Addition of ElGamal Plaintexts

Markus Jakobsson! and Ari Juels?

! Information Sciences Research Center
Bell Labs
Murray Hill, New Jersey 07974
www.bell-labs.com/user/markusj/
2 RSA Laboratories
RSA Security Inc.
Bedford, MA 01730, USA

ajuels@rsasecurity.com

Abstract. We introduce an efficient method for performing computa-
tion on encrypted data, allowing addition of ElGamal encrypted plain-
texts. We demonstrate a solution that is robust and leaks no information
to a minority of colluding cheaters. Our focus is on a three-player solu-
tion, but we also consider generalization to a larger number of players.
The amount of work is exponential in the number of players, but reason-
able for small sets.

Keywords: addition, directed decryption, ElGamal, fast-track, repeti-
tion robustness

1 Introduction

For a number of public-key encryption schemes, it possible to compose plaintexts
multiplicatively through simple manipulation of their corresponding ciphertexts,
without knowledge of an associated decryption key. For ElGamal encryption,
this is achieved by component-wise multiplication of individual ciphertexts. If
the ciphertexts have been encrypted under the same public key, the result is an
ElGamal encryption of the product of the plaintexts. It is known that there can
not exist a non-interactive method for computing the sum of plaintexts in this
setting given only the ciphertexts. If so, then it would be possible to break the
Decision Diffie-Hellman Assumption.! Furthermore, even allowing interaction,
and working in a setting where the decryption key is held distributively, it is not
known how to compute the sum of plaintexts without invocation of costly general
secure multiparty computation methods. In this paper, we propose the first
efficient solution for performing the operation of distributed ElGamal plaintext

! The ability to perform non-interactive plaintext addition implies the ability to build
a comparitor that determines whether a ciphertext corresponds to a particular plain-
text. This would contradict the semantic security of the cipher, which is known to
hold if the DDH assumption holds. The comparitor would add an encryption of the
additive inverse of the assumed plaintext, and determine whether the result of the
addition is an encryption of the value zero, which is the only recognizable ciphertext.



addition. However, we note that our solution is only efficient for small number of
participants, as its asymptotic costs are exponential in the number of players. We
hope that improvements to our techniques will be able to remove this restriction.

Our goal is therefore to solve the following problem: Two ElGamal cipher-
texts, both encrypted using a public key y, are given to a set of n players, among
whom the corresponding secret key x is shared using a standard (k, n)-threshold
secret sharing scheme. The players wish to generate an encryption of the sum
of the encrypted plaintexts. We want the computation to be done in a robust
manner, i.e., such that cheating will be detected and traced with an overwhelm-
ing probability. At the same time, it must be performed without revealing any
information to a minority of dishonest and colluding players. In the main body
of the paper, we focus on a (2, 3)-threshold solution, but this solution generalizes
rather straightforwardly to more players. (However, as mentioned, the solution
is only practical for small sets.)

We want our multiplicative group to be closed under addition. Working in
the field F[2!] gives us a close approximation of this. In order not to leak the
residuosity of results, we additionally require the size of the multiplicative group
to be prime. We review the related security aspects of this modification.

Our method is based on iterated additive resharing of secrets and on a handful
of scheduling tricks. Since an important goal is for the protocol to be computa-
tionally efficient, we avoid traditional zero-knowledge based robustness methods,
and employ instead the so-called repetition robustness method [9]. We expand on
the use of this method by offering a new type of setting in which it is beneficial.
We also employ the ideas of fast-track computation, optimizing the scheme for
the case where no players attempt to corrupt the computation. (See [7] for the
introduction of the term and, e.g., [5] for an early introduction to the idea.)

Apart from addressing a long open problem, we introduce methods for effi-
cient computation that may be of independent interest. For example, our result
might serve as a possible alternative basis for general secure multiparty com-
putation. It is interesting to note that this would give us a solution where one
pays for addition, while multiplications are (almost) for free. This is in contrast
to the usual case for general secure multiparty computation, where addition is
free while multiplication is relatively costly. It appears that for some types of
computations, our approach would lower the cost of the function evaluation.

Our building block may also find applications in more specific multi-party
settings, such as certification schemes, payment schemes, and election schemes.
This may be both to allow new functionality, and to lower computational costs
by allowing for alternative ways of arriving at a given result. It is interesting to
note that it sometimes may lower computational costs to perform computation
on encrypted data, compared to traditional secret-sharing methods in which each
party needs to prove that he performed the correct computation.

