
Proprietary Certificates
(Extended Abstract)

Markus Jakobsson1, Ari Juels1, and Phong Q. Nguyen2

1 RSA Laboratories
{mjakobsson,ajuels}@rsasecurity.com

2 CNRS/École normale supérieure
pnguyen@ens.fr

Abstract. Certificates play an essential role in public-key cryptography, and are
likely to become a cornerstone of commerce-related applications. Traditional certifi-
cates, however, are not secure against certificate lending, i.e., a situation in which
a certificate holder voluntarily shares with others the rights bestowed upon him
through a certificate. This type of abuse is a concern in several types of applications,
such as those related to digital rights management.
In this paper, we introduce the notion of proprietary and collateral certificates. We
present a scheme whereby one certificate, known as a proprietary certificate, may be
linked to another, known as a collateral certificate. If the owner of the proprietary
certificate shares the associated private key, then the private key of the collateral
certificate is simultaneously divulged.
Certificates in our scheme can be integrated easily into standard PKI models and
work with both RSA and discrete-log-based keys (such as those for DSS). Our scheme
leaks no significant information about private keys, and leaks only a small amount
of information about certificate ownership. Thus, use of proprietary certificates still
allows users to maintain multiple, unlinkable pseudonyms, and adds functionality
without posing any threats to user privacy.

Keywords: certificates, collateral key, digital rights, fair encryption, proprietary key

1 Introduction

A digital certificate assigns an identity or a right to its holder, that is, to the possessor of
the associated private key. This assignment is made by way of a digital signature that a
certificate authority (CA) applies to the corresponding public key and to a description of the
certificate’s scope of use. Certificates may be employed for such broad purposes as binding a
user identity to a public key for purposes of encryption, or to assign an entity the authority
to sign legal documents on its own behalf. More specific situations in which certificates
may be useful include the granting of access rights to a building or to a subscription-based
service.

It is implicitly assumed that certificates, and the rights that come with them, belong
solely to the person or entity to which they were issued. The issue of non-transferability
of certificates and their associated rights, however, has been only superficially addressed
in the literature. In this paper we propose the notion of proprietary certificates, which
are certificates with the property that their rights cannot be transferred (corresponding to
giving somebody the private keys associated with the certified public keys) without punitive
leakage of collateral information.

We believe that proprietary certificates may be important for three reasons. One is the
likely future dependence on certificates for applications relating to commerce, and the bene-
fit of incorporating new functionality into certificates. A second is the need for user privacy,
which our solution preserves to a high degree. The third and perhaps most critical reason
is the likely possibility of a proliferation of fair charging and access control mechanisms
for information-based Web services in the near future. With many forms of Web advertis-
ing in decline (see, e.g., [19]), content providers have expressed a growing need to turn to
subscription fees for revenue at some point.

We therefore see the main contribution of our paper as the concept of proprietary cer-
tificates, with its possible impact on the development of new services. Our primary focus
is to exhibit secure and reasonably efficient structures for proprietary certificates. In doing
so, we rely to a large extent on a combination of cryptographic components introduced for
other purposes. Our current proposal causes an increase of the certificate size of between
384 and 768 Bytes, depending on the cryptosystems used. Alternatively, this certificate aug-
mentation may be kept externally, indexed by the proprietary certificate it relates to. Such
an approach would allow the certificates to retain their exact format while extending their
functionality by means of this external record. We note that a further study of appropriate
mechanisms – with a focus on their use in proprietary certificates – may result in more
compact certificates.

We develop a mechanism to ensure that users can produce multiple unlinkable certified
pseudonyms, with the certificates issued by one or many certificate authorities, such that
it is impossible for a user to give away the right (to another user) to issue one or more
types of signatures or other secret functions related to the certificates. This holds unless
the user gives away the right to issue all kinds of signatures for all kinds of certificates
and pseudonyms he holds, which means a total impersonation of the “lender”. Also, it is
possible to produce a system in which some keys (but not all) are released, were some keys
to be given out. Thus, if a user is not willing to give away the right to sell his home to a
second user, or to sign other legal documents for the first user, he can also not give away or
share the right to access a subscription, or to enter a building, etc. (This assumes off-line
collaboration, which is a good model for many scenarii.) In other words, we show how we
can construct certificates on unlinkable pseudonyms such that the disclosure of one private
key (which we will call the proprietary key) automatically implies the disclosure of a second
private key (what we call the collateral key). If two keys are each others’ collateral (directly
or indirectly), we call the relationship symmetric; otherwise asymmetric.

A trivial approach would be to have the user employ the same private and public keys for
every certificate (or for many). This approach has several drawbacks. First, it immediately
and publicly links the identity of the holder to all of the associated certificates, thereby
undermining the privacy guarantees afforded by unlinkability. Second, this approach is
crude in that it does not permit the establishment of asymmetric relationships. In the trivial
approach, disclosure of private keys is all or nothing, whereas our approach allows for a great
deal more refinement, as we show below. Finally, in the trivial approach, there is no clear
way to link certificates employing different cryptosystems. In contrast, we demonstrate in
this paper how to offer this kind of flexibility.

