
Proofs of Work andBread Pudding Protocols
AbstractWe formalize the notion of a proof of work. In many cryptographicprotocols, a prover seeks to convince a veri�er that she possesses knowl-edge of a secret or that a certain mathematical relation holds true. Bycontrast, in a proof of work, a prover demonstrates that she has per-formed a certain amount of computational work in a speci�ed intervalof time. Proofs of work have served as the basis of a number of securityprotocols in the literature, but have hitherto lacked careful character-ization.We also introduce the dependent idea of a bread pudding protocol.Bread pudding is a dish that originated with the purpose of re-usingbread that has gone stale [10]. In the same spirit, we de�ne a breadpudding protocol to be a proof of work such that the computationale�ort invested in the proof may also be harvested to achieve a separate,useful, and veri�ably correct computation. As an example of a breadpudding protocol, we show how the MicroMint scheme of Rivest andShamir can be broken up into a collection of proofs of work. Theseproofs of work can not only serve in their own right as mechanismsfor security protocols, but can also be harvested in order to shift theburden of the MicroMint minting operation onto a large group of un-trusted computational devices.Keywords: distributed computation, proof of work, puzzle, hashfunction, MicroMint1 IntroductionProof protocols, whether interactive or non-interactive, serve as the corner-stone of almost every data security protocol. In a typical cryptographic1



scenario, one party, the prover, aims to convince another party, the veri�er,that it possesses a secret of a certain form, or that a certain mathematicalstatement holds true. For example, in the Schnorr identi�cation protocol,the prover seeks to demonstrate possession of a secret key corresponding toa speci�c authenticated public key pair.In this paper, we deviate from the standard cryptographic aim of provingknowledge of a secret or the truth of a mathematical statement. Instead,our goal is to formalize the notion of a proof of work. This is a protocol inwhich a prover demonstrates to a veri�er that she has expended a certainlevel of computational e�ort in a speci�ed interval of time. Although notde�ned as such or treated formally, proofs of work have been proposed as amechanism for a number of security goals, including server access metering,construction of digital time capsules, and protection against spamming andother denial-of-service attacks [2, 3, 4, 5, 6, 9].The contribution of this paper is twofold. First, we formalize the notionof a proof of work. We sketch de�nitions of a proof of work and of relatedconcepts. As mentioned above, proofs of work have a demonstrated utility ina number of data security applications. A drawback to their use, however, isthe fact that they impose a signi�cant computational load in excess of thatassociated with most cryptographic protocols. This observation motivatesthe second contribution of our paper: the idea of bread pudding protocols.Bread pudding is a dish that originated with the purpose of re-using breadthat has gone stale [10]. In the same spirit, we de�ne a bread puddingprotocol to be a proof of work such that the computational e�ort investedin the proof may also harvested to achieve a separate, useful, and verifablycorrect computation.Ostrovsky [7] has proposed as an alternative to micropayment schemesthe idea of having a client pay for access to a resource by o�ering a smallamount of her computational power. A bread pudding protocol enables thefusion of this idea with the idea of a proof of work. The consequence isthat the computational contribution of a client (i.e., the computational mi-cropayment) can be quickly veri�ed for correctness, and can simultaneouslybe used in security protocols. As an example of a bread pudding protocol,we consider the MicroMint scheme of Rivest and Shamir [8]. We show howthe task of minting in this scheme can be partitioned into a collection ofsmall proofs of work. These proofs of work can not only serve in their ownright as mechanisms for security protocols, but can also be used to shift theburden of the MicroMint minting operation onto a large group of untrustedcomputational devices. 2



