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Abstract. We introduce a novel approach to general secure multiparty
computation that avoids the intensive use of verifiable secret sharing
characterizing nearly all previous protocols in the literature. Instead,
our scheme involves manipulation of ciphertexts for which the underly-
ing private key is shared by participants in the computation. The benefits
of this protocol include a high degree of conceptual and structural sim-
plicity, low message complexity, and substantial flexibility with respect
to input and output value formats. We refer to this new approach as mix

and match.
While the atomic operations in mix and match are logical operations,
rather than full field operations as in previous approaches, the techniques
we introduce are nonetheless highly practical for computations involving
intensive bitwise manipulation. One application for which mix and match
is particularly well suited is that of sealed-bid auctions. Thus, as another
contribution in this paper, we present a practical, mix-and-match-based
auction protocol that is fully private and non-interactive and may be
readily adapted to a wide range of auction strategies.
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1 Introduction

Consider the following scenario. Alice and Bob have respective fortunes A and
B. They wish to determine who is richer, i.e., whether A > B, but do not wish
to reveal any additional information about their fortunes. This task is known as
the millionaires’ problem [44]. It is a special instance of the more general setting
in which Alice and Bob, or indeed a larger number of players, wish to compute



the output of a function f on secret inputs without revealing any additional
information.

Alice and Bob can take one of several approaches. They might confide their
fortunes to a trusted third party charged with the task of determining honestly
whether A > B and not leaking any information to either party. Alternatively,
they might construct a piece of trusted hardware for the same purpose. It has
been known for some time, however, that Alice and Bob can in fact simulate a
trusted party or device in such a way as to enable secure computation of general
functions [44, 27]. Computation of this sort involving two or more players is
known as secure multiparty computation. For general functions f it is known as
general secure multiparty computation or secure function evaluation.

All of the current approaches to general secure multiparty computation rely
on the simulation of a circuit Cf for the function f of interest. This circuit is
typically viewed as being composed of gates implementing two operators, such
as + (modular addition) and × (modular multiplication), that together allow
for the realization of an arbitrary computable function. In nearly every protocol
in the literature with robustness against active adversaries, the lynchpin is a
cryptographic primitive known as verifiable secret sharing (VSS), introduced in
[14]. Players distribute their inputs to Cf by dealing shares to other players
through a VSS protocol. At any stage in the computation, concealed values are
held distributively. To simulate a + gate, players perform local addition of their
shares. To simulate a × gate, they perform an interactive protocol involving
multiplication of pairs of shares held by different players.

In this paper, we investigate a different approach to secure function evalua-
tion. Rather than employing multi-player sharing of individual inputs or inter-
mediate computational results, we consider a representation of these values as
ciphertexts. We concentrate in particular in this paper on use of the El Gamal
cryptosystem [24], although use of other semantically secure cryptosystems, such
as Cramer-Shoup [18], is possible. Distribution of trust among the players in our
scheme relies on sharing of a single, underlying private decryption key. Play-
ers perform the operations required by the computation using well established
techniques for distributed manipulation of El Gamal ciphertexts.

A brief sketch of our approach is as follows. Having agreed upon a function f
and a circuit representation Cf , the players provide El Gamal ciphertexts of their
input bits. Gates in Cf are each represented by a boolean function, such as AND
or NOT (although others are possible). For each gate, the players construct a
logical table corresponding to the function computed by the gate, the entries in
this table consisting of El Gamal ciphertexts. In an initial blinding phase, the
players use a primitive known as a mix network to blind and perform row-wise
permutation of these tables in a distributed fashion. The basis of the subsequent
computation phase, which we refer to as matching, is a primitive called a plain-

text equality test (PET ). The PET primitive enables players to determine in a
distributed fashion whether two given ciphertexts represent the same plaintext.
Players evaluate the circuit Cf iteratively, using PET to perform table lookups.
For each gate, they compare ciphertext input values to ciphertext values in the



corresponding blinded logical table. When the correct row in the table is found,
the players obtain an output ciphertext from the third column. Due to the use
of blinded permutation, they do not learn the plaintext corresponding to the
output value. The output ciphertext is used as input to the next gate (table).
We refer to this approach as mix-and-match computation.