Technically, this can be achieved by incorporating a ciphertext corersponding to the
collateral private key (or a represenation thereof), either in the proprietary certificate, or in
an external database. (Onwards, we assume the ciphertext to be part of the certificate, for
simplicity, but note that the options are technically equivalent.) Given that the encryption of

the collateral key would be performed using the proprietary public key, we have that a party
with knowledge of the proprietary private key will be able to derive the collateral private key
by decryption of this ciphertext. Assuming the use of semantically secure encryption, the
ciphertext will not reveal any information about the link between the two public keys or their
certificates. It is important to note that it is not sufficient simply to encrypt one private key
using another public key and incorporate the result in the certificate. Namely, it is important
to guarantee robustness (i.e., to allow the CA to be certain about the contents of the
ciphertext) without having to give the encrypted private key to any party or set of parties.
Another technical difficulty is to provide the above functionality for schemes supported by
standards, as opposed to schemes and structures designed solely for the purpose of the paper.
While the ”interior” of our solution contains schemes that are not currently supported by
standards (such as Paillier’s encryption scheme), it is important to note that the ”exterior”
of our solution relates to standard schemes, namely RSA and DSS. This means that any
RSA or DSS key can be used as a proprietary or collateral key.

Outline. We begin in section 2 by describing the related work, followed in section 3.1 by
an informal description of our goals and a statement of the contributions of the paper. We
then describe our technical approach in section 3.2, but keep the discussion on a detail-free
and intuitive level. In section 4, we then introduce denotation and outline the structure of
our modified certificates, and review the building blocks we will use. In section 5 we then
describe our solution in technical detail, using the previously introduced building blocks to
describe our protocols. We state the properties of our solution in section 6; Appendix A
contains proofs of these claims.

2 Related Work

The notion of non-linkability and independence among signatures arises frequently in the
literature on digital payments, while the issue of non-transferability of access rights has been
investigated from one perspective by Dwork, Lotspiech, and Naor [9], and from another by
Goldreich et al. [14]. The combination of the two properties, however, has to our knowledge
not been considered yet, and poses interesting technical questions as well as the possibility
of new applications.

Our work is conceptually related to the work on signets by Dwork, Lotspiech and Naor
[9], in which a secret, such as a credit card number, is incorporated in a private key to prevent
the latter from being given away. Similarly, our aim is to some extent related to that of
digital watermarking, as surveyed in [17]. In a digital watermarking system, identifying
information of some kind is embedded in an indelible way in an image so as to discourage
illicit copying. In neither of these proposals, though, is the embedded private (the collateral
key in our terminology) hidden from the party who wishes to verify that it is there. In
contrast, this is precisely what occurs in our solution.

The problem we study is also spiritually related to a problem previously studied by
Goldreich et al. [14]. In their paper, a user owns a certificate associated with some rights,
and wishes to delegate a certain portion of these to himself. This allows him to delegate
rights for use on a laptop, with the benefit that if this gets stolen, then the damage is
limited to the delegated portion of the rights (and the lost machine.) Thus, their scenario
is the following: A user has a primary (long-term) key associated with some personalized
access rights, some of which he wishes to delegate to some secondary (and short-term) keys.

If sufficiently many secondary keys are disclosed, then the primary key can be recovered
from these, thereby preventing the user from giving away his secondary keys. On the other
hand, if few secondary keys are disclosed (fewer than a certain threshold), then the primary
key remains secure. If the threshold is set to one (as it is in our scheme), however, then
their primary and secondary keys are identical. (In other words, the issue of user privacy, or
unlinkability of certificates, is not addressed in [14].) On the other hand, if the threshold is
set higher, a corrupt user can give out some keys without any risk. Therefore, their solution
– which was not intended for securing intellectual property – is also not very well suited for
this task.

The problem we address in this paper is related to that studied by Camenisch and
Lysanskaya [4], who produce a credential scheme in which signatures (and other authenti-
cation elements) are generated from one and the same private key without being linkable to
each other. Additionally, and similar to what is achieved in our scheme, they allow different
private keys associated with a user to be tied to each other in a way that prevents users
from sharing some private keys without sharing others as a result of this. However, while
conceptually related from a birds-eye view, the two results are different on several counts.
First, we do not provide unlinkability on a signature-by-signature basis. In our scheme, all
signatures associated with one public key can be linked to this public key, as is normal
for standard signatures and a standard PKI infrastructure. While this linkability is highly
undesirable for, e.g., group signatures (whose very goal is for the opposite to hold), it is
desirable in an infrastructure with standard signatures where each public key and all its sig-
natures get associated with its owner. (However, it remains desirable that signatures from
different public keys remain unlinkable, which we provide.) Another difference between the
schemes is that the leakage of one key in their scheme immediately results in the leakage
of all other keys, while our approach allows a tighter control of the inferrable relations be-
tween keys – namely, we can employ any graph of symmetric or asymmetric relationships
between nodes / keys. This results in many practical advantages. Furthermore, and more
importantly, we allow the linking of private keys for standard signature schemes (such as
DSS and RSA), while the methods in [4] relate only to a new signature scheme introduced
in their paper. It is worthwhile to notice that the employment of our methods to existing
signature schemes is not only of potential technical value, but also of practical value in any
legacy system (of which digital signatures may be one of the best examples).

Technically speaking, our solution depends most importantly on methods for key es-
crow, for which similar cryptographic building blocks are employed. Young and Yung [23]
recently showed how to obtain a software key escrow system in users provide ciphertexts to
certification authorities that permit the recovery of users’ private keys. These ciphertexts
are encrypted under the public key of an escrow authority. The structure that is used to
assure the CA that the ciphertext is of the correct format has been called fair encryption.
Thus, the encryption key in an escrow application is the public key of the escrow authority,
while in our system, it is the public proprietary key. Similarly, the encrypted key in a escrow
scheme is the user’s private key, while it corresponds to the collateral key in our scheme for
proprietary certificates.