The remainder of the paper is organized as follows. In Section 2, wegives sketches of formal de�nitions for the idea of a proof of work and relatedconcepts. We also de�ne bread pudding protocols in this section. In Section3, we o�er a brief survey of previously proposed data security protocolsemploying proofs of work. We present our bread pudding protocol for theMicroMint minting operation in Section 4, and conclude in Section 5 withsome ideas for future research.2 Previous workA number of security protocols in the literature have relied on the use ofproofs of work. Researchers have not previously formalized the notion ofa proof of work, however, and have adopted a wide ranging terminologyto describe their constructions. In reviewing their work here, we use theterm \puzzle". A puzzle is a special class of proof of work that we de�ne inSection 3. It su�ces here to think of a puzzle as a computational problemthat is moderately hard, and whose di�culty is ensured by utilization ofcryptographic primitives.Dwork and Naor [2] were perhaps the �rst to advocate the use of puzzlesas a way of attaching a computational cost to resource allocation requests.They propose the use of cryptographic puzzles as a deterrent to spam. Theydescribe puzzle functions based on extraction of square roots over primemoduli; on the Fiat-Shamir signature scheme; and on the (broken) Ong-Schnorr-Shamir signature scheme.Puzzles in the Dwork and Naor scheme are based on a hash of the time,destination, and the message. The sender of a piece of e-mail is requiredto enclose a solution to a given puzzle. Dwork and Naor also introduce theidea of a puzzle function with a trap door, i.e., a function that is moderatelyhard to compute without knowledge of the secret key, but easy to computegiven this key. The availability of trap doors allows designated authoritiesto generate \postage" without signi�cant expenditure of resources.Gabber et al. [4] propose a method of controlling spam that may beregarded as an extension of [2], and also involves use of puzzles. Part of theirproposal involves the use of a server that distributes permission { known asa handshake { for a sender to transmit mail to a recipient. This handshakeis granted upon receipt of a valid puzzle solution from the sender.Juels and Brainard [6] propose a similar use of puzzles as a deterrentagainst denial-of-service attacks against connection protocols such as SSL.3



In their scheme, if a malicious party mounts an attack against a server bymaking many connection requests, the server begins to require clients tosolve puzzles in order to initiate requests. Their scheme can be extended tonon-attack scenarios in which equitable distribution of resources is desired.Franklin and Malkhi [3] describe a scheme that makes use of puzzlesfor third-party veri�able usage metering. A Web site administrator requiresusers of her site to solve a puzzle for every access. To demonstrate to anauditor that her site has received a certain amount of usage, she presentsthe auditor with an audit log consisting of the set of solved puzzles. Theauditor veri�es the correctness of the audit log. The underlying assumptionin this scheme is that many users will have a combined computational powerfar exceeding that readily available to the site administrator.Goldschlag and Stubblebine [5] propose a scheme in which a puzzle servesas a mechanism to delay revelation of a secret for a desired period of time.Their aim is to enable veri�cation of the fact that an, e.g., lottery has beenproperly administered at the same time that they ensure against prematuredisclosure of the associated secrets.Rivest et al [9] discuss the creation of digital time capsules, employing aconstruction which they call a \time-lock puzzle". Their aim is to encryptdata in such a way that the decryption time can be carefully controlled.By discarding the encryption secrets, the data can thus be protected fora period of time designated by the creator. One important feature of theRivest et al scheme is that the only feasible way to solve their proposedpuzzle is sequential and deterministic. This is in contrast to most otherpuzzle constructions in the literature, where solutions may be sought usingparallel computation.3 De�nitionsIn this section, we o�er formal de�nitions of the notion of a proof of workand of related concepts. These de�nitions must be regarded as sketches:we defer the exposition of thoroughly rigorous de�nitions to the full versionof this paper. Let us begin by de�ning an interactive proof of work. Thisis a multi-round protocol executed by a prover P and a veri�er V . Theprover has a (bounded) memory of size m, and is permitted to performan arbitrarily large amount of computation prior to the protocol execution.Both P and V have access to private coins, and may produce an arbitrarilylarge number of coin 
ips prior to the protocol execution. At the end of the4