We therefore see our work as an interesting step in a direction that may
provide new types of solutions for multi-party computation. We do not, however,
view the work presented here to be conclusive in any manner. Instead, we want
to bring the attention to several remaining open problems. Most notable among



these are the questions of whether there exists an efficient and secure two-player
solution, and whether an efficient solution can be developed for large sets of
players, ours being efficient only for moderate sized sets.

Outline. We begin with a review of related work (Section 2). We then introduce
our building blocks and design methods (Section 3), and present a description
of a non-robust solution (Section 4). In Section 5, we show how to incorporate
robustness into that solution. We prove that our solution satisfies our stated
requirements in Appendix A.

2 Related Work

We introduce the notion of one-splitting. This is superficially related to standard
secret-sharing methods [17], and in particular to zero-sharing (see, e.g., [11]). The
latter involves superimposition of several polynomials, each encoding the value
zero, in order to create an unknown polynomial that likewise encodes a zero.
While the technical differences are substantial, the principles are related. Our
methods involve composition of multiple ciphertexts, resulting in a set of new
ciphertexts such that the sum of their plaintexts equals the value one.

We use the notion of repetition robustness, introduced in [9] and later also
employed in [10], to make our protocol robust without excessive use of zero-
knowledge proofs. If zero-knowledge proofs were to be used instead, it would ap-
pear necessary to invoke computationally costly cut-and-choose methods. (While
there is nothing inherent in the setting that requires a cut-and-choose approach,
we are not aware of any other kind of zero-knowledge method that can be used
to perform the required proof.)

The version of repetition robustness outlined in [9,10] relies on the use of
permutation, and potentially requires a large number of repetitions in order to
render the success probability of an attacker sufficiently small. Our flavor of the
principle, however, does not involve permutation, and only requires two runs of
the protocol to ensure a negligible probability of success for an attacker. This
is because our protocol by its very nature destroys the homomorphic properties
exploitable by an attacker in [9, 10].

Our solution is based on the principles of fast-track computation [7,5]. The
guiding aim here is to streamline the efficiency of the protocol for the case
in which no player attempts to corrupt the output, in the hope that this is
the most common case. This translates to inexpensive methods for detection of
errors, followed by a conditional execution of potentially expensive methods for
determining which player misbehaved.

We use standard methods for proving correctness of exponentiation. These
are related to verification of undeniable signatures [2, 1] and to discrete log based
signatures. We refer to [8] for methods relating to the latter approach.

All computation takes place in F[2!], where ¢ = 2! — 1 is prime. This is
done to avoid leaks of information relating to the Jacobi symbol of the result
of the computation, and to achieve “approximate closure” of the multiplicative



group under addition. It should be noted that performing the computation in
this structure allows for more efficient attacks than for the standard parame-
ter choices, as shown by Coppersmith [3]. Coppersmith’s result improves the
asymptotic running time of the special number field sieve. Implementations [12]
suggest that if we perform all arithmetic in a field F[222°3 — 1] (corresponding
to the smallest Mersenne prime of the approximate size we want), instead of the
standard choice of 1024 bit moduli, the computational hardness of computing
discrete logs would be maintained. We note that the speed of multiplication in
this structure is about a quarter of the speed compared to F[p| for |p| = 1024 if
software is used, and about half if special-purpose hardware is employed.

3 Building Blocks and Design Methods

We employ the standard cryptographic model in which players are modeled by
polynomial-time Turing Machines. We make the common assumption that a
minority of players may be dishonest and may collude. A further requirement
is the existence of an authenticated broadcast channel among players. We first
review standard building blocks presented in the literature, and then introduce
some building blocks peculiar to the protocols in this paper.

3.1 Standard building blocks

Group structure. The ElGamal cryptosystem, which we will use, may operate
over any of a number of choices of group in which the discrete log problem is
infeasible (See [13], for a discussion and list of some proposed group choices.)
We let g denote a generator of F*[2!], where p = 2% — 1 is prime. We note that
the additive and multiplicative groups overlap on all elements but 0.

Secret sharing. We assume that the private decryption key x is shared among
players using (k, n)-threshold secret sharing [17], and denote by x; the secret key
share of  held by player i. Here, x =, s ;\s;, where S is a set of k players,
and As; is the Lagrange coefficient for the set S and player 7. It is possible to
generate and distribute = using any of a number of well studied protocols. See,
e.g., [6] for a brief overview and some caveats.

