Proofs of Work and
Bread Pudding Protocols

Abstract

We formalize the notion of a proof of work. In many cryptographic
protocols, a prover seeks to convince a verifier that she possesses knowl-
edge of a secret or that a certain mathematical relation holds true. By
contrast, in a proof of work, a prover demonstrates that she has per-
formed a certain amount of computational work in a specified interval
of time. Proofs of work have served as the basis of a number of security
protocols in the literature, but have hitherto lacked careful character-
ization.

We also introduce the dependent idea of a bread pudding protocol.
Bread pudding is a dish that originated with the purpose of re-using
bread that has gone stale [10]. In the same spirit, we define a bread
pudding protocol to be a proof of work such that the computational
effort invested in the proof may also be harvested to achieve a separate,
useful, and verifiably correct computation. As an example of a bread
pudding protocol, we show how the MicroMint scheme of Rivest and
Shamir can be broken up into a collection of proofs of work. These
proofs of work can not only serve in their own right as mechanisms
for security protocols, but can also be harvested in order to shift the
burden of the MicroMint minting operation onto a large group of un-
trusted computational devices.
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1 Introduction

Proof protocols, whether interactive or non-interactive, serve as the corner-
stone of almost every data security protocol. In a typical cryptographic



scenario, one party, the prover, aims to convince another party, the verifier,
that it possesses a secret of a certain form, or that a certain mathematical
statement holds true. For example, in the Schnorr identification protocol,
the prover seeks to demonstrate possession of a secret key corresponding to
a specific authenticated public key pair.

In this paper, we deviate from the standard cryptographic aim of proving
knowledge of a secret or the truth of a mathematical statement. Instead,
our goal is to formalize the notion of a proof of work. This is a protocol in
which a prover demonstrates to a verifier that she has expended a certain
level of computational effort in a specified interval of time. Although not
defined as such or treated formally, proofs of work have been proposed as a
mechanism for a number of security goals, including server access metering,
construction of digital time capsules, and protection against spamming and
other denial-of-service attacks [2, 3, 4, 5, 6, 9].

The contribution of this paper is twofold. First, we formalize the notion
of a proof of work. We sketch definitions of a proof of work and of related
concepts. As mentioned above, proofs of work have a demonstrated utility in
a number of data security applications. A drawback to their use, however, is
the fact that they impose a significant computational load in excess of that
associated with most cryptographic protocols. This observation motivates
the second contribution of our paper: the idea of bread pudding protocols.
Bread pudding is a dish that originated with the purpose of re-using bread
that has gone stale [10]. In the same spirit, we define a bread pudding
protocol to be a proof of work such that the computational effort invested
in the proof may also harvested to achieve a separate, useful, and verifably
correct computation.

Ostrovsky [7] has proposed as an alternative to micropayment schemes
the idea of having a client pay for access to a resource by offering a small
amount of her computational power. A bread pudding protocol enables the
fusion of this idea with the idea of a proof of work. The consequence is
that the computational contribution of a client (i.e., the computational mi-
cropayment) can be quickly verified for correctness, and can simultaneously
be used in security protocols. As an example of a bread pudding protocol,
we consider the MicroMint scheme of Rivest and Shamir [8]. We show how
the task of minting in this scheme can be partitioned into a collection of
small proofs of work. These proofs of work can not only serve in their own
right as mechanisms for security protocols, but can also be used to shift the
burden of the MicroMint minting operation onto a large group of untrusted
computational devices.



The remainder of the paper is organized as follows. In Section 2, we
gives sketches of formal definitions for the idea of a proof of work and related
concepts. We also define bread pudding protocols in this section. In Section
3, we offer a brief survey of previously proposed data security protocols
employing proofs of work. We present our bread pudding protocol for the
MicroMint minting operation in Section 4, and conclude in Section 5 with
some ideas for future research.

2 Previous work

A number of security protocols in the literature have relied on the use of
proofs of work. Researchers have not previously formalized the notion of
a proof of work, however, and have adopted a wide ranging terminology
to describe their constructions. In reviewing their work here, we use the
term “puzzle”. A puzzle is a special class of proof of work that we define in
Section 3. It suffices here to think of a puzzle as a computational problem
that is moderately hard, and whose difficulty is ensured by utilization of
cryptographic primitives.

Dwork and Naor [2] were perhaps the first to advocate the use of puzzles
as a way of attaching a computational cost to resource allocation requests.
They propose the use of cryptographic puzzles as a deterrent to spam. They
describe puzzle functions based on extraction of square roots over prime
moduli; on the Fiat-Shamir signature scheme; and on the (broken) Ong-
Schnorr-Shamir signature scheme.