protocol, V decides either to accept or reject.We de�ne the start time ts of the protocol to be the time at which theveri�er initiates its �rst round of communication. The completion time tcis the time at which the last round of the protocol is complete. The aimof a proof of work is to enable P to demonstrate that she has performed acertain amount of computation within the time interval [ts; tc].We say that a proof of work has a (w; p)-workload if for security param-eter l and any integer u, there does not exist a prover P that is capable ofconvincing the veri�er V to accept with probability greater than p+O(m=lu)while performing fewer than w steps of computation.For many applications, an important requirement on proofs of work isthat they be independent of one another. This is to say that work by theprover on one proof of work does not signi�cantly diminish the hardnessof a di�erent proof of work. Let us suppose that a particular proof ofwork PW has a (w; p)-workload. Let PW1;PW2; : : : ;PWk be instances ofPW generated using independent veri�er coin 
ips. Let ^PW be a singleproof of work interleaving all of these instances in some manner. We saythat the proof of work PW has independence if the following is true. LetX1;X2; : : : ; Xk be independent random variables such that the probabilitythat Xi = 1 is 1 � p and the probability that Xi = 0 is p; let X = PiXi.Then for any formulation of ^PW , and any integer u, the combined proof ofwork ^PW has workload (wi; pr[X = i] +O(1=lu)) for any integer i. In otherwords, the workload of interleaved proofs of work is not signi�cantly lessthan the workload of proofs of work composed in a strictly serial fashion.Let z be the maximum number of computational steps performed ina proof of work protocol by the veri�er. We denote the e�ciency of theproof of work by z=w. Thus, an e�cient proof of work is one that involvesrelatively little computation on the part of the veri�er. E�ciency is, ofcourse, a highly desirable property in any proof of work.We may also create a proof of work that is non-interactive. This is ac-complished by simulating the behavior of the veri�er V . Let cV denote theprivate coin 
ips of V . In order to ensure that the protocol remains secure,it is necessary to generate cV in a manner that cannot be e�ectively con-trolled by the prover. By analogy with non-interactive proofs for standardcryptographic properties, we accomplish this by reference to a public sourceof randomness or by some other appropriate means such as, e.g., generatingcV using the hash of some protocol-speci�c value. In this case, the starttime ts of the protocol is the time when the public source of randomness orthe protocol-speci�c value is received by P .5



In a two-round protocol, the veri�er initiates the protocol by sending aquery to the prover.1 In this case, the information sent by the veri�er consti-tutes a self-contained computational problem. We refer to this informationas a puzzle, and information sent by the prover that causes acceptance bythe veri�er as a valid puzzle solution.The �nal de�nition we present here is that of a bread pudding protocol.Let C be a large computational problem, such as, e.g., a large �nancial orscienti�c problem. Say that it is infeasible for any computational deviceto solve C in fewer than n computational steps. We say that PW is abread pudding protocol for C if PW has independence and if an entity withaccess to the transcripts of proofs of work for some set of k > 0 indepen-dent instances PW1;PW2; : : : ;PWk of PW can solve C in fewer than ncomputational steps.3.1 Example of a proof of workIn order to make our de�nitions more concrete, we now present an exampleof a proof of work. This proof of work is very similar to that employed inseveral proposed security protocols, including those in [4, 6]. It also servesas the basis for our bread pudding protocol for MicroMint in Section 4. Thisproof of work requires two rounds.Example 1 Let h represent a one-way function. The veri�er V generatesa random bitstring x of length n and computes the image y = h(x). Let x0be the �rst l�k bits of x. V sends the pair (x0; y) to P . In order to completethe proof of work successfully, P must calculate a valid pre-image ~x of y.Observe that (x0; y) constitutes a puzzle, while a valid ~x constitutes a puzzlesolution.The workload associated with this proof of work may be characterizedby the following theorem. We prove this in the random oracle model for theone-way function h, treating an oracle query as a computational step.Theorem 1 The proof of work given in Example 1 has a (w; p)-workloadfor any integer w 2 [1; 2l] and p = w=2l.Proof: As we are considering h in the random oracle model, we maythink of it as consisting of a random access tape in which cell i contains1If the prover initiates the protocol, then the second round has no in
uence on thereply of the prover, so that the protocol can e�ectively be reduced to one round.6