ElGamal encryption. In the ElGamal cryptosystem, the private key is an
integer x selected uniformly at random from Z,. The corresponding public key
is y = g®. In order to encrypt a value m € F*[2!] under public key y, we pick a
random element « €,, Z,, and compute the ciphertext as (a,b) = (y*m, g*). (We
note that we allow a more “liberal” choice of message encodings than for standard
ElGamal encryption, since every element but zero is in the multiplicative group.)

Standard and directed decryption. The plaintext message can be computed
from a ciphertext (a,b) by computing a/b*, where x is the secret decryption key.
Note that this trivially allows distribution, where each player, holding an additive



share x; of z, computes and publishes B; = b*¢, from which B = b” can easily be
constructed. We obtain a directed decryption for a player i by having all players
but i publish their shares of B, after which player ¢ locally computes B;, then
B, and finally the plaintext m = a/B.

Multiplication and division of ciphertexts. Let E(m;) = (a1,b1) and
E(ms) = (az2,b2) be two ciphertexts, corresponding to plaintexts m; and meo.
We say that E(ms) = E(m1)E(mz) = (a1az,b1b2) is the product of E(m4) and
E(ms), since its plaintext ms = mime. Similarly, we say that the quotient of two
ciphertexts is E(ms) = E(m1)/E(m2) = (a1az~"',b1by '), where the resulting
ciphertext corresponds to the plaintext ms = mims 1.

Distributed blinding. For k players to blind a ciphertext E(m), each player
i selects a random number 7; € F*[2'] and computes and publishes E(r;).
Then, the players compute E(m) = E(m) Hle E(r;), for which we have m =
m Hle r;. The players unblind E(m) by computing F(m)/ (Hf:1 E(r;)), where
E(r;) are the individual blinding factors applied in the blinding step.

Plaintext equality test. This is a distributed protocol for determining whether
the plaintexts corresponding to two ElGamal ciphertexts are equal. Given two
ciphertexts, E7 and Es, we compute (a,b) = FE1/E,. Using, e.g., the techniques
described in [8], we then determine in a distributed fashion whether log,a =
loggb. If this equality holds, then the two plaintexts are determined to be equal.

3.2 Special building blocks

We now introduce some building blocks peculiar to our protocols in this paper.

One-splitting. Two parties can compute a one-splitting, i.e., a set of cipher-
texts for which the plaintext sum is congruent to 1, using the following approach.

1. The first player selects a random value w; €, F[2!] {0,1}, and computes
w1 = 1 —wi. He encrypts these two plaintexts, resulting in the ciphertexts
E; and E;. We call this portion of the one-splitting the “root”.

2. The second player selects two random numbers, wo; €, F[2¢]{0,1}, 1 < i <
2, and computes Wy; = 1 —wy;. He encrypts these four plaintexts, giving him
Es1, Eo1, Eag and Eos. We call this portion of the one-splitting the “leaves”.

3. Both parties commit to their ciphertexts, and then decommit and compute
the new ciphertext quadruple (51, 52, 53, 54) = (E1 E21, E1E21 y Fl EQQ, E1E22).
These constitute a one-splitting: It is easy to see that Z?Zl E=1.

Remark: The one-splitting protocol generalizes straightforwardly to any num-
ber of players, but incurs costs exponential in the number of players. It is there-
fore only suited to small numbers of players. In this paper, we consider a setting
in which only two (out of three) players engage in the one-splitting.



Blinded round-robin addition. Let (A, B,C) correspond to three partici-
pating players, and let (M4, Mg, M¢) € (F[Qt])3 correspond to their respective
private inputs. In this protocol, a player “sends” a message m to another player
by publishing an encryption E(m), which all players then directively decrypt
for the target player. The effect of this procedure is to establish the ciphertext
E(m) as a commitment to the transmitted message. This commitment can later
be used to trace cheaters if necessary. The blinded round-robin addition protocol
is now as follows.

1. A selects A €, F[2'], and then sends S; = M4 + A to B and A to C.

2. B computes S = S1 + Mp and sends it to C.

3. C computes S3 = So+ Mc— A, and publishes an ElGamal encryption E(Ss3)
under public key y.

Remark 1: We note that the above protocol will fail to hide the result if S5 = 0.
This only happens with a negligible probability for independent and uniformly
distributed inputs. For inputs of “dangerous” distributions, we need to split
each input value into two portions before performing the addition. This will be
described later in the section.