The fair encryption scheme of [23] could be used for purposes of proprietary certificates.
In fact, proprietary certificates constitute a new application for fair encryption. In order
to allow for compatibility with more common crypto systems – namely RSA and standard
discrete-log based schemes – we do not employ their methods, which are based on a “double
decker” structure.

We do, however, make direct use of the rather efficient fair encryption scheme of Poupard
and Stern [21] for some of the protocols of our scheme, namely those where the proprietary
key is an RSA key. We develop and propose new schemes for the case where the proprietary
key is a discrete-log key. These new schemes constitute an extension of previous results for
fair encryption and are thus of independent interest.

Finally, we employ methods from [12] for proving equality of discrete logs over composite
integers. These, in turn, are related to proof methods of Chaum [7] for proving equality of
discrete logs over prime-order fields.

3 Goals

3.1 Overview

Just as a person may carry several identifying tokens for access to various resources and
rights (such as a driver’s license, a passport, and various credit and debit cards), he or she
may need several public keys, each one of which may be associated with a different sets of
rights. Different public keys (and their certificates) may also be associated with different
policy requirements, such as requirements on the methods used to verify the identity of the
certificate owner at the time the certificate is issued; the possible escrowing of keys; and
the acceptable uses of the certified public key.

Our aim is to construct a proprietary certificate system that respects these requirements
for heterogenity and flexibility in a public key infrastructure. We assume that certificate
authorities publish directories containing public information on the certificates they have
issued. To make our goals precise, let us consider a case in which a certificate authority
CA1 wishes to issue a proprietary certificate C1 to a certain user. The user is to provide
a second certificate C2, issued by a (possibly) distinct entity CA2, as collateral. Informally
stated, our goals in creating the proprietary/collateral relationship between C1 and C2 are
as follows:

1. Non-transferability: With high probability, any player who learns the private key for
C1 will learn the private key for C2, and be able to locate public information for C2 in
the directory maintained by CA2. Thus, given that the user does not wish to relinquish
control over C2, the private keys associated with C1 are non-transferable.

2. Unlinkability: CA1 learns that the user knows the private key associated with C2, and
that CA2 issued C2. CA1 learns no additional information about certificates held by
the user, and no other player learns any information about the certificates of the user.

3. Cryptosystem agility: C1 and C2 can be based on different cryptosystems: either can
make use of an RSA key or a discrete-log key.

4. Locality: CA1 need interact only with the user, and not CA2.
5. Security: CA1 learns only a negligible amount of information about the private keys

associated with C1 and C2. No other party learns any information relating to the cer-
tificates.

6. Efficiency: The certificate C1 is not substantially larger than a conventional certificate
of its type. Moreover, the computational and communication requirements on CA1 and
the user in establishing the proprietary/collateral relationship are reasonable.

7. PKI compatibility: We require that the modified certificates allow for easy integration
into standard PKI models. (While we require use of so-called “safe” RSA keys, these
are fully compatible with most existing mechanisms.)

We may view the collection of certificates belonging to a particular user as a collection
of nodes C = {C1, C2, . . . , Ct} in a directed graph G = (C, E). An arc (Ci, Cj) ∈ E in
this graph represents a binding of a proprietary certificate Ci to a collateral one Cj . If
there is an additional reverse arc (Cj , Ci), then the relationship between Ci and Cj is called
symmetric; otherwise, it is called asymmetric. Nodes may have degrees of arbitrary size. In
our system, the size of a certificate Ci is linear in its out-degree, as are the computational
and communication requirements to establish outgoing arcs. As an illustration of exactly
what purpose an arc serves, we present the following brief example.

Example. Say that a user wants to obtain a certificate for an on-line newsletter. This
newsletter requires that the certificate Ci associated with one particular user of their service
serve as a proprietary one, with the user’s Mastercard certificate Cj as collateral. Moreover,
to guard against a situation in which the user closes her Mastercard account, the newsletter
may require that the user’s public encryption key and corresponding certificate Ck also
serve as collateral. (Alternatively, the newsletter may blacklist the certificate Ci once it
detects that Mastercard blacklists Cj .) Additionally, Mastercard may employ the user’s
decryption key as collateral for its own certificate. Thus, the newsletter creates arcs (Ci, Cj)
and (Ci, Ck) in the graph G. See figure 1 for a graphical depiction of this scenario.

Newsletter

Mastercard

Encr. key

C

C

C

i

j

k

Fig. 1. Example certificate relationships.

Privacy note. It is important to note that the CA, while not learning either the collateral
or proprietary secrey key, learns the association between the two public keys. Namely,
he learns that the public key of the proprietary certificate is associated with the same
person as the public key of the collateral certificate. For many purposes, this may not be
so outlandish, as long as the public cannot infer the same relation. To hide the association
of keys from the CA, it is possible to use more heavy-weight protocols, in which the user
proves correct encryption with respect to an unspecified public key belonging to some set
of potential collateral public keys. The likely drawback of such solutions, though, would
be the resulting reduction of the efficiency. Alternatively, if we do allow the CA to learn
the association, standard techniques [16] can be employed to prevent him from convincing
others.