an independently generated random l-bit value h(i). In order to present apre-image of y in the proof of work without guessing, P must have in itsmemory the contents of a cell i such that h(i) = y. The probability thatthis is the case prior to the �rst round of the protocol is at most m=2l. Afterw steps of work, the probability of the prover querying on a correct cell iis at most w=2l. Therefore, the probability that P successfully completesthe protocol without guessing is less than (m + w)=2l. The probability ofsuccessful guessing on the part of the prover is 2l. The result follows.4 A Bread Pudding Protocol for MicroMintAs an example of a bread pudding protocol, we consider the highly com-putationally intensive operation of minting in the MicroMint scheme. Weshow how to partition this task into a collection of proofs of work, enablingminting to be distributed among a collection of low power, untrusted enti-ties. This is done without allowing the successful collisions (correspondingto micro-coins) to be \stolen" by the prover. Let us begin by describing howMicroMint works.4.1 MicroMintMicroMint is a micropayment system developed by Rivest and Shamir. Itssecurity is based on the hardness of �nding hash function collisions [8]. Acoin in this scheme consists of a k-way hash function collision, that is, a setfx1; x2; : : : ; xkg of pre-images that map to a single image. By making coinvalues small, keeping records of spent coins, and embedding user identitiesin coins, it is possible to create strong deterrents to coin theft and double-spending.The security of MicroMint against forgery derives from the large basecomputational costs associated with the minting operation. With appropri-ate parameterization of the scheme, minting a single coin is di�cult, whilethe marginal cost associated with minting many coins is relatively small.(The use of k-way collisions, rather than 2-way collisions, increases the com-putational threshold required for producing the �rst coin.) Thus, mintingrequires a substantial base investment in hardware. For forgery to be suc-cessful, it must take place on too large a scale to make the e�ort worthwhile.By limiting the period of validity of a given coin issue and computing theissue over an extended period of time, the minter can even make the job ofa forger harder than his own. 7



Suppose that the hash function h used for minting maps n-bit pre-imagesto n-bit images. The process of �nding collisions may be thought of as thatof throwing balls uniformly at random into a set of 2n bins. Throwing aball corresponds in this model to choosing a pre-image x and placing it inthe bin with index h(x). When k balls land in a single bin, they togetherconstitute a coin.If n is to be large enough to ensure an adequate level of security, thestorage overhead associated with maintaining 2n bins will be prohibitivelylarge. Rivest and Shamir thus describe the following variation on the basicscheme. Let n = t+ u. A ball (pre-image) x is considered valid only if thet least signi�cant bits of h(x) match some pre-selected, random value s. (Ifinvalid, the ball may be considered to miss the set of bins.) A valid ball isthrown into one of a set of 2u bins, according to the value of the u mostsigni�cant bits. With the right parameterization, the computational e�ortassociated with minting is still high, but the number of bins is smaller.Note that to prevent a potential forger from initiating her e�ort prior toa given coin issue, it is possible in Rivest and Shamir's original scheme tokey the hash function h with a secret value r that is only released on theissue date. For additional details and descriptions of a number of variants,the reader is advised to see [8].4.2 Bread pudding with a little mintWe now demonstrate a simple bread pudding protocol for MicroMint, thatis, a MicroMint variant in which the computation associated with mintingmay be embodied in a set of small puzzles. Let h be a suitable hash functionand k denote string concatenation. We de�ne a ball to be a triplet (i; x; y),where y = h(r k i) and r is a secret value as above. A valid ball is one inwhich the �rst t bits of h(x k y) are equal to s. The bin into which a ball isthrown is determined by the u most signi�cant bits of h(x k y).The computational cost associated with minting in this MicroMint vari-ant remains the same as in the original scheme. Verifying a coin in thevariant requires twice the number of hashes. The advantage of the variantscheme, however, is that the problem of �nding a single, valid ball maybe distributed as a small puzzle. By distributing enough of these puzzles,the minter may o�oad the majority of the computation associated with theminting operation.In this scheme, the puzzle distributed to a client (prover) consists of thetriple (s; t; y) for some correctly formulated value y. The task of the client is8