1.1 Previous work

The idea of performing secure computation by means of blinded table lookups
was essentially the basis for the original proposal of Yao [44], whose two-player
scheme was predicated on the hardness of factoring. Goldreich, Micali, and
Wigderson [27] generalized the basis of Yao’s scheme to use of any one-way
trapdoor permutation. The idea behind both approaches in their two-party in-
stantiations is as follows. Alice constructs a circuit Cf using boolean gates rep-
resented as randomly permuted, blinded logical tables. Inputs to a gate (table)
are randomly generated tags representing different bit values. Each set of tags,
representing a given set of inputs to a table, serves as a decryption key for a
particular row of the table, and thus a particular output tag for the gate. By
means of a 1-2 oblivious transfer protocol, Alice blindly transfers to Bob the
tags representing his input values for the circuit, and also sends Bob her table
representation of Cf . For each gate in Cf , Bob uses the input tags to decrypt
output tags representing the corresponding gate output. He is thereby able to
evaluate Cf without further interaction with Alice. See [27] for further details.

Chaum, Damg̊ard, and van de Graaf [12] extend the notion of blinded table
mixing and lookup to a multiparty scenario. In their scheme, each player in turn
blinds the logical table for a given gate. The basis of this scheme is a homomor-
phic commitment scheme that enables one player to alter the commitment of
another without knowing the correct decommitment.1 Players provide cut-and-
choose proofs of correct behavior. The security of the scheme is unconditional
for one player, and for the others is based on the quadradic residuosity problem.

The Chaum et al. scheme is not robust against an active adversary, in the
sense that such an adversary may corrupt the computation irretrievably or force
it to halt. To achieve robustness, the authors recommend incorporation of VSS
to enable reconstruction of the commitments in their scheme. Similarly, since
the introduction of secure multiparty computation in [27], such protocols have
generally employed VSS as a means of enforcing robustness for the computation
on each gate. Ben-Or, Goldwasser, and Widgerson [4] and Chaum, Crépeaud,
and Damg̊ard [11] introduced the first protocols enabling security against an
active adversary in the non-cryptographic model, that is, one in which players
are assumed to have unbounded computing power, but cannot eavesdrop on
honest players. Their approach has loosely formed the basis of the majority of
subsequent work, even some of the most recent and efficient constructions such
as [15, 26].

1 Manipulation of homomorphic commitments by n players here in fact yields a kind
of (n, n)-VSS protocol in this scheme.



Other work related to our own is that of Franklin and Haber [22]. As we
do here, they propose a secure multiparty computation method dependent on
manipulation of ciphertexts. In their scheme, the underlying encryption scheme
is a special variant of El Gamal. The Franklin and Haber system, however, is
only secure against passive adversaries.

While drawing on table-based approaches to secure function evaluation, and
particularly on the frameworks presented in [12, 22], mix and match offers robust-
ness without the use of VSS on input values or sharing of intermediate values.
The mix-and-match approach consequently achieves several benefits unavailable
in conventional VSS-based approaches:

1. Mix and match is conceptually very simple.
2. The message complexity for mix and match is quite low. In the random

oracle model, the broadcast message complexity is O(nN) group elements,
where n is the number of players and N , the number of gates in the circuit.

3. Sharing in mix and match occurs only at the level of a decryption key, and
not for input or intermediate computational values.

This last property means that mix and match has the advantage of natural
flexibility in terms of both input and output formats and player participation.
For example, players contributing inputs need not even know what players or how
many will be performing the computation, and need not themselves participate.
Outputs may be made to take the form of ciphertexts under an arbitrary key,
with no additional protocol overhead. We note that a similar property emerges
in independent work by Cramer, Damg̊ard, and Nielsen [16].

A drawback to mix and match is the fact that the atomic computational unit
is the boolean formula, rather than the field operations employed in secure mul-
tiparty computation schemes based on [4]. For many functions, therefore, such
as threshold signature computation [25], it is probably substantially less efficient
than, e.g., [30]. For functions involving intensive bitwise manipulations, however,
mix and match is highly competitive. A good example is the millionaires’ prob-
lem, or natural multi-player extensions such as auction protocols. To highlight
this strength, we present a flexible non-interactive auction protocol in this pa-
per based on mix and match. This protocol, as we show, has several practical
advantages over state-of-the-art proposals for non-interactive secure auctions.

1.2 Organization

We present model details and definitions in section 2. We describe our mix-
and-match scheme in section 3. In section 4, we briefly discuss the literature on
auction protocols and outline a non-interactive, fully private auction protocol
based on mix and match.