3.2 What does an arc look like?

Our approach is to include in a proprietary certificate a ciphertext on the collateral keys.
This ciphertext (while not necessarily of a standard format) may be decrypted using the
public keys of the proprietary private keys, thereby yielding the collateral keys. In order
to reach this goal, we need secure protocols for a certificate holder to prove to the CA
that the generated ciphertexts are of the right format (namely that they contain valid rep-
resentations of the collateral private keys). This must be done in a manner that is both
efficient and which limits leaks of information to the CA. This will be achieved by basic
fair encryption techniques, including use of zero-knowledge proofs and semantically secure
encryption. Apart from including an encryption of the private collateral key in the certifi-
cate, the certificate authority may additionally include a pointer to the directory entry for
the collateral key. For reasons of privacy, this would also be encrypted, using a semanti-
cally secure encryption scheme and the public key of the proprietary certificate (making it
possible to decrypt given the private key associated with the proprietary certificate). Tech-
nically, the encryption of the pointer is straightforward, as the plaintext information does
not need to be hidden from the CA issuing the proprietary certificate. Thus, we will focus
on the encryption of the private key instead of that of the public key. Practically, it is worth
mentioning, though, as it allows the retrieval of private keys as well as an understanding of
what was retrieved, should the proprietary key be given away.

In a fair encryption system, a user holds a private/public key pair (PK, SK), and a
public key PKT is published for some trusted third party. The user constructs a ciphertext
Γ1→2 and a non-interactive proof that Γ1→2 is an encryption under PKT of a representation
of SK or data that enable efficient reconstruction of SK. In our system, Γ1→2 is a ciphertext
on the private key for C2 (or something equivalent) under the public key associated with C1.
A critical difference in our system from conventional use of fair encryption is our assumption
that CA1 is responsible for ensuring that Γ is correctly constructed. (This is the case in all
of the applications we envisage, as it is CA1 that wishes to prevent abuse of C1.) Hence, the
owner of C2 must prove correct construction of Γ only once to CA1. In consequence, the
proof may be interactive, and the size of the proof is of less importance than in a typical
fair encryption system, as it has no impact on the size of C1, which only carries Γ1→2.

In section 5, we detail the various protocols for creating an arc (C1, C2) between two
certificates C1 and C2. As explained above, we use the Poupard-Stern fair encryption system
as the basis for protocols in which C1 is an RSA-key-based certificate and C2 is either RSA
or DL-based. An important contribution of our paper is a pair of novel fair encryption
protocols for the case where C1 is instead a discrete-log-based certificate and C2 is either
RSA or discrete-log based.

4 Notation and Building Blocks

4.1 Notation

We define a cryptosystem CR in the broadest sense to include a suite of five algorithms
keygenCR, signCR, verifyCR, encryptCR and decryptCR for the respective operations of key
generation, signing, verification, encryption, and decryption. (Thus, where we consider a
signing algorithm such as, e.g., DSS, we assume a corresponding encryption/decryption
algorithm over the same algebraic structures, e.g., El Gamal.) We assume implicitly that

a secure suite of algorithms of this kind are available for all cryptosystems under con-
sideration. To produce a certificate C1 on a public/private key pair (PK1, SK1), a given
certificate authority applies an algorithm signCR to PK1 and possibly to some additional
policy information aux1.

Our contribution in this paper is a set of protocols for arc creation, and a correspond-
ing set of protocols for key extraction, i.e., for computation of a collateral key given the
corresponding proprietary one.

Arc creation: Let (PK1, SK1) and (PK2, SK2) be the public/private key pairs respectively
for proprietary certificate C1 and collateral certificate C2. Additionally, let C1 be a certificate
on a public key for cryptosystem type CR1 and C2 a certificate for cryptosystem type CR2.
We let ArcCR1→CR2 denote an arc creation protocol on the proprietary/collateral certificate
pair (C1, C2).

The protocol ArcCR1→CR2 takes as input from the prover the two public/private key
pairs (PK1, SK1) and (PK2, SK2), and relevant security cryptosystem security parameters.
Input from the verifier is a security parameter specifying protocol soundness. The output
of the protocol is the pair of public keys (PK1, PK2), the collection of security parameters,
and a ciphertext Γ1→2.

We require two security properties on a given algorithm ArcCR1→CR2 :

– Soundness: With overwhelming probability over the coin flips of the prover and verifier,
the ciphertext Γ1→2 is well formed. In other words, given input SK1 and Γ1→2, the
protocol ExtractCR1→CR2 described below yields output SK2.

– Privacy: The full transcript of the protocol is simulable in a computationally indistin-
guishable manner by a player with knowledge of PK1 and PK2 only. (Thus, e.g., the
verifier learns no non-negligible information about SK1 or SK2.)

We consider two cryptosystem types in this paper, namely RSA and discrete log (DL).
In other words, either CR1 or CR2 can be a cryptosystem in which the public key is an
RSA modulus, e.g., RSA encryption and signing or Paillier encryption with RSA signing,
or, alternatively, a cryptosystem based on discrete log, such as (El Gamal / DSS), (El
Gamal / Schnorr,) etc. Thus, in our paper, we specify four generic arc creation protocols:
ArcRSA→DL, ArcRSA→RSA, ArcDL→DL, and ArcDL→DL.

Key extraction: Corresponding to each arc creation algorithm ArcCR1→CR2 is a key ex-
traction algorithm ExtractCR1→CR2 . This algorithm takes as input a ciphertext Γ1→2 and
the keys PK2 and SK1. If successful, it outputs SK2. Involved here are some standard de-
cryption operations in combination with additional cryptographic operations such as lattice
reduction and gcd algorithms.

4.2 Building Blocks

Discrete-log-based signature schemes. If the signature scheme associated with key pair
(PK, SK) is discrete-log based (such as DSS [18] or Schnorr [22]), then PK = (p, q, g, y),
for primes p, q, such that p = kq + 1, an element g of order q, and a value y = gx mod p.
Here, the private key SK = x is chosen uniformly at random from Zq. Example sizes of the
parameters are (|p|, |q|) = (1024, 160). We refer to [18, 22] for more details on the schemes.