Remark 2: The addition protocol can be extended to k > 3 players by having
each of the k players compute a (k, k)-threshold sharing of her value. Each player
then distributes the pieces of her sharing among all k players. Then, in a round-
robin addition, the final player obtains the sum of all shares, for which she
outputs the corresponding ciphertext.

Repetition robustness. While standard zero-knowledge based methods can
be employed to achieve robustness, the cost for doing so would be substantial.
We show how to use a recently introduced method, so-called repetition robustness
[9], to obtain robustness at low cost. This method works by performing portions
of the computation twice, using different random strings for each invocation,
and comparing the resulting outputs. We repeat a portion relating to the one-
splitting once, and a portion relating to the addition of partial results once,
giving us a robust result with a cost less than three times that of the non-robust
version of the protocol.

Scheduling tricks. In the primitives we develop, different relations are learned
by the different players, and it becomes of vital importance to schedule carefully
what player performs which tasks. This is to prevent any player from ending
up with a fully determined set of equations and thereby learning information
about the plaintexts. The resulting scheduling techniques are remotely related
to standard blinding methods. The intuition behind our scheduling methods is
as follows: In the different building blocks we have presented, it can be seen
that the different parties learn different amounts or relations. For example, the
third player in the blinded round-robin addition protocol we presented learns the
product of the blinding factor and the message, whereas the other players do not



learn this piece of information. In order to ascertain that no player learns any
function of the secret information, it is important to schedule the execution of the
different building blocks in a manner that does not allow any one participant (or
more generally, any set controlled by the adversary) to collect enough relations
that he can compute any non-trivial function of secret information. (We will
solidify this in the appendix by showing how each party can produce a simulation
that is coherent with his view and any set of secret inputs.)

Avoiding zero. ElGamal encryption has the property that the zero plaintext
cannot be encrypted, but must be avoided or otherwise encoded, as its cor-
responding ciphertext is distinguishable from ciphertexts of other plaintexts.
Depending on the use of our proposed scheme, and depending on its input, a
related problem may be that the whereas no inputs are encryptions of a zero,
an intermediary value or an output may still be. In order to avoid this prob-
lem, one can represent every item of the computation as a pair of ciphertexts,
such that their plaintexts, if added, correspond to the value to be manipulated.
We note that it is easy, given our methods, to produce such a “pair representa-
tion” of each already encrypted input; this is done plainly by selecting a random
ciphertext from the correct distribution, and subtracting this from the initial ci-
phertext. The result, along with the random ciphertext, is a pair whose plaintext
sum corresponds to the plaintext of the original ciphertext. This can be done to
all values, after which the desired computation is performed on the ciphertext
pairs instead of on the original ciphertexts. (Note that addition can simply be
done element-wise, whereas multiplication becomes more laborious.) In our basic
solution, we do not consider these issues.

4 A Non-Robust Solution (Protocol P;)

Using the building blocks introduced in the previous section, we now present
a preliminary solution for addition of plaintexts. This solution is correct and
complete and implements privacy, but is not robust. Our solution involves three
players, two that are active (i.e., are involved in choosing random values) and
one that is passive (i.e., only involved in adding values given to him.)

Let E(mq) and E(mg) be the input ciphertexts, and E(mg) the output ci-
phertext. We assume that the players share the secret decryption key x. Since
our protocol is only secure against dishonest minorities, we will use a thresh-
old scheme that reflects the same trust setting. In the three-player setting we
consider here, that means that a (2, 3)-threshold scheme is employed. Call the
following protocol Py :

1. The two active parties compute a blinding factor E(r) using the methods of
distributed blinding.

2. The two active parties compute two independent one-splittings. Call these
(11,812, E13,E14) and (E21, E22, Ea3, E24). We let the first player set the root
of the first one-splitting, and the leaves of the second.



3. In this step we perform the first robustness check; we will elaborate on this
in the next section.

4. Let pj = EjnE(r)E(m;) for 1 < j < 2. The two parties use the methods of
directed decryption to decrypt the resulting ciphertexts p;,., giving the first
active player the plaintexts of the ciphertexts with x = 1, and the second
active player the plaintexts of those with k = 3. The passive player gets the
remaining plaintexts, i.e., those with k = 2 and k = 4.