2 Model and Building Blocks

In elaborating mix and match, we consider the cryptographic model of secure
multiparty computation. This involves n players, P1, P2, . . . , Pn, who are as-



sumed to share an authenticated broadcast channel, and an adversary with re-
sources polynomially bounded in all security parameters. We consider an adver-
sary who may corrupt up to t < n/2 of these players in an active fashion, i.e.,
the adversary gains access to their private information, and may govern their
behavior in an arbitrary fashion. We assume that the adversary is static, that
is, she must choose in advance which players she wishes to corrupt. Our results
can be extended straightforwardly to more complex adversarial structures. We
can achieve security in the mix-and-match protocol reducible to the Decision

Diffie-Hellman (DDH) assumption (see, e.g., [35]) on the group G over which
the computation takes place. To achieve the best possible efficiency and sim-
plicity here, however, we additionally invoke the random oracle model (see, e.g.,
[3]). The asymptotic costs presented in this paper assume malicious adversarial
behavior.

2.1 Building blocks

El Gamal cryptosystem: We employ the El Gamal cryptosystem [24] as the
basis for our constructions. Encryption in the El Gamal cipher takes place over
a group2 Gq of prime order q.

Let g be a generator of Gq . This generator is typically regarded as a system
parameter, as it may correspond to multiple key pairs. A private encryption key
consists of an integer x ∈U Zq, where ∈U denotes uniform random selection.
The corresponding public key is defined to be y = gx. To encrypt a message
m ∈ Gq under public key y, we select a ∈U Zq, and compute the ciphertext
(α, β) = (mya, ga). To decrypt this ciphertext using the private key x, we com-
pute α/βx = mya/(ga)x = m.

The El Gamal cryptosystem is semantically secure [28] under the Decision
Diffie-Hellman (DDH) assumption over Gq. Informally, this means that an at-
tacker who selects message pair (m0,m1) is unable to distinguish between en-
cryptions of these two messages with probability significantly greater than 1/2,
i.e., than a random guess. See [43] for details.

Let (α0α1, β0β1) = (α0, β0) ⊗ (α1, β1). Another useful property of the El
Gamal cryptosystem is the fact that it possesses a homomorphism under the
operator ⊗. In particular, observe that if (α0, β0) and (α1, β1) represent cipher-
texts corresponding to plaintextsm0 and m1 respectively, then (α0, β0)⊗(α1, β1)
represents an encryption of the plaintext m0m1. A consequence of this homo-
morphic property is that it is possible, using knowledge of the public key alone,
to derive a random re-encryption (α′, β′) of a given ciphertext (α, β). This is
accomplished by computing (α′, β′) = (α, β) ⊗ (γ, δ), where (γ, δ) represents an
encryption of the plaintext value 1. It is possible to prove quite efficiently in
zero-knowledge that (α′, β′) represents a valid re-encryption of (α, β) using, e.g.,

2 Most commonly, we let p = 2q + 1, and we let Gq be the set of quadratic residues
in Z∗

p . In this setting, plaintexts not in Gq can be mapped onto Gq by appropriate
forcing of the LeGendre symbol, e.g., through multiplication by a predetermined
non-residue.



a variant of the Schnorr proof of knowledge protocol [17, 42]. This proof may also
be made non-interactive. See [6] for an overview. We let (α, β) ≡ (α′, β′) denote
equivalence of underlying plaintexts for (α, β) and (α′, β′), and (α, β) 6≡ (α′, β′)
denote non-equivalence.

The plaintext 0 has only a degenerate ciphertext in the El Gamal cryptosys-
tem. We can represent it by some other plaintext in our protocol.

Distributed decryption for El Gamal: A final useful property of the El Gamal
cipher is that it may easily be converted into a threshold protocol. With use of
a distributed key generation protocol such as that in [8] or [9], players generate
a private key x that is held according to a t-out-of-n sharing scheme for some
t < n/2. In particular, each player Pi obtains a private share xi consisting
of the evaluation of a (t − 1)-degree polynomial on, e.g., the value i over an
appropriate field. To decrypt a ciphertext (α, β), each player Pi publishes the
value βi = βxi , along with a ZK proof of correct exponentiation, that is, a ZK
proof of knowledge of z such that logg yi = logβ βi using, e.g., an appropriate

variant on the protocol described in [13]. Players then compute βx =
∏t

i=1 β
λai

ai

on t correct shares {βai
}ti=1, where λai

is the LaGrange coefficient for the athi
share. Assuming use of non-interactive proofs, with security consequently relying
on the random oracle model, the broadcast round complexity of the protocol
is O(1), the message complexity is O(n) group elements, and the per-player
computational costs areO(n) exponentiations. We do not provide further details,
but instead refer the reader to, e.g., [25], which describes a threshold DSS scheme
with similar properties.