El Gamal encryption. Let g be a generator of a large subgroup G of Zn. Often, the integer
n is chosen to be prime, but we will also consider the use of strong RSA moduli, and we
assume that all computation is performed modulo n, where applicable. Let s denote the
size of the subgroup generated by g, and let y = gx be the public key used for encryption,
where x ∈ Zs.

To encrypt a message m, one picks a random element α ∈u Zs and computes the
pair (a, b) = (yαm, gα). (We note that s can be determined by a party who knows the
factorization of n, which will not be a restriction in our setting.) To decrypt a ciphertext
(a, b), one computes m = a/bx.

It is well-known that the El Gamal scheme is semantically secure under the Decision
Diffie-Hellman (DDH) assumption on the subgroup G, and given that messages are chosen
from G (see [1]). If messages are chosen from another set, the ciphertext may leak some
information, such as the Jacobi symbol of the message.

Proof of equality of discrete logs. Let yi = gi
xi , for i ∈ {1, 2}, where y1, y2, g1, g2 ∈ G

for some group G. We let EQDL1(y1, y2, g1, g2) denote a zero-knowledge proof protocol
demonstrating that logg1

y1 = logg2
y2. There are many methods proposed in the literature

for implementing EQDL1, [7, 22]. In the appendix, we exhibit a version of [22] modified for
use with RSA moduli, and discuss its security.

A useful variant employed in our protocols involves elements spanning two groups G1 and
G2. In particular, we let EQDL2(y1, y2, g1, g2, n1, n2) denote a proof that y1 = gx1

1 mod n1

and y2 = gx2
2 mod n2 for x1 = x2. (In general, G1 and G2 need not be modular multiplicative

groups, but these are the only type used here.) We use the very efficient proof technique
for EQDL2 introduced in [5].

Both EQDL1 and EQDL2 are zero-knowledge. While the soundness of both protocols
relies on the discrete log assumption, we note that the soundness of the efficient, one-round
version of the protocol for EQDL2 depends additionally on the strong RSA assumption. See
[5] for more detailed discussion.

Let (a, b) = (myk, gk) represent an El Gamal ciphertext under public key y. Observe
that a prover with knowledge of the private key x = logg y can prove in zero-knowledge that
(a, b) represents a valid ciphertext on plaintext m simply by proving EQDL1(y, a/m, g, b).

Paillier encryption. The Paillier cryptosystem was introduced in [20]. It uses the Carmichael
lambda function λ(N) defined as the largest order of the elements of Z∗

N . Let N = PQ be
an RSA modulus such that ϕ(N) is coprime to N . Recall that λ(N) = lcm(p − 1, q − 1).
The general Paillier’s cryptosystem, as defined in [20], uses an integer G of order multiple
of N modulo N2. It was noticed in [8, 6] that the simplest choice is probably G = 1 + N ,
because (1 + N)M ≡ 1 + MN mod N2. Thus, in this paper, we only use G = 1 + N , which
slightly simplifies the description of the scheme and has no impact on the semantic security:
we refer to [20] for a general description. The public key is N and the secret key is λ(N).

To encrypt a message M ∈ ZN , randomly choose u ∈ Z∗
N and compute the ciphertext

c = (1 + MN)uN mod N2. To decrypt c, compute:

M =
L(cλ(N) mod N2)

λ(N)
mod N,

where the L-function takes as input an element congruent to 1 modulo N , and outputs
L(u) = u−1

N .

The Paillier public-key cryptosystem is semantically secure under the hardness of dis-
tinguishing N -th residues modulo N2 (see [20]).

Fair encryption methods. Assume that users have pairs of public and private keys and give
an encryption E of their private key (or something allowing the recovery of the private key)
using the public key PKT of a trusted third party. A fair encryption is a publicly verifiable
proof that the third party is able to recover the private key using his own private key and
the ciphertext. Poupard and Stern proposed practical fair encryption [21] using the Paillier
cryptosystem (meaning that the third party’s public key is a Paillier public key). Poupard-
Stern proposed two protocols: One to encrypt El Gamal-type keys, and one for RSA keys.
To the best of our knowledge, no fair encryption protocol in which the third party uses
a discrete log system exists in the literature. There exist other fair encryption protocols
(see [10, 2] for instance), but they do not seem to be as efficient as the Poupard-Stern
protocols for our application, so we do not use them.

We will use fair encryption as a proof that any person knowing the private key corre-
sponding to PKT can recover the private key encrypted in E. In other words, in the setting
of proprietary certificates, the “third party” is any possessor of the proprietary private key,
and the fair encryption is the proof of collateral private key recovery.

5 Arc creation protocols

We will now consider how one can perform the various proofs of ciphertext correctness,
with the various types of encryption needed. We will denote the various protocols by the
types of proprietary and collateral keys they relate to. Thus, a DL → RSA protocol is a
protocol for proving that given a ciphertext and the correct discrete log private key (the
proprietary key), one can decrypt and obtain the correct RSA private key (the collateral
key). We note that we will use Paillier’s encryption scheme in lieu of RSA – however, since
one can perform Paillier encryption and decryption using an RSA public versus private key,
this is not a restriction.

In the following, we let (y, x) be a public key / private key pair for a discrete-log-based
scheme, as described previously, and (e, d) be the public versus private keys of an RSA
scheme with public modulus N . We use the same moduli and generators as previously shown.
For ArcDL→RSA and ArcDL→DL, it is necessary to include in the certificates a generator G
as described below. We note that this does not impact the unlinkability properties, since G
relates to the public key in whose certificate it is included.