Puzzles in the Dwork and Naor scheme are based on a hash of the time,
destination, and the message. The sender of a piece of e-mail is required
to enclose a solution to a given puzzle. Dwork and Naor also introduce the
idea of a puzzle function with a trap door, i.e., a function that is moderately
hard to compute without knowledge of the secret key, but easy to compute
given this key. The availability of trap doors allows designated authorities
to generate “postage” without significant expenditure of resources.

Gabber et al. [4] propose a method of controlling spam that may be
regarded as an extension of [2], and also involves use of puzzles. Part of their
proposal involves the use of a server that distributes permission — known as
a handshake — for a sender to transmit mail to a recipient. This handshake
is granted upon receipt of a valid puzzle solution from the sender.

Juels and Brainard [6] propose a similar use of puzzles as a deterrent
against denial-of-service attacks against connection protocols such as SSL.



In their scheme, if a malicious party mounts an attack against a server by
making many connection requests, the server begins to require clients to
solve puzzles in order to initiate requests. Their scheme can be extended to
non-attack scenarios in which equitable distribution of resources is desired.

Franklin and Malkhi [3] describe a scheme that makes use of puzzles
for third-party verifiable usage metering. A Web site administrator requires
users of her site to solve a puzzle for every access. To demonstrate to an
auditor that her site has received a certain amount of usage, she presents
the auditor with an audit log consisting of the set of solved puzzles. The
auditor verifies the correctness of the audit log. The underlying assumption
in this scheme is that many users will have a combined computational power
far exceeding that readily available to the site administrator.

Goldschlag and Stubblebine [5] propose a scheme in which a puzzle serves
as a mechanism to delay revelation of a secret for a desired period of time.
Their aim is to enable verification of the fact that an, e.g., lottery has been
properly administered at the same time that they ensure against premature
disclosure of the associated secrets.

Rivest et al [9] discuss the creation of digital time capsules, employing a
construction which they call a “time-lock puzzle”. Their aim is to encrypt
data in such a way that the decryption time can be carefully controlled.
By discarding the encryption secrets, the data can thus be protected for
a period of time designated by the creator. One important feature of the
Rivest et al scheme is that the only feasible way to solve their proposed
puzzle is sequential and deterministic. This is in contrast to most other
puzzle constructions in the literature, where solutions may be sought using
parallel computation.

3 Definitions

In this section, we offer formal definitions of the notion of a proof of work
and of related concepts. These definitions must be regarded as sketches:
we defer the exposition of thoroughly rigorous definitions to the full version
of this paper. Let us begin by defining an interactive proof of work. This
is a multi-round protocol executed by a prover P and a verifier V. The
prover has a (bounded) memory of size m, and is permitted to perform
an arbitrarily large amount of computation prior to the protocol execution.
Both P and V have access to private coins, and may produce an arbitrarily
large number of coin flips prior to the protocol execution. At the end of the



protocol, V' decides either to accept or reject.

We define the start time ts of the protocol to be the time at which the
verifier initiates its first round of communication. The completion time t.
is the time at which the last round of the protocol is complete. The aim
of a proof of work is to enable P to demonstrate that she has performed a
certain amount of computation within the time interval [ts, ¢.].

We say that a proof of work has a (w, p)-workload if for security param-
eter [ and any integer u, there does not exist a prover P that is capable of
convincing the verifier V' to accept with probability greater than p+O(m/I*)
while performing fewer than w steps of computation.

For many applications, an important requirement on proofs of work is
that they be independent of one another. This is to say that work by the
prover on one proof of work does not significantly diminish the hardness
of a different proof of work. Let us suppose that a particular proof of
work PW has a (w, p)-workload. Let PW1, PWs, ..., PWy be instances of
PW generated using independent verifier coin flips. Let PW be a single
proof of work interleaving all of these instances in some manner. We say
that the proof of work PW has independence if the following is true. Let
X1, Xo,..., X, be independent random variables such that the probability
that X; = 1 is 1 — p and the probability that X; = 0 is p; let X = >, X;.
Then for any formulation of PW, and any integer u, the combined proof of
work PW has workload (wi, pr[X = i]+ O(1/1%)) for any integer i. In other
words, the workload of interleaved proofs of work is not significantly less
than the workload of proofs of work composed in a strictly serial faghion.

Let z be the maximum number of computational steps performed in
a proof of work protocol by the verifier. We denote the efficiency of the
proof of work by z/w. Thus, an efficient proof of work is one that involves
relatively little computation on the part of the verifier. Efficiency is, of
course, a highly desirable property in any proof of work.