Proof of knowledge of El Gamal plaintext: Given knowledge of the encryption
exponent a of an El Gamal ciphertext (α, β) = (mya, ga), a player can prove
knowledge of m in zero knowledge. This may be accomplished simply by means
of an (honest-verifier) zero-knowledge proof of knowledge of a such that β = ga

using, e.g., a variant of the Schnorr identification protocol [42] with a challenge
carefully generated jointly by all servers. Soundness may then be based on the
discrete log problem. The proof of knowledge may also be replaced with a non-
interactive protocol through use of Fiat-Shamir techniques [20]. In this case,
the ciphertext and accompanying proof may be regarded as a plaintext-aware

encryption, and security depends additionally on use of the random oracle model.
In this case, the broadcast round complexity of this protocol is O(1), the message
complexity is O(1) group elements, and the per-player computational costs are
O(1) exponentiations.

Mix network (MN ): The second key tool in our construction is known as a
mix network. This primitive for privacy was introduced by Chaum [10], and
has recently received considerable attention, both in terms of implementation
improvements [1, 32–34, 37] and a wide variety of ideas for applications, of which
some examples may be found in [23, 31, 38, 41]. Intuitively, a mix network is a
multi-party protocol that takes as input a list of ciphertext items and from this
produces a new, random list of ciphertext items such that there is a one-to-one



correspondence between the underlying plaintexts of input and output items. In
other words, the underlying output plaintexts represent a random permutation of
the underlying input plaintexts. The security of a mix network is characterized by
the infeasibility for an adversary of determining which output items correspond
to which input items.

While there are many flavors of mix network, the type we employ is based
on the El Gamal cipher, and works as follows. An El Gamal public key y
is published for use by all players, who are assumed to share an authenti-
cated broadcast channel (or, equivalently, a bulletin board). Some subset of
n players known as mix servers share the corresponding private key accord-
ing to a (t, n)-threshold scheme as described above. Input to the mix network
consists of a sequence (α1, β1), (α2, β2), . . . , (αk, βk) of El Gamal ciphertexts
posted by the players to the bulletin board.3 The mix servers perform a se-
quence of distributed operations on these inputs. The output of the mix network
is a random permutation and re-encryption of the inputs, namely a sequence
(α′

σ(1), β
′

σ(1)), (α
′

σ(2), β
′

σ(2)), . . . , (α
′

σ(k), β
′

σ(k)) where (α
′

i, β
′

i) represents a random

re-encryption of (αi, βi), and σ is a random permutation on k elements.

There are a number of variants on this basic primitive. For example, inputs
to the mix network may be plaintexts, rather than ciphertexts; alternatively,
the converse is possible. Note that these are really just special cases of what is
described here: a plaintext is a degenerate form of ciphertext with encryption
factor 0. Another important variant that we employ here is a mix network in
which the input consists of a two-dimensional matrix of ciphertexts {(αi,j , βi,j)}
for 1 ≤ i ≤ k and 1 ≤ j ≤ v. The output consists of a random, blinded permu-
tation of the rows of this matrix, with no alteration of the order of underlying
plaintexts within rows. In other words the output is {(α′

σ(i),j , β
′

σ(i),j)} for a ran-

dom permutation σ on k elements, where (α′

i,j , β
′

i,j) represents a re-encryption of
(αi,j , βi,j). We do not provide details on this extension of the basic mix network
primitive, but simply note that it may be implemented with overhead linear in
the number v of input columns.

We can base the mix network MN for the mix-and-match protocol on any
of several constructions proposed in the literature. For small input sizes, the
construction of Abe [2] or the similar construction of Jakobsson and Juels [33]
is most efficient. Given that these schemes are publicly verifiable and possess
easily provable security properties, we adopt either construction where we must
make explicit reference to the properties of the mix network in mix and match.

The mix networks described in [2] and [34] have the following properties. They
are secure, that is, both private and robust, against a static, active adversary
that corrupts t < n/2 mix servers. Let k be the number of input elements.
With underlying interactive zero-knowledge proof protocols, i.e., those involving
challenges carefully generated jointly by the servers, privacy for this protocol

3 To prevent attacks involving one player posting a re-encryption of the ciphertext
of another player, it is sometimes necessary for ciphertexts to be encrypted in a
manner that is plaintext aware. This may be accomplished through, e.g., a ZK proof
of knowledge of the discrete log of β for a ciphertext (α, β) (see [32, 43]).



may be reduced to the DDH assumption, and protocol robustness to the discrete
log problem. By using non-interactive proof protocols under the Fiat-Shamir
heuristic [20], we introduce additional dependence on the random oracle model
for security. In this latter case, the asymptotic broadcast round complexity is
O(n). The message complexity is O(nk log k), while the total computational cost
per server is O(nk log k) exponentiations.