5.1 RSA → DL

Let (e1, d1) denote the proprietary public and private keys corresponding to a public mod-
ulus N1, and (y2, x2) the collateral public and private keys, with associated modulus p. His
Paillier public key is N1, and his private key is λ(N1).

In the protocol ArcRSA→DL, the user randomly chooses u ∈ Z∗
N1

and computes the
ciphertext Γ1→2 = (1 + x2N1)uN1 mod N1

2, and a non-interactive proof (to the CA) of
the “third party”’s ability to compute x2 from y2 and Γ1→2, using the Poupard-Stern fair
encryption of El Gamal keys [21, Sect. 3.1].

Extraction of keys. The algorithm ExtractRSA→RSA involves application of the key recovery
process of the Poupard-Stern fair encryption [21, Proof of Theorem 1], based on Gauss lattice
reduction algorithm (note: a simple Paillier decryption presumably does not always enable
to recover the private key, due to some cheating strategy, as explained in [21]; the proof
refers to this key recovery process and not Paillier decryption). This yields x2.

5.2 RSA → RSA

Let (e1, d1) denote the proprietary public and private keys associated with a public modulus
N1, and (e2, d2) the collateral public and private keys associated with a public modulus N2.
His Paillier public key is N1, and his private key is λ(N1).

In the protocol ArcRSA→RSA, the user computes x = N2 − ϕ(N2), randomly chooses
u ∈ Z∗

N1
and the ciphertext Γ = (1 + xN1)uN1 mod N2

1 . He proves to the CA that a party
with knowledge of the decryption key (i.e., our proprietary key) is able to factor N2 using
Γ1→2 and his Paillier private key, using the Poupard-Stern fair encryption of RSA keys [21,
Sect 3.2].

Extraction of keys. To recover the collateral private key using ExtractRSA→RSA, one must
apply the key recovery process of the Poupard-Stern fair encryption [21, Proof of Theorem 2]
to obtain the factorization of N2 from Γ and the Paillier private key.

5.3 DL → RSA

Let (y1, x1) be the public/private key pair for the DL (i.e., proprietary) certificate, and let
N2 be the modulus for the RSA (i.e., collateral) certificate. For the user to ensure privacy
of her private keys, we require that N be the product of two safe primes. Namely, we should
have N2 = PQ where P , Q, (P −1)/2 and (Q−1)/2 are all large primes. (thus, in particular,
P and Q are congruent to 3 modulo 4). The use of safe primes can be proved using [5]. To
ensure soundness of the protocol, however, the user need only prove about N2 that it is the
product of (at most) two primes. This can be accomplished with practical computational
and communication requirements by combining protocols from [11] or [15] with those in [3],
as shown in, e.g., [13].

Apart from a proof that N2 is a well-formed RSA modulus, there are two key components
to the protocol ArcDL→RSA. The first is that of key translation. This is a procedure whereby
the user constructs a generator G with large order in ZN2 and a public El Gamal key
Y = Gx1 mod N2. Since x1 is the private key for the DL certificate of the user, a player
with access to this private key will be able to decrypt any El Gamal ciphertext under public
key1 Y . The user proves correct translation through straightforward use of EQDL2.

The second key component in the protocol is encryption of a non-trivial root r of unity
in Z∗

N2
. In particular, the user constructs an El Gamal ciphertext (a, b) on such a root r

under the public key Y . Given r, it is easy to compute a factor of N2, and thus compute
any private key for the RSA certificate (provided that N2 is a well-formed RSA modulus).
To prove that the plaintext r corresponding to (a, b) is indeed a root of unity, the user must
prove that (a2, b2) has plaintext 1. To see that r is a non-trivial root, i.e., not equal to 1 or
−1, the CA must verify the following three Jacobi quantities:
1 Note that this public key will have order at least (P-1)(Q-1)/4 with overwhelming probability.

Thus, with overwhelming probability, the choice of public key will itself leak no information
about the plaintext root.

– The integer −1 has Jacobi symbol 1. (This is always the case if N is a product of two
large safe primes.)

– The value b has Jacobi symbol 1.
– The value a has Jacobi symbol -1.

Together, these three checks ensure that (a, b) has a plaintext r with Jacobi symbol -1, and
thus that r %∈ {−1, 1} and is thus non-trivial. With all of the other proofs given above, this
ensures that a player with knowledge of x can use the ciphertext (a, b) to factor N2 and
obtain any private keys associated with the RSA certificate.

Here is our protocol in detail. If any of the verification performed by the CA fails, or
any of the sub-protocols fails, then the protocol is aborted.

Protocol ArcDL→RSA

1. The user selects an element G ∈ Z∗
N2

of Jacobi symbol 1 such that G2 %≡ 1 and G2 − 1
is coprime to N2. Thus, G has multiplicative order of either (P − 1)(Q − 1)/4 or (P −
1)(Q−1)/2 (see for instance [12]). Note that the DDH problem in the subgroup spanned
by G is believed to be hard (see [1]). The user sends G to the CA.

2. The user performs the key translation. She computes Y = Gx1 mod N2 and proves
EQDL2[g, y, G, Y, n, N].

3. The user computes a non-trivial root r of unity with Jacobi symbol -1. This is easy to
accomplish given knowledge of P and Q and use of the Chinese Remainder Theorem.