to �nd a value x such that the �rst t bits of h(x k y) are equal to s, i.e., suchthat (i; x; y) is a valid ball. This puzzle requires an average computationale�ort of 2t�1 hashes. It may easily be seen to be a (2t�1; 12)-workload proofof work, in accordance with the de�nitions in Section 3. Note that the secretvalue r is not included in a puzzle. Thus, even when minting is performedby way of puzzles, this secret value need only be released on the day of coinissue, so that the same security is achieved as in the original scheme.Rivest and Shamir propose sample parameters in their paper of k = 4,n = 52, and t = 21 for achieving a viable minting setup. Thus, the puzzlebased on �nding a valid ball requires an average of 220 hash operations.This is, as it happens, exactly the hardness of the puzzle proposed in [4],requiring about 2 seconds on a 266 MHz Pentium II processor under thehash function MD5. If the minter o�oads the problem of �nding valid ballsonto clients, then his own computational e�ort is k2u = 233 hash functions.This be computed in a few days on a standard desktop computer.The 233 puzzles of the hardness described here represent a great dealof computation to o�oad onto clients. For this reason, it may be desirableto make the puzzles somewhat easier. We can do this as follows, withoutchanging the hardness of the minting operation or increasing the memoryrequirements of the minter. Let us require that y in a valid ball have vleading 000 bits, and that only the �rst t � v bits in h(x k y) be equalto a value s. Now a puzzle requires only 2t�v�1 hash computations onaverage, the reduced computational burden being shifted onto the minter inits fomulation of a puzzle.5 Conclusion: Some Open ProblemsWe conclude by o�ering brief mention of some open problems motivatedby this paper. The �rst of these is the problem of devising other breadpudding protocols. Other examples of bread pudding protocols would bedesirable not only in themselves, but perhaps as a step toward de�ning alarge class of computational problems amenable to parititioning into puzzles.Another open problem relates to proving results about the workloads ofpuzzles. We o�er in this paper a proof in the random oracle model of theworkload associated with a common puzzle type based on hash functioninversion. Of use would be a stronger result more precisely characterizingthe required properties of hash functions for this purpose. This line ofexploration might yield additional results. For example, since proofs of9



work generally involve only a few seconds of computation, it seems likelythat weak cryptographic functions would serve in lieu of the conventionalstrong ones. This might yield more e�cient proofs of work, and mighthave the interesting incidental consequence (as in [2]) of furnishing a useand haven for certain cryptographic algorithms that have been broken in aconventional sense.References[1] M. Blum and H. Wasserman. Software reliability via run-time result-checking.Journal of the ACM. To appear. Preliminary version: 'Program Result-Checking: A Theory of Testing Meets a Test of Theory,' Proc. 35th IEEEFOCS, 1994, pp. 382-392.[2] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. InErnest F. Brickell, editor, Proc. CRYPTO 92, pages 139{147. Springer-Verlag,1992. Lecture Notes in Computer Science No. 740.[3] M.K. Franklin and D. Malkhi. Auditable metering with lightweight security.In R. Hirschfeld, editor, Proc. Financial Cryptography 97 (FC 97), pages 151{160. Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1318.[4] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. Curbing junk e-mailvia secure classi�cation. In R. Hirschfeld, editor, Financial Cryptography '98.Springer-Verlag, 1998.[5] D. Goldschlag and S. Stubblebine. Publicly veri�able lotteries: Applicationsof delaying functions. In R. Hirschfeld, editor, Financial Cryptography '98.Springer-Verlag, 1998.[6] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against con-nection depletion attacks. In Symposium on Networks and Distributed SecuritySystems (NDSS '99), 1999. To appear.[7] R. Ostrovsky. A proposal for internet computational commerce: How to tapthe power of the WEB, 1998. Presentation at CRYPTO '98 Rump Session.[8] R.L. Rivest and A. Shamir. PayWord and MicroMint{two simple micropay-ment schemes. CryptoBytes, 2(1):7{11, Spring 1996.[9] R.L. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-releasecrypto. To appear, 10 March 1996.[10] Irma S. Rombauer and Marion Rombauer. Bread-pudding with meringue (sixservings). In Joy of Cooking, page 751. Penguin Group, 1997.10