Distributed plaintext equality test (PET ): Let (α, β) and (α′, β′) be El Gamal
ciphertexts with respective underlying plaintexts m1 and m2. In the PET proto-
col, players jointly determine whether m1 = m2, i.e., whether (α, β) ≡ (α′, β′).

Consider the ciphertext (ǫ, ζ) = (α/α′, β/β′). If (α, β) ≡ (α′, β′), then (ǫ, ζ)
represents an encryption of the plaintext integer 1; otherwise, it represents an
encryption of the quotient m1/m2. The idea behind the PET protocol, therefore,
is to have the parties blind and then decrypt (ǫ, ζ) in such a way that the
resulting output is 1 if (α, β) ≡ (α′, β′), and a random integer otherwise. Player
Pi blinds (ǫ, ζ) by raising each element in the pair to a random exponent zi ∈
Zq. This form of blinding leaves the plaintext intact if it is equal to 1 and
randomizes it otherwise. The players then combine their blinded shares and
perform a distributed decryption on the resulting ciphertext. The protocol is as
follows:

1. Each player Pi selects zi ∈U Zq. She publishes a Pedersen commitment [39]
Ci = gzihri to zi, where h is a generator such that logg h is unknown to any
coalition of servers and ri ∈U Zq is selected by Pi.

2. Each player computes (ǫi, ζi) = (ǫzi , ζzi) and broadcasts it.
3. Each player Pi proves to the other players that (ǫi, ζi) is well formed relative

to the commitment Ci. In particular, she provides a zero-knowledge proof
of knowledge of a pair (zi, ri) ∈ Z2

q such that Ci = gzihri and ǫi = ǫzi and
ζi = ζzi . This may be accomplished efficiently using appropriate variants on
protocols elaborated in [13, 17].

4. The players jointly decrypt (γ, δ) = (
∏n

i=1 ǫi,
∏n

i=1 ζi).
5. If the resulting plaintext is 1, then the players conclude that (α, β) ≡ (α′, β′).

Otherwise, they conclude that (α, β) 6≡ (α′, β′).

If any player is found to be deviating from the protocol, that player is excluded
from further participation.

Like the other building blocks presented here, PET is minimal knowledge
under the DDH assumption. By “minimal knowledge”, we mean that players
learn nothing beyond whether or not (α, β) ≡ (α′, β′). To be more precise, even
given malicious adversarial behavior (such as refusal of servers to participate
in step 3), the distribution of protocol transcripts may be simulated by any
entity that knows whether or not (α, β) ≡ (α′, β′). The simulated transcript
is indistinguishable from a correct one under the DDH assumption. Under the
discrete log problem, it is infeasible for any adversary controlling t < n/2 servers
to cause a server to deviate from the protocol without detection. Assuming non-
interactive proof protocols with security in the random oracle model, the protocol



may be executed with O(1) broadcast rounds, with a message complexity ofO(n)
group elements. The computational costs per player are O(n) exponentiations.4

The PET algorithm is the tool that enables us to perform comparisons be-
tween encrypted values input to gates and encrypted values in blinded tables.
In other words, it is the basic tool for lookups in blinded tables.

3 The Mix and Match Protocol

We are now ready to describe in detail our main protocol, the mix-and-match
scheme. Recall that players must agree in advance on a representation of the
target function f as a circuit Cf . Let us suppose that this circuit consists of N
gates, denoted by G1, G2, . . . , GN . We may assume, without loss of generality,
that the numbering of gates is such that every gateGi+1 has circuit depth at least
that of Gi. Thus, evaluation of gate values may proceed in order of index number.
For simplicity of presentation, we assume that all gates Gi are binary, i.e., each
gates has two inputs and one output, all of which are bit values. We also assume
that the function f is binary, i.e., the output is a single bit. We let gate GN

be the output gate for f . We later give a brief description of how to extend the
described scheme to non-binary gates and functions f quite straightforwardly.

Let us denote the sequence of input bits of player i by Bi = {b1, b2, . . . , bk}.
Thus, the aim of the protocol is for players to compute f(B1, B2, . . . , Bn) without
revealing any additional information about any of B1, B2, . . . , Bn. Let us denote
the lookup table corresponding to gate Gi by Ti. As we assume that gates are
binary, table Ti contains three columns and four rows; the first two columns
represent input bit values, and the third, the corresponding output bit. Table 1,
for example, depicts the logical table corresponding to an AND gate. This is, of
course, just a standard truth table.

left right output

0 0 0
0 1 0
1 0 0
1 1 1

Figure 1. Logical table representing an AND gate

We let Ti[u, v] represent the value in row u and column v of table Ti. We
denote by T i the blinded, permuted table yielded by application of MN to Ti.