We may also create a proof of work that is non-interactive. This is ac-
complished by simulating the behavior of the verifier V. Let ¢y denote the
private coin flips of V. In order to ensure that the protocol remains secure,
it is necessary to generate cy in a manner that cannot be effectively con-
trolled by the prover. By analogy with non-interactive proofs for standard
cryptographic properties, we accomplish this by reference to a public source
of randomness or by some other appropriate means such as, e.g., generating
cy using the hash of some protocol-specific value. In this case, the start
time ¢4 of the protocol is the time when the public source of randomness or
the protocol-specific value is received by P.



In a two-round protocol, the verifier initiates the protocol by sending a
query to the prover.! In this case, the information sent by the verifier consti-
tutes a self-contained computational problem. We refer to this information
as a puzzle, and information sent by the prover that causes acceptance by
the verifier as a valid puzzle solution.

The final definition we present here is that of a bread pudding protocol.
Let C be a large computational problem, such as, e.g., a large financial or
scientific problem. Say that it is infeasible for any computational device
to solve C' in fewer than n computational steps. We say that PW is a
bread pudding protocol for C if PW has independence and if an entity with
access to the transcripts of proofs of work for some set of k > 0 indepen-
dent instances PW1, PWa, ..., PWj of PW can solve C in fewer than n
computational steps.

3.1 Example of a proof of work

In order to make our definitions more concrete, we now present an example
of a proof of work. This proof of work is very similar to that employed in
several proposed security protocols, including those in [4, 6]. It also serves
as the basis for our bread pudding protocol for MicroMint in Section 4. This
proof of work requires two rounds.

Example 1 Let h represent a one-way function. The verifier V' generates
a random bitstring = of length n and computes the image y = h(x). Let x'
be the first | —k bits of x. V sends the pair (z',y) to P. In order to complete
the proof of work successfully, P must calculate a valid pre-image T of .
Observe that (z',y) constitutes a puzzle, while a valid & constitutes a puzzle
solution.

The workload associated with this proof of work may be characterized
by the following theorem. We prove this in the random oracle model for the
one-way function h, treating an oracle query as a computational step.

Theorem 1 The proof of work given in Example 1 has a (w,p)-workload
for any integer w € [1,2'] and p = w/2".

Proof: As we are considering h in the random oracle model, we may
think of it as consisting of a random access tape in which cell ¢ contains

'If the prover initiates the protocol, then the second round has no influence on the
reply of the prover, so that the protocol can effectively be reduced to one round.



an independently generated random [-bit value h(i). In order to present a
pre-image of y in the proof of work without guessing, P must have in its
memory the contents of a cell i such that h(7) = y. The probability that
this is the case prior to the first round of the protocol is at most m /2!, After
w steps of work, the probability of the prover querying on a correct cell i
is at most w/2!. Therefore, the probability that P successfully completes
the protocol without guessing is less than (m + w)/2!. The probability of
successful guessing on the part of the prover is 2/. The result follows. |l

4 A Bread Pudding Protocol for MicroMint

As an example of a bread pudding protocol, we consider the highly com-
putationally intensive operation of minting in the MicroMint scheme. We
show how to partition this task into a collection of proofs of work, enabling
minting to be distributed among a collection of low power, untrusted enti-
ties. This is done without allowing the successful collisions (corresponding
to micro-coins) to be “stolen” by the prover. Let us begin by describing how
MicroMint works.

4.1 MicroMint

MicroMint is a micropayment system developed by Rivest and Shamir. Its
security is based on the hardness of finding hash function collisions [8]. A
coin in this scheme consists of a k-way hash function collision, that is, a set
{z1,z9,..., 21} of pre-images that map to a single image. By making coin
values small, keeping records of spent coins, and embedding user identities
in coins, it is possible to create strong deterrents to coin theft and double-
spending.

The security of MicroMint against forgery derives from the large base
computational costs associated with the minting operation. With appropri-
ate parameterization of the scheme, minting a single coin is difficult, while
the marginal cost associated with minting many coins is relatively small.
(The use of k-way collisions, rather than 2-way collisions, increases the com-
putational threshold required for producing the first coin.) Thus, minting
requires a substantial base investment in hardware. For forgery to be suc-
cessful, it must take place on too large a scale to make the effort worthwhile.
By limiting the period of validity of a given coin issue and computing the
issue over an extended period of time, the minter can even make the job of
a forger harder than his own.



