In o, the marker with label i is moved to
the position occupied by ¢ in 7; conversely, the marker with label ¢ in 7
is moved to the position occupied by that marker in o. In both cases,
the necessary shifting is performed as before. Hence the idea is to move
a single marker in o (and in 7) to a new position as in the hillclimbing
algorithm; instead of moving the marker to a random position, though, we
move it to the position occupied by that marker in 7 (and o, respectively).
The full crossover operator picks two labels 7 < k uniformly at random from
{1,2,...,JM}, and performs this basic operation first for label j, then j+1,
and so forth, through k. (By analogy with the GA above for MDAP.) The
mutation operator in our GA performs exactly the same operation as that
used to generate a neighbor in the hillclimbing algorithm. A marker o; is
chosen uniformly at random and moved to a new position 7, chosen uniformly
at random. The usual shifting operation is then performed. Observe how
closely the crossover and mutation operators in this GA for the jobshop
problem are based on those in the corresponding hillclimbing algorithm.

Binary encoding Since the EGA operates on bitstrings, however, we
must re-encode the jobshop scheduling problem as an optimization task on
{0,1}". Using a trick proposed in [23], we may obtain a neighborhood
structure in {0, 1}™ which looks substantially like that for the integer-based
encoding described above. A solution to a problem instance with J jobs
and M machines is encoded as a bitstring v of length JMT, where T is
an encoding parameter. We translate v into a schedule as follows. To each
marker 4, we assign a tag, consisting of the it" subsequence of T bits in
v. We obtain the sequence of markers o1,09,...,07 by letting o1 be the
marker whose tag has the smallest integral value, letting o9 be the marker
whose tag has the second smallest integral value, and so on. Ties are broken
arbitrarily; the parameter T' determines the length of v, and consequently
the likelihood of ties occurring. (Hence T should be made large enough
to avoid an undesirable bias arising in the translation of v into a schedule.)
Once the sequence 01,09, ...,075s is obtained, it is translated into a schedule
exactly as explained above in this beginning of this subsection.

19

5.3 The EGA and GA

The EGA In practice, a slight modification to the stochastic EGA used in
our analyses in this paper yields a substantially more effective optimization
tool. We call this modified EGA the point-push EGA. In the stochastic EGA
described above, S binary tournaments are performed and the % victors
of these tournaments are collapsed into a new equilibrium point. In the
point-push EGA, S bitstrings are selected at random from the distribution
specified by y, and the fittest of these S bitstrings, v* is then determined
(with ties broken randomly). The new equilibrium point is obtained by
pushing y some fractional distance § in the direction of v*, where J is an
implementation parameter. Letting maz¢(P) denote the set of elements of
P which maximize the objective function f, we may describe the point-push
EGA by the following piece of pseudocode:

11 1.
LETy:<§,§,...,§>,

Do FOR t ITERATIONS
SELECT A SET P OF S BITSTRINGS FROM Y;
SELECT v* AT RANDOM FROM maxf(P);
LET y =y +d(y — v*);

We let § = % in our experiments, a setting which appears to yield good
results over a broad range of problems.

Remarks. It should be noted that Theorem 10 applies also to the point-
push version of the EGA. The selection mechanism used in the point-push
EGA may be viewed as a form of S-ary tournament selection. Therefore,
the following claim, when traced through the proof of Theorem 10 shows
that the theorem applies to the point-push EGA for any constant § > 0.
|

Claim 11 Suppose that for some objective function f and some equilib-
rium point w, an deterministic EGA employing binary tournament gener-
ates equilibrium point w' in a single time step. Let w” be the equilibrium
point generated by the same EGA employing k-ary tournament selection for
some k > 2. If w) > w;, then w] > wj. Similarly, if w; < w;, then w < wj.
Finally, w, = w; implies w = wj.

20

Proof. Suppose that w, > w;. Let us assume, for the sake of simplicity,
that k = 2/ for some integer j. (The proof is similar for values of k£ which
are not powers of two.) It is possible to hold a k-ary tournament among k
bitstrings by recursively holding j successive binary tournaments. Let A; be
probability distribution on bitstrings resulting from the j* round of binary
selection, and let uz be the proportion of bitstrings in A; with a 1 in position
i. Clearly, u{ = w}. Similarly, since w} > w;, clearly z; > %, so it follows
from eqn. 1 that u! > u!"' > ... > ul. Therefore w/ > w/. Proofs for the
other cases are similar. 0

The GA As there are many different forms of GA, and many different pa-
rameter settings, we strove as best as possible to create an efficient ”canon-
ical” GA, using a collection of parameter settings which are to be more or
less standard in the literature.