We present our mix-and-match protocol in terms of four steps:

4 Pedersen commitments are included here for technical reasons, namely to aid in
security proofs for the protocol. Under the random oracle assumption on hash func-
tion h, we can have each player Pi instead publish a commitment Ci = h(ǫi, ζi), and
subsequently have all players decommit. This reduces protocol costs by a significant
constant factor.



1. Input protocol: Each player contributing input to f broadcasts El Gamal
encryptions of her input bits Bi under the public key y. (Note that as the
integer 0 has only a degenerate ciphertext in the El Gamal cryptosystem, it
is convenient to represent a ’0’ bit by the plaintext g−1 and a ’1’ bit by the
plaintext g.) Players prove knowledge of the associated plaintexts.

2. Mixing: Players apply the mix networkMN to the tables {Ti} under public
key y. Each player in turn mixes all tables. The output is the set of blinded
tables T 1, T 2, . . . , TN .

3. Matching: For gates G1, G2, . . . , GN in order, the players do the follow-
ing. Let li (left) and ri (right) be the ciphertext input values to gate Gi.
The players use PET in order to compare the pair (li, ri) with each row
u in T i until a match is found. For each row u, the players check whether
PET (li, T i[u, 1]) = 1 and PET (ri, T i[u, 2]) = 1. If both checks hold, then the
players determine that the encrypted output value oi of gate Gi is T i[u, 3].
The players do this for u = 1, 2, 3, and then 4 until a match is found.

4. Output: After evaluating the last gate, GN , the players obtain oN , a ci-
phertext encrypting f(B1, B2, . . . , Bn). They jointly decrypt this ciphertext
value to reveal the output of the function f .

If a player has provided an invalid input ciphertext (α, β), i.e., a ciphertext
whose plaintext does not represent a bit, then the matching step as applied to
that ciphertext will fail. In other words, no matching row will be found. This will
reveal the invalidity of the input to participating players. An alternative strategy
to identify invalid inputs is for players to provide validity proofs along with their
inputs. Let (α, β) be a ciphertext input in which a ’0’ bit is represented by the
plaintext value g−1, and a ’1’ bit is represented by the plaintext value g. Such
a proof then takes the form of a proof of knowledge of (z | α/g = yz, β = gz) or
(z′ | αg = yz

′

, β = gz
′

). See [6, 17] for descriptions of how to construct disjunctive
and conjunctive proofs of knowledge efficiently.

If players determine that a player Pi participating in the function evaluation
protocol has cheated or failed, they expel him from the protocol, according to
standard practice in the literature for threshold security protocols. They then
rewind and recompute as necessary. Due to space limitations, we do not prove
security results, but simply state that our mix-and-match construction meets
the security requirements formalized by Canetti [7] for secure multiplayer pro-
tocols. The interactive variant does this in a computational sense, i.e., there is
an ideal process adversary capable of producing a simulation indistinguishable
from a real one under the DDH assumption. The non-interactive variant depends
additionally on use of the random oracle model.

Extensions: As explained above, it is easy to extend the mix-and-match pro-
tocol to non-binary gates Gi. For Gi to take as input a j-tuple of values, we
construct Ti such that columns 1, 2, . . . , j contain input values. (We increase the
number of rows correspondingly to 2j .) On evaluating Gi, we compare the input
tuple with the first j columns of a given row in T i. For Gi to yield multiple
output values, it suffices to have the output column in Ti carry multiple values.



Input or output values can be made non-binary simply by formulating the en-
tries in Ti appropriately. Additionally, the circuit for f can have multiple output
gates, requiring simply that players perform multiple decryptions in the final
step of the mix-and-match protocol.

The set of players providing inputs to f in step 1 may be distinct or arbitrarily
overlapping with the set of players performing the secure computation. We see
this principle at work in our auction protocol in section 4. Similarly, since the set
of players performing the mixing operation need have knowledge only of y and
not x, this set may be disjoint from the set of players performing the matching.