5. Each player computes the sum of the above plaintexts. All parties then add
these using the blinded round-robin addition protocol. The scheduling order
here is (2, 3,1), i.e., the second active player begins and the first active player
finishes, sandwiching the passive player. We denote the result of this step by

6. The unblinded result E(mg) = E(M)/E(r) is computed and output.

5 Robustness

The above protocol has three weaknesses with respect to robustness. First, it
is possible for a cheater to publish ciphertext pairs for which it is not the case
that the respective plaintexts add up to one; second, it is possible for a cheater
to cause incorrect decryption; and third, it is possible for a cheater to publish a
value which is not the sum of the plaintexts she received. We note that it is not
possible to corrupt the computation in other places, as the blinding factor E(r)
applied in the first step is cancelled in the last, and both of these computations
are performed “in public”.

We address avoidance of the first and the third attack in the following two
subsections, starting with how to guarantee correct one-splittings, followed by
a method for guaranteeing correct addition of plaintexts. The second attack is
easily avoided by use of proofs of correct exponentiation (see e.g., [8]).

5.1 Attaining Robustness I (Protocol P3)

Let us consider how to guarantee that a one-splitting is correctly performed. Let
(&1, €52, Ej3, Eja) be the previously described one-splittings. The players run the
following protocol to verify once for each such one-splitting 1 < j < 2:

3a. The two active parties compute a blinding factor E(p;).

3b. Let B, = EjxE(p;), for 1 < k < 4. Using directed decryption, the parties
decrypt these ciphertexts, giving (as before) the first player the plaintext
with k£ = 1, the second that with x = 3, and the third player the remaining
two plaintexts.

3c. Using the blinded round-robin addition method, they compute the sum of the
plaintexts they have been given. Here, we use the scheduling order (1,3, 2).
This corresponds to a change in the order of the active players with respect
to the main protocol. The resulting ciphertext is E(B;).



3d. The players determine if E(B;) and E(p;) correspond to the same plaintexts,
using the plaintext equality test building block. They accept iff the plaintexts
are equal.

As suggested by the enumeration of the above steps, this protocol is meant
to be inserted in place of step 3 in protocol P;. We call the resulting protocol
Ps. Protocol Py implements privacy, as stated in the following lemma, whose
proof is sketched in Appendix A.

Lemma 1: Protocol P, implements privacy. More precisely, we can construct
a simulator X' such that an adversary A controlling a minority of the players
cannot distinguish the view of a real protocol run from the view generated by
X, assuming that the adversary only corrupts a minority of participants, and
that the DDH problem over F*[2'] is hard. O

If the parties accept in the above protocol, then the one-splitting must be
correct with overwhelming probability; otherwise, somebody must have cheated.
In other words, the protocol P for proving valid one-splitting has following the
property, relating to the robustness of the final scheme.

Lemma 2: If the parties accept in the protocol described by steps 3a-3d, then
with overwhelming probability, for each quadruple (€;1,&j2,E3,Ej4), 1 < j <2,
the sum of the corresponding plaintexts is congruent to 1. a

Note that the above protocol only detects cheating, but does not determine
who cheated. In order to reveal the identity of a cheater, all the players pub-
lish their protocol-specific inputs, after which the computation of each player is
verified by each other player, and the cheater pinpointed. This procedure is, of
course, only performed in case that the above protocol results in a reject.

5.2 Attaining Robustness IT (Protocol P3)

The protocol we called P; is not robust, as it allows a cheating player to use an
arbitrary value as input to the blinded round-robin addition step without being
detected. Again, we can use the principles of repetition robustness to avoid this
problem. More precisely, we can run the previously described protocols twice,
using the same inputs but different random strings. The output can be shown
(and will be shown) to be correct with an overwhelming probability if the two
resulting ciphertexts correspond to the same plaintext values.

In fact, we do not have to run the partially robust protocol P twice. We
can, instead, execute the protocol Ps3, which is as follows.

1. Run one instance of P; and one instance of Py on the same inputs, but using
independent random strings.

2. Let E(m3) be the output of the above invocation of P; and E(my4) be the
output of the above invocation of Ps. These are compared using the plaintext
equality test building block. If the equality holds, then the players output
E(ms3). Otherwise they must perform a protocol Py for identifying cheaters.