4. The user selects an encryption factor α ∈ Z(P−1)(Q−1)/2 uniformly at random. She
constructs an El Gamal ciphertext on r of the form (a, b) = (Y αr, Gα). She sends this
to the CA.

5. The user proves that (a, b) is a ciphertext under Y of a root of unity. In particular, she
proves EQDL1[G, Y, b2, a2].

6. CA verifies that −1 and b have Jacobi symbol 1, and that a has Jacobi symbol −1.

Key extraction. The algorithm ExtractDL→RSA interprets the proprietary key x1 as a key
X = x1 for the composite El Gamal ciphertext E = (a, b), one can compute r = a/bX mod
N2. One derives the factorization of N2 by simple gcd: Indeed, r2 = 1 mod N2 implies
(r − 1)(r + 1) = 0 mod N2 where r %= ±1 mod N2, so that gcd(r − 1, N2) is a non-trivial
factor of N . This yields the private collateral key.

5.4 DL → DL

In order to use a discrete-log proprietary key and a discrete-log collateral key – although
possibly over different group structures, we introduce the use of intermediary keys. This is a
key whose only use is to act as a connector between existing protocols for putting up collat-
eral and performing extraction. Namely, when performing extraction, the proprietary key
is used to obtain the intermediary key (serving as a collateral), and then the intermediary
key is used as proprietary key to obtain the real collateral key.

Thus, in the protocol ArcDL→DL, the user selects a strong RSA modulus N ′ as an
intermediary public key (whose corresponding private key is ϕ(N ′)). He then uses the
DL → RSA protocol above to establish N ′ as the collateral key of his proprietary key.
Then, he uses N ′ as the proprietary key in a RSA → DL protocol (Poupard/Stern).

The result is two sets of ciphertexts, one containing the intermediary key, and using the
proprietary key for encryption/decryption; the second containing the collateral key, and
using the intermediary key for encryption/decryption.

Key extraction. The protocol ExtractDL→DL is an obvious composition of the previous
key extraction protocols ExtractDL→RSA and ExtractRSA→DL. This is a two-step process in
which one first obtains the intermediary key and then the collateral key.

6 Claims

We prove in appendix A that our solution satisfies non-transferability, unlinkability and se-
curity. It is clear from our protocol description that it satisfies cryptosystem agility; locality;
and PKI compatibility. We address the efficiency of our scheme in appendix A as well.

References

1. D. Boneh. The decision Diffie-Hellman problem. In Proc. of ANTS-III, volume 1423 of LNCS,
pages 48–63. Springer-Verlag, 1998.

2. F. Boudot and J. Traoré. Efficient publicly verifiable secret sharing schemes with fast or delayed
recovery. In ICICS ’99, volume 1726 of LNCS, pages 87–102. Springer-Verlag, 1999.

3. J. Boyar, K. Friedl, and C. Lund. Practical zero-knowledge proofs: Giving hints and using
deficiencies. Journal of Cryptology, 4(3):185–206, 1991.

4. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In B. Pfitzmann, editor, Eurocrypt ’01, volume
2045 of LNCS, pages 93–117. Springer-Verlag, 2001.

5. J. Camenisch and M. Michels. Seperability and efficiency for generic group signature schemes.
In M. Wiener, editor, Crypto ’99, volume 1666 of LNCS, pages 413–430. Springer-Verlag, 1999.

6. D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen. Paillier’s cryptosystem
revisited. In P. Samarati, editor, 8th ACM Conference on Computer and Communications
Security. ACM Press, 2001. To appear.

7. D. Chaum and H. Van Antwerpen. Undeniable signatures. In G. Brassard, editor, Crypto ’89,
volume 435 of LNCS, pages 212–216. Springer-Verlag, 1989.

8. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In PKC ’01, volume 1992 of LNCS, pages 119–136. Springer-
Verlag, 2001.

9. C. Dwork, J. Lotspiech, and M. Naor. Digital signets: Self-enforcing protection of digital
information. In Proc. of 28th STOC, pages 489–498. ACM, 1996.

10. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable
secret sharing and its applications. In K. Nyberg, editor, Eurocrypt ’98, volume 1403 of LNCS,
pages 32–46. Springer-Verlag, 1998.

11. Z. Galil, S. Haber, and M. Yung. Minimum-knowledge interactive proofs for decision problems.
Siam J. of Computing, 18(4):711–739, 1989.

12. R. Gennaro, H. Krawczyk, and T. Rabin. RSA-based undeniable signatures. In B. Kaliski,
editor, Crypto ’97, volume 1294 of LNCS, pages 132–149. Springer-Verlag, 1997.

13. R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In 5th ACM Conference on Computer
and Communications Security, pages 67–72. ACM Press, 1998.

14. O. Goldreich, B. Pfitzmann, and R. L. Rivest. Self-delegation with controlled propagation - or
what if you lose your laptop. In H. Krawczyk, editor, Crypto ’98, volume 1462 of LNCS, pages
153–168. Springer-Verlag, 1998.

15. J. van de Graaf and R. Peralta. A simple and secure way to show the validity of your public
key. In B. Kaliski, editor, Crypto ’87, volume 293 of LNCS, pages 128–134. Springer-Verlag,
1987.

16. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications.
In U. Maurer, editor, Eurocrypt ’96, LNCS, pages 143–154. Springer-Verlag, 1996.

17. S. Katezenbeisser and F.A.P. Petitcolas, editors. Information Hiding Techniques for Steganog-
raphy and Digital Watermarking. Artech House, 1999.