Remarks:

– The multiplicative homomorphism property of the El Gamal cipher allows
for secure multiplication of plaintext values at the cost of a single modular
multiplication. This observation may often be exploited to reduce the cost of
the protocol. For example, if the left and right input bits to an AND gate are
ciphertexts li and ri respectively, each with plaintext value g−1 (representing
a ’0’ bit) or g (representing a ’1’ bit), then the product liri will have one
of three corresponding plaintexts, g−2, 1, or g2. We can thus condense the
AND gate to include only three rows.

– One means of reducing the number of gates is to use the El Gamal variant
proposed by Franklin and Haber [22] for use in secure multiparty compu-
tation. This is an El Gamal cryptosystem in which -1 and 1 are both valid
plaintexts. In consequence of the multiplicative homomorphism of El Gamal,
it is possible for players to compute XOR non-interactively with this scheme.

– It may easily be seen that the transcripts of all players’ proofs constitute a
publicly verifiable proof of the correctness of the computation.

3.1 Performance

The full protocol in the random oracle model, i.e., with non-interactive proofs,
may be achieved in O(n+ d) broadcast rounds, where d is the depth of the cir-
cuit Cf . As players invoke MN once per gate and PET a constant number of
times per gate, the overall message complexity is O(nN) group elements, while
the computational complexity per player is likewise O(nN) exponentiations. As
noted above, mix and match can be implemented with use of interactive proofs
using, e.g., techniques in [16], thereby eliminating the random oracle assump-
tion as a security requirement at the expense of slightly higher protocol costs.
Asymptotic costs in the non-interactive mix-and-match protocol are on a par
with the best contemporaneous results, such as [16, 30]. It is important to note,
though, that these latter two results achieve full field operations for each gate.
(The result in [16] is in the computational model with an assumed broadcast
channel, and tolerates an adversary in control of any minority coalition. The
scheme in [30] is in the private channels model with security for t < n/3.)



4 Auctions

We now show how to apply mix and match to the construction of an auction
protocol. We consider two, possibly overlapping sets of participants, m bidders,
denoted by A1, A2, . . . , Am, and n servers, denoted by P1, P2, . . . , Pn. All par-
ticipants are assumed to share an authenticated broadcast channel. We achieve
the following properties in our proposed scheme:

1. Non-interactivity: Bidders submit bids in a non-interactive fashion. That is,
they broadcast their bids to the servers, but need not participate subse-
quently in the auction protocol except to learn the outcome.

2. Auction adaptability: Our auction protocol is readily adaptable with little
overhead to a range of auction types, such as highest-price auctions and Vick-
rey auctions, as well as to related non-auction procedures, such as polling.

3. Full privacy: The only information revealed at the conclusion of the auction
is that essential to public execution of resulting transactions. In a highest-
price auction, for example, only the winning bid and the identity of the
winning bidder are revealed.

4. Robustness: An adversary consisting of a coalition of bidders or a minor-
ity coalition of servers cannot disrupt the auction protocol or undermine
the privacy guarantees. (The servers are simply players as described in the
mix-and-match scheme above, so that the computation achieves the same
robustness and security characteristics.)

5. Multiple servers: Our auction protocol accommodates an arbitrary number
of servers and a range of trust models on these servers.

6. Public verifiability: The proof transcripts of the auction servers are publicly
verifiable. That is, any player (and indeed, any external entity) can verify
the correctness of the auction execution without trust in the auction servers.

The principle drawback of our scheme is the intensive communication it requires
among servers. Given that this may occur in a manner that is offline from the
perspective of bidders, however, it does not pose a serious practical limitation.

In principle, it is possible to achieve the above set of properties with use of
any general secure multiparty computation technique and any threshold public-
key cryptosystem. The most difficult property to achieve in practice is that of
non-interactivity. One method is as follows. Given an appropriate circuit rep-
resentation for the computation, bidders submit ciphertext bids which the the
servers decompose into shares using their private shares of the ciphertext key.
This approach, however, is rather inefficient, as the circuit must be very large.

Another, more efficient approach to building a non-interactive protocol is for
a bidder to make the sharing implicit in her bid. The bidder submits verifiable
secret sharings of the component bits of her bid, along with ciphertexts of the
shares. These ciphertexts may be encrypted under the keys of the individual
servers, or under a shared key. In the latter case, the ciphertexts may be di-

rectively decrypted, i.e., decrypted for a unique recipient. This approach, while



fairly practical, is still cumbersome. The bidder must, at a minimum, know how
many servers are participating, and, to achieve a practical scheme, must submit
nk ciphertexts, where k is the number of bits composing her bid. Additionally,
as noted above, we believe that mix and match is quite competitive with other
secure function evaluation protocols for applications, like auctions, involving in-
tensive bitwise manipulation.