We note that the protocol P4, which we do not elaborate on, can use general
multi-party computation, and therefore be computationally expensive. However,
since it is only employed in what are presumably rare cases of cheating, this is
not a concern. (In other words, we take a fast-track or “optimistic” approach
to robustness.) It is easy to see that protocol Ps is correct and complete. Fur-
thermore, as will be proven in Appendix A, it also implements privacy, and is
robust. Thus we have the following two theorems.

Theorem 1: Assuming Py is private (which will follow from its zero-knowledge
properties), we have that protocol Ps also is private. More precisely, we can
construct a simulator X' such that an adversary A controlling exactly one of
the players cannot distinguish the view of a real protocol run from the view
generated by Y. a

Theorem 2: Protocol Ps is robust. That is, if E(mq) and E(mg) are the input
ciphertexts, then the output of P3 will be E(m), where m = my + ma. This
is under the assumption that the adversary only corrupts a minority of partici-
pants, and that the DDH problem over F*[2!] is hard. O

Acknowledgements

Many thanks to Daniel Bleichenbacher, Kevin McCurley and Moti Yung for
helpful discussions.

References

1. D. Chaum, “Zero-Knowledge Undeniable Signatures,” in Advances in Cryptology
— EUROCRYPT ’90, 1 Damgard, ed., pp. 458—464, Springer-Verlag, 1990. LNCS
No. 473.

2. D. Chaum and H. van Antwerpen, “Undeniable Signatures,” in Advances in Cryp-
tology — CRYPTO ’89, G. Brassard, ed., pp. 212-216, Springer-Verlag, 1989.
LNCS No. 435.

3. D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic two,”
IEEE Transactions of Information Theory, 30 (1984), 587-594.

4. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms,” IEEE Transactions on Information Theory, vol. 31, pp.
469-472, 1985.

5. M. Franklin and M. Yung, “Communication Complexity of Secure Computation”,
in Proc. 24th Annual Symp. on the Theory of Computation (STOC), pp. 699-710,
ACM Press, 1992.

6. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”, in Advances in Cryptology —
EUROCRYPT 99, J. Stern, ed., pp. 295-310, Springer-Verlag, 1999. LNCS No.
1592.

7. R.Gennaro, M.Rabin, and T.Rabin, “Simplified VSS and Fast-track Multiparty
Computations with Applications to Threshold Cryptography”, in Proc. 1998
ACM Symposium on Principles of Distributed Computing (PODC), ACM Press,
1999.

)



8. M. Jakobsson and C.-P. Schnorr, “Efficient Oblivious Proofs of Correct Expo-
nentiation,” in Communications and Multimedia Security (CMS) ’99, B. Preneel,
ed., pp. 71-84, Kluwer Academic Publishers.

9. M. Jakobsson, “A Practical Mix,” in Advances in Cryptology — EUROCRYPT
’98, K. Nyberg, ed., pp. 448-461, Springer-Verlag, 1998. LNCS No. 1403.

10. M. Jakobsson, “Flash Mixing,” in Proc. 1999 ACM Symposium on Principles of
Distributed Computing (PODC), pp. 83-89, ACM Press, 1999.

11. A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, “Proactive Secret Sharing or
How to Cope With Perpetual Leakage,” in Advances in Cryptology — Crypto 95,
D. Coppersmith, ed., pp. 339-352, Springer-Verlag, 1995. LNCS No. 963.

12. K. McCurley, personal communication.

13. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

14. T.P. Pedersen, “Distributed Provers with Applications to Undeniable Signatures,”
in Advances in Cryptology — EUROCRYPT ’91, D.W. Davies, ed., Springer-
Verlag, pp. 221-242, 1991. LNCS No. 547.

15. T.P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing,” in Advances in Cryptology — CRYPTO ’91, J. Feigenbaum, ed., pp.
129-140, Springer-Verlag, 1991. LNCS NO. 576.

16. C.-P. Schnorr, “Efficient Signature Generation for Smart Cards,” Journal of Cryp-
tology, vol. 4, pp. 161-174, 1991.

17. A. Shamir, “How to share a secret”, Communications of the ACM, vol. 22, pp.
612-613, 1979.

A  Proofs

Proof of Lemma 1: (Sketch)

Our approach is to show for each player that, given a view and a guess of an
input pair (71, 72), these two are consistent with each other. If this is the case
for each possible pair (mq,m2), then each such pair is equally likely, given the
view of the player, and thus, the protocol does not leak any information. For
simplicity, we mark known, derived, and assumed quantities with a hat where it
is not obvious from the context that they are known.