Our GA included, in order, the following phases: evaluation, elitist re-
placement, selection, crossover, and mutation. In the evaluation phase, the
fitnesses of all members of the population were computed. Elitist replace-
ment substitutes the fittest permutation from the evaluation phase of the
previous iteration for the least fit permutation in the current population
(except, of course, in the first iteration, in which there is no replacement).
We chose to use binary stochastic tournament selection [13]. In this type of
selection, P pairs, where P is the size of the population, are selected uni-
formly at random with replacement from the population. A new population
of size P is constituted by selecting the fitter permutation from each of these
pairs (with ties broken randomly). The crossover step in our GA selected
P/2 pairs uniformly at random without replacement from the population
and applied the mating operator to each of these pairs independently with
probability 0.6. For this probability, referred to generally as the crossover
rate, a value of 0.6 is fairly standard in the literature. It is, for instance, the
default value proposed in Grefenstette’s GENESIS software package [14].
In accordance with results in [3] and [19] regarding the optimal mutation
rate, we set this parameter to 1/n. More precisely, the number of mutations
performed on a given permutation in a single iteration was binomial with
parameter p = 1/n. The population in our GA was initialized by selecting
every individual uniformly at random from the set of all possible jobshop
schedules.

21

5.4 Experimental Results

We conducted experiments on five instances of the jobshop scheduling prob-
lem. These include the 10 x 10 and 20 x 5 instances given in [20], and
explored in [16, 15]. Also considered here are three larger problem instances
obtained from the Imperial College Operations Research Library [7]. These
are a 15 x 15 instance, a 20 x 15 instance, and a 20 x 20 instance.

We ran each algorithm for 1000 iterations with a population (or sam-
ple) size of 100; each run thus included 100,000 function evaluations. We
performed 100 runs for each problem instance. The figure below shows the
average percentage above the best known upper bound achieved by the two
algorithms for each problem instance. Indicated by the vertical lines is the
average percentage above the best known upper bound achieved by the hill-
climbing algorithm proposed in [16, 15]. This algorithm was executed for 5
repetitions of 20,000 iterations — thus 100,000 iterations in total. We ran the
hillclimbing algorithm 100 times on the integer encoding described above.!

10% ——
9% ——

8% ——
7% ——
6% —— EGA
5% —
4% —|
3% —
2% —
1% —|

GA
GA

EGA

10x10 20x5 15x15 20x15 20x20

Figure 4. Average percentage above best-known makespan

"We applied hillclimbing to the original problem encoding for the following reason. If
we had used a hillclimbing algorithm on the new, bitstring-based encoding, a perturbation
would have had to consist of a certain number of random bit flips. It is not clear how
many such flips would be optimal, nor is it clear how best to perform them. Moreover, we
may reasonably expect better results from the original encoding, as it is somewhat more
natural to the problem’s combinatorial structure.

22

On all problem instances, the point-push EGA yielded better average
results than the GA. The difference in performance was most striking on
the larger three instances. Moreover, at the end of most experimental runs,
the EGA appeared to be continuing to find improved solutions more rapidly
than the GA. We see this in the following graph, depicting the evolution
over time of the best makespan achieved by the EGA and GA on the 15x 15
jobshop problem.

Figure 5. Evolution of best makespan over time

Additional experimental data on the performance of the GA, EGA, and
hillclimbing on all five problem instances are available in the appendix of
this paper.

6 Concluding remarks and open problems

We have demonstrated how the equilibrium genetic algorithm may be viewed
as a simple, mathematical abstraction of conventional genetic algorithms.
Using the deterministic version of the EGA, we were able to prove that the
computationally efficient stochastic EGA solves the M AX415 problem in
polynomial time with constant probability. We showed further that on the

23

NP-hard jobshop scheduling problem, this stochastic EGA is competitive
with a “canonical” genetic algorithm, finding solutions of superior average
quality on a range of problem instances.

Our exploration in this paper has been confined to the search space
{0,1}™. Results in [22], however, hold forth the promise of characterizing
more sophisticated crossover operators than those on bitstrings. By means
of these results, it may be possible to construct EGAs on other, more com-
plex combinatorial search spaces. As many GAs used in practice rely on
encodings other than bitstrings, this represents an important line of future
research.

Rigorous results on non-linear problems in {0, 1}" other than M AXqs1s
would still be desirable. Especially appealing would be a proof of the ability
of the EGA to solve a non-trivial instance of a naturally-arising combi-
natorial optimization problem such as maximum cut in polynomial time.
A useful tool for proving such results might be a demonstration that the
stochastic EGA tracks the deterministic version not only stepwise, but for
a significant portion of the latter’s trajectory.

There is much room also for experimental investigation of the EGA. One
potentially interesting result would be the exhibition of a problem on which
the simplistic population structure of the EGA is demonstrably insufficient
to make the algorithm an effective optimization tool. Such a result would
reveal the distinctive advantages of conventional genetic algorithms as opti-
mization tools. A related result would show how good a model the EGA is
in practice — in other words, how much the structure of genetic algorithms’
populations resembles that of the EGA. As demonstrated in e.g., [16, 15],
however, there still remains for any global optimization method like the GA
or EGA the question of how effective it is relative to local search methods
on real-world problems.