In consequence of the difficulties involved in deploying standard general se-
cure function evaluation techniques, a number of secure protocols have been
proposed in the literature that are specially tailored for auctions. One of the
earliest of these is the scheme of Franklin and Reiter [21]. This scheme is not
fully private, in the sense that it only ensures the confidentiality of bids until
the end of the protocol (although the authors mention a fully private variant).
Some more recent schemes include those of Harkavy, Tygar, and Kikuchi [29],
Cachin [5], Sako [40], Di Crescenzo [19], and Naor, Pinkas, and Sumner [36]. The
Harkavy et al. scheme is fully privacy preserving, but involves intensive bidder
involvement [29], and is not easily adaptable to different auction types or to
related protocols. The scheme of Cachin involves two servers, and requires some
communication among bidders. At the end of the protocol, a list of bidders is
obtained, but not the bid amounts. The scheme of Di Crescenzo [19] requires no
communication between bidders, and has low round complexity, but involves the
participation of only a single server. The scheme of Sako [40] works on a differ-
ent principle from these others, involving opening of bids in what is effectively a
privacy-preserving Dutch-style auction. While efficient for small auctions, it in-
volves costs linear in the range of possible bids, and does not allow for extension
to second-price and other auction types. The scheme of Naor et al. [36] is the
first to seek to achieve the first four auction properties enumerated above.5

4.1 A mix-and-match auction protocol

We now present our auction protocol, achieving all six of the properties enu-
merated above. We describe an architecture for executing highest-bid auctions,
although variants such as Vickrey auctions may be achieved through simple mod-

ifications imposing minimal additional overhead. Let Bi = b
(k)
i , b

(k−1)
i , . . . , b

(1)
i

be a bitwise representation of the bid Bi of bidder Ai. Let E[b] represent the
El Gamal encryption of a given bit b. To avoid cumbersome details, we use
somewhat loose notation here, and also do not consider the association of user
identities with bids. Also for the sake of simplicity, we assume that there are no
ties between bids. The protocol is as follows.

1. Each bidder Ai submits her bid consisting of El Gamal ciphertexts E[b
(k)
i ],

E[b
(k−1)
i ], . . . , E[b

(1)
i ] along with proofs of knowledge of the associated plain-

texts. Let E[Bi] denote the k-tuple of ciphertexts representing the submitted
bid of Ai. (This submission E[Bi] may be also digitally signed by Ai.)

5 A security flaw which we do not have space to describe here, however, allows one of
the servers to tamper with bids in this protocol.



2. For each pair of encrypted bids, players do the following:
– Servers apply a mix-and-match-based millionaires’ problem protocol to

pairs of encrypted bids (E[Bi], E[Bj ]). Let E[w] denote the ciphertext
outcome of the comparison on the bid pair (Ei, Ej). Here w = 1 if bid i
is higher and w = −1 if bid j is higher.6

– Servers construct a two-row table T in which the first row contains the
pair (−1, E[Bi]), and the second row contains the pair (1, E[Bj ]). Thus
each row contains k + 1 columns. Players mix T to obtain blinded table
T . Thus T consists of rows (E[−1], E[Bi]) and (E[1], E[Bj ]) in a random
order, where E[Bi] and E[Bj ] denote re-encryptions of ciphertexts E[Bi]
and E[Bj ].

– Servers match w against the first column entries of T . When they find
a match, they output the ciphertext bid in the corresponding row. This
will be E[Bi] if w = −1 and E[Bj ] if w = 1.

3. Servers repeat the previous step following a tennis tournament format until
only the ciphertext E[Bt] of a winning bid remains.

4. Servers jointly decrypt the winning bid E[Bt].

Many variants of this basic scheme are possible. For example, to handle ties,
players might execute a sorting algorithm based on pairwise comparisons, rather
than a tennis tournament. In this case, we must enforce a secret, random tie-
breaking mechanism for comparisons between equal bids. Once an ordered list
is obtained, it suffices to compare bids from highest to lowest until all highest
bids are identified. We leave further details to the reader.

Assuming use of the publicly verifiable mix network proposed in [2, 34] and
correct server behavior, it may easily be seen that the asymptotic computational
cost of the protocol described above is O(knm) exponentiations per server, while
the message complexity is also O(knm). With the use of fast workstations, a
crude estimate suggests that for m = 100, n = 5, and k = 20, i.e., for 100
bidders, 5 servers, and bids ranging values ranging from 1 to just over 1,000,000,
an auction may be conducted in under 3 minutes on fast workstations.
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