Player 1: The first active player knows M and can therefore compute 7 =
M /(1 + ). He also knows wi, w3, w3,. He has that
/lll =w w%lfrhl
fio1 = w3, g
~ ~1_
P14 = W Waep1

_ 2
Boa = Wi Wa9 P2

fo=

For these four equations, there are five unknowns, w3, wi,, w?, p1, and pa. No
matter what the first player’s view is, it is consistent with any pair (g, m2).



Player 2: Similarly, the second active player knows R;. Thus, he knows p; = Rj.
He also knows w3, wi,, w?. He has that

13
fl23 = Wy WpT1M2
N A1

I
fr2 = w Wy p
B — 2752 5
oz = wiwy, p

|
=

N A
1WaaTM1
2 9

For these equations, there are four unknowns, wi, w3, w3,, and r. Again, we
get that this view is consistent with (1, ms).

Player 3: Finally, the passive player knows the following eight equations:

f12 = w%@%lrml
H14 = WiWooTTNY
flaz = wiTW5, 1
A 2D .
/{,24 = w1w22rm2
Bi1 = wiwy p1
Brs = Wiwsyp
Po1 = wiwsy pa
Bag = Wi w3, p2

For the above eight equations, there are nine unknowns, corresponding to all of
the values that went into making the two one-splittings (namely wi, w?, wi,,
w3y, w3, and wi,); and the blinding factors, r, p1, and pa. Therefore, the passive
player’s view is also consistent with any pair (71, 712), and thus, P, is private.
0.

Remark 1. In this proof sketch and those that follow, we do not fully consider
information that the players may derive from published ciphertexts. Under the
DDH assumption, the semantic security of ElGamal assures that this information
is negligible. We shall treat this issue formally in proofs provided in the full
version of the paper.

Corollary 1: Each component of Py is private, and in particular, P; is.

Claim 1: Any composition of private protocols with independent random strings
for the players is private.

Proof of Lemma 2: (Sketch)

Assume that there is a polynomial-time cheating algorithm A for generating the
transcripts of steps 1-3 of Ps, so that the plaintext sum is not congruent to 1,
and the honest players accept in step 3d with a non-negligible probability. We
will show how to use A to break the DDH assumption in F*[2¢]. The input
to the algorithm will be the ciphertexts that constitute the output from the
honest players, namely those for the generation of (&1, &2, E&3,&4), and those for
the generation of E(p). For E(B)/E(p) to correspond to the plaintext 1 requires



that the plaintexts in step 3c add up to p. Assume that the portions held by
the honest players are known by the adversary. If A could produce a share so
that the sum of the shares equals p with a non-negligible probability, A, together
with simulations of the honest players (which takes a suspected value p as input),
could be used to determine if E(p) is an encryption of p with a non-negligible
success probability. This would break the DDH assumption in F*[2¢], as it would
show that the standard ElGamal encryption scheme is not semantically secure
in this group. O.

Proof of Theorem 1: (Sketch)

Consider first the case in which no cheater is detected: Since P; and P both
are private, so must be a composition of the two. Consider now the case in
which a cheater is detected. If a cheater is detected in step 3 of Po, then the
entire protocol run is halted after each player reveals his random strings. Since
no player has computed any function of his secret inputs at this point, that
cannot leak any information, and this event must be simulable. The privacy of
Ps therefore follows from the our choice of a good secure function evaluation
protocol for Py. If the latter is zero-knowledge, Ps will also be zero-knowledge.
O

Proof of Theorem 2: (Sketch)

We know from Lemma 2 that P, is robust, and that if the players accept in
this sub-protocol, that the one-splittings with an overwhelming probability are
correct. The robustness of step 4 of P; follows from the soundness of the proof
protocol for proving correct decryption. We will now show that if the result of
the addition of plaintexts (step 5 of P;) is corrupted, then it will be detected
by the honest players with an overwhelming probability. In order for the results
of the two computations (of P; resp. P2) to be equal, we have the following:
the adversary must add a value vr; in the addition step of the first protocol,
and a value vry in the second, where r; is the blinding factor used in the first
protocol, and 7o that used in the second. Following the argument in the proof
of Lemma 2, this would allow him to break the DDH assumption on F*[2!], as
only encryptions of these values are available to him. Therefore, the output will,
with overwhelming probability, only be accepted when it is correct. O