Suppose that the hash function /4 used for minting maps n-bit pre-images
to n-bit images. The process of finding collisions may be thought of as that
of throwing balls uniformly at random into a set of 2" bins. Throwing a
ball corresponds in this model to choosing a pre-image = and placing it in
the bin with index h(z). When k balls land in a single bin, they together
constitute a coin.

If n is to be large enough to ensure an adequate level of security, the
storage overhead associated with maintaining 2" bins will be prohibitively
large. Rivest and Shamir thus describe the following variation on the basic
scheme. Let n = ¢+ u. A ball (pre-image) = is considered valid only if the
t least significant bits of h(z) match some pre-selected, random value s. (If
invalid, the ball may be considered to miss the set of bins.) A valid ball is
thrown into one of a set of 2% bins, according to the value of the u most
significant bits. With the right parameterization, the computational effort
associated with minting is still high, but the number of bins is smaller.

Note that to prevent a potential forger from initiating her effort prior to
a given coin issue, it is possible in Rivest and Shamir’s original scheme to
key the hash function h with a secret value r that is only released on the
issue date. For additional details and descriptions of a number of variants,
the reader is advised to see [8].

4.2 Bread pudding with a little mint

We now demonstrate a simple bread pudding protocol for MicroMint, that
is, a MicroMint variant in which the computation associated with minting
may be embodied in a set of small puzzles. Let A be a suitable hash function
and || denote string concatenation. We define a ball to be a triplet (i, z,y),
where y = h(r || ¢) and r is a secret value as above. A valid ball is one in
which the first ¢ bits of A(z | y) are equal to s. The bin into which a ball is
thrown is determined by the u most significant bits of h(z || y).

The computational cost associated with minting in this MicroMint vari-
ant remains the same as in the original scheme. Verifying a coin in the
variant requires twice the number of hashes. The advantage of the variant
scheme, however, is that the problem of finding a single, valid ball may
be distributed as a small puzzle. By distributing enough of these puzzles,
the minter may offload the majority of the computation associated with the
minting operation.

In this scheme, the puzzle distributed to a client (prover) consists of the
triple (s,t,y) for some correctly formulated value y. The task of the client is



to find a value z such that the first ¢ bits of A(z || y) are equal to s, i.e., such
that (i, z,y) is a valid ball. This puzzle requires an average computational
effort of 271 hashes. It may easily be seen to be a (2! 1, %)—workload proof
of work, in accordance with the definitions in Section 3. Note that the secret
value 7 is not included in a puzzle. Thus, even when minting is performed
by way of puzzles, this secret value need only be released on the day of coin
issue, so that the same security is achieved as in the original scheme.

Rivest and Shamir propose sample parameters in their paper of & = 4,
n = 52, and t = 21 for achieving a viable minting setup. Thus, the puzzle
based on finding a valid ball requires an average of 22° hash operations.
This is, as it happens, exactly the hardness of the puzzle proposed in [4],
requiring about 2 seconds on a 266 MHz Pentium II processor under the
hash function MD5. If the minter offloads the problem of finding valid balls
onto clients, then his own computational effort is k2% = 233 hash functions.
This be computed in a few days on a standard desktop computer.

The 233 puzzles of the hardness described here represent a great deal
of computation to offload onto clients. For this reason, it may be desirable
to make the puzzles somewhat easier. We can do this as follows, without
changing the hardness of the minting operation or increasing the memory
requirements of the minter. Let us require that y in a valid ball have v
leading ‘0" bits, and that only the first ¢ — v bits in h(z || y) be equal
to a value s. Now a puzzle requires only 2/~?~! hash computations on
average, the reduced computational burden being shifted onto the minter in
its fomulation of a puzzle.

5 Conclusion: Some Open Problems

We conclude by offering brief mention of some open problems motivated
by this paper. The first of these is the problem of devising other bread
pudding protocols. Other examples of bread pudding protocols would be
desirable not only in themselves, but perhaps as a step toward defining a
large class of computational problems amenable to parititioning into puzzles.
Another open problem relates to proving results about the workloads of
puzzles. We offer in this paper a proof in the random oracle model of the
workload associated with a common puzzle type based on hash function
inversion. Of use would be a stronger result more precisely characterizing
the required properties of hash functions for this purpose. This line of
exploration might yield additional results. For example, since proofs of



work generally involve only a few seconds of computation, it seems likely
that weak cryptographic functions would serve in lieu of the conventional
strong ones. This might yield more efficient proofs of work, and might
have the interesting incidental consequence (as in [2]) of furnishing a use
and haven for certain cryptographic algorithms that have been broken in a
conventional sense.
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