24

Appendix

This appendix contains tables detailing the performance statistics of the
GA, EGA, and hillclimbing on the five jobshop instances explored in our
experiments in section 5.

| Problem instance: J x M || avg. | S.D. | low | high | Best Known |

10x10 965.50 | 13.38 | 937 | 997 930
20x5 1185.92 | 11.22 | 1165 | 1235 1165
15x15 1306.36 | 20.93 | 1272 | 1260 1252
20x15 1484.67 | 24.28 | 1437 | 1576 1381
20x20 1805.92 | 29.23 | 1748 | 1884 1663

Table 1. GA performance on the jobshop scheduling problem

| Problem instance: J x M || avg. | S.D. | low | high | Best Known |

10x10 965.06 | 12.31 | 940 | 982 930
20x5 1183.17 | 11.73 | 1165 | 1219 1165
15x15 1289.79 | 12.44 | 1276 | 1346 1252
20x15 1459.85 | 14.90 | 1425 | 1501 1381
20x20 1767.02 | 17.85 | 1715 | 1807 1663

Table 2. EGA performance on the jobshop scheduling problem

| Problem instance: J x M || avg. | S.D. | low | high | Best Known |

10x10 983.08 | 19.81 | 939 | 1041 930
20x5 1208.60 | 19.76 | 1178 | 1264 1165
15x15 1308.71 | 21.27 | 1266 | 1369 1252
20x15 1504.27 | 27.41 | 1443 | 1580 1381
20x20 1826.04 | 29.73 | 1754 | 1908 1663

Table 3. Hillclimbing performance on the jobshop scheduling problem

25

References

1]

(9]

[10]

[11]

D. Angluin and L.G. Valiant. Fast probabilistic algorithms for Hamilto-
nian circuits and matchings. J. Computer and System Sciences, 18:155—
193, 1979.

D. Applegate and W. Cook. A computational study of the job-shop
problem. ORSA Journal of Computing, 3(2), 1991.

T. Back. The interaction of mutation rate, selection, and self-adaptation
within a genetic algorithm. In R. Méanner and B. Manderick, editors,
Parallel Problem Solving from Nature 2, pages 85-94. Elvezier, 1992.

E. Balas. Machine sequencing via disjunctive graphs: An inplicit enu-
meration algorithm. Operations Research, 17:941-857, 1969.

J. Barker and C. McMahon. Scheduling the general jobshop. Manage-
ment Science, 31(5):594-598, 1985.

E.B. Baum, D. Boneh, and C. Garrett. On genetic algorithms. In COLT
’95: Proceedings of the Fight Annual Conference on Computational
Learning Theory, pages 230-239. ACM, 1996.

J.E. Beasley. OR-library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069-1072, 1990.

J. Carlier and E. Pinson. An algorithm for solving the jobshop problem.
Management Science, 35(2):164—176, 1989.

Y. Davidor, T. Yamada, and R. Nakano. The ECOlogical framework
II: Improving GA performance at virtually zero cost. In S. Forrest,
editor, Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 171-176. Morgan Kaufmann, 1993.

H. Fang, P. Ross, and D. Corne. A promising genetic algorithm ap-
proach to job-shop scheduling. In S. Forrest, editor, Proceedings of the
Fifth International Conference on Genetic Algorithms. Morgan Kauf-
mann, 1993.

M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman
and Co., 1979.

26

[12]

[13]

[22]

[23]

D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

D. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. In L.D. Whitley, editor, Foundations of
Genetic Algorithms 2, pages 69-93. Morgan Kaufmann, 1991.

J. Grefenstette. A user’s guide to GENESIS, 1987.

A. Juels. Topics in Black-box Combinatorial Optimization. PhD thesis,
U.C. Berkeley, 1996.

A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline
method for the evaluation of genetic algorithms. In M. Hasselmo, edi-
tor, Neural Information Processing Systems (NIPS) 8, pages 430-436.
M.L.T. Press, 1996.

C. McDiarmid. On the method of bounded differences. London Math-
ematical Society Lecture Note Series, 141:148-188, 1989.

G. McMahon and M. Florian. On scheduling with ready times and due
dates to minimize maximum lateness. Operations Research, 23(3):475—
482, 1975.

H. Miihlenbein. How genetic algorithms really work: I. Mutation and
hillclimbing. In R. Méanner and B. Manderick, editors, Parallel Problem
Solving from Nature 2, pages 15-25. Elvezier, 1992.

J. Muth and G. Thompson. Industrial Scheduling. Prentice Hall, 1963.

R. Nakano and T. Yamada. Conventional genetic algorithm for job shop
problems. In Belew and Booker, editors, Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, pages 474-479. Morgan
Kaufmann, 1991.

Y. Rabinovich and A. Wigderson. An analysis of a simple gneetic al-
gorithm. In Belew and Booker, editors, Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, pages 215-221. Morgan
Kaufmann, 1991.

C. Shaefer and S. Smith. The Argot strategy Il - combinatorial opti-
mization. Technical Report RL90-1, Thinking Machines, 1990.

27

[24] H. Geiringer von Mises. On the probability theory of linkage in
Mendelian heredity. Annals of Mathematical Statistics, 15:25-37, 1944.

28