18. National Institute of Standards and Technology (NIST). FIPS Publication 186: Digital Signa-
ture Standard, May 1994.

19. Bloomberg News. Ad-revenue worries weigh down Yahoo. 1 September 2000. URL:
http://yahoo.cnet.com/news/0-1005-200-2670551.html.

20. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Eurocrypt ’99, volume 1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

21. G. Poupard and J. Stern. Fair encryption of RSA keys. In B. Preneel, editor, Eurocrypt ’00,
volume 1807 of LNCS, pages 173–190. Springer-Verlag, 2000.

22. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161–174,
1991.

23. A. Young and M. Yung. Auto-recoverable auto-certifiable cryptosystems. In K. Nyberg, editor,
Eurocrypt ’98, volume 1403 of LNCS, pages 17–31. Springer-Verlag, 1998.

A Analysis

Non-transferability. The scheme satisfies non-transferability if the CA can be guaranteed
that for any certificate he has issued, knowledge of its proprietary private key allows the
corresponding collateral private key to be computed with an overwhelming probability, and
in polynomial time. Thus, this directly corresponds to the soundness of the protocol for
proving that the ciphertext in an encryption of the appropriate plaintext (the collateral pri-
vate key, or a representation thereof), and under the appropriate public key (the proprietary
public key.)

The soundness of the fair encryption schemes used for arc ArcRSA→DL and ArcRSA→RSA

has already been proven (see [21]). Since ArcDL→DL is composed of ArcDL→RSA and
ArcRSA→DL (the latter which we know is sound), we see that only the soundness of ArcDL→RSA

remains to be proven.
The soundness of EQDL2 was proven in [5]. Thus, step two is sound, and establishes

that X = x for Y = GX mod N , y = gx mod p. Furthermore, step five is sound, given
the soundness of Schnorr signatures (see [22]) and their extension to composite moduli (see
appendix B.) Thus, this step establishes that (a2, b2) is a valid encryption of 1, using public
key Y and modulus N . Thus, (a2, b2) = (Y β , Gβ). This implies that the plaintext must be
a root r of unity, and that (a, b) = (Y αr, Gα), where β ≡ϕ(N) 2α. The CA verifies (in step
six) that b have Jacobi symbol 1. Therefore, since Y is a power of G (as established in step
2), a/r is a power of b. Since a has Jacobi symbol −1, so must r. In step 6, it is established
that −1 has Jacobi symbol 1, and (obviously), the same holds for the value 1. Therefore, the
plaintext r must be a non-trivial root of 1. As was outlined in the key extraction protocol
for ArcDL→RSA, knowledge of such a value allows straighforward factoring of N . Since
knowledge of the proprietary discrete log private key x implies knowledge of the decryption
key X (as established in step 2), we see that anybody with knowledge of the proprietary
key can compute the private collateral key, which concludes the proof.

Security. The security of the RSA → DL and the RSA → RSA arc creation protocols is
the same as in the Poupard-Stern fair encryption protocols [21]. Namely the proofs are
zero-knowledge, and the ciphertext is with respect to the Paillier cryptosystem which is
semantically secure under the hardness of distinguishing N -th residues modulo N2 (see [20]).
For the DL → RSA protocol, the proofs are zero-knowledge.

One needs to assume, however, that the key-translation protocol does not weaken the
hardness of the discrete log problem. For this, we rely on a variant of the DDH assumption.
Normally, this assumption is applied over a single group G of order q. It states that for
generators µ1 and µ2 drawn uniformly at random, and exponents a, b drawn informly at
random from Zq, it is computationally infeasible for a polynomial-time entity to distinguish
between the two distributions D1 = {µ1, µ2, µa

1 , µ
a
2} and D2 = {µ1, µ2, µa

1 , µ
b
2}.

We introduce a variant assumption that we call the cross-group DDH assumption. We
consider two groups G1 and G2, where the order of G1 is q, and that of G2 is at least q. The
distributions D1 and D2 are constructed exactly as above, except that µ1 is a generator of G1

and µ2 is a generator of G2. In other words, the cross-group DDH assumption as applied to
G1 and G2 states that it is infeasible to test equality of discrete logs across groups. We apply
this assumption in our paper to two groups for which the conventional DDH assumption
is believed to be hard. The cross-group DDH assumption may be seen to arise in implicit
form in earlier literature such as, e.g., [5], and seems a potentially important assumption
for a wide range of protocols.

The ciphertext E is an ElGamal encryption of a non-trivial root r of unity, and such a
r does not belong to the subgroup G spanned by G because it has Jacobi symbol -1. But
the semantic security of ElGamal under the DDH assumption over G relates to plaintext
in G. However, one can easily notice that if ElGamal with plaintexts chosen in the kernel
of the Jacobi symbol is semantically secure (which is equivalent to the DDH assumption
in that kernel, which itself is believed to be true), then ElGamal with plaintexts having
Jacobi symbol -1 is also semantically secure. Indeed, if an attacker is able to build two
particular plaintexts m0 and m1 having Jacobi symbol -1, and to determine with non-
negligible advantage if a challenge ciphertext (of either m0 and m1) is an encryption of m0

or m1, then he could also determine with non-negligible advantage if a challenge ciphertext
c (of either m2

0 and m0m1) is an encryption of m2
0 or m0m1 (by division). Thus, since both

m2
0 and m0m1 have Jacobi symbol +1, this would break the semantic security of ElGamal

for plaintexts in the kernel of the Jacobi symbol. Note that the DDH problem for the kernel
of the Jacobi symbol is believed to be hard when the modulus is a product of two safe
primes (see [1]).

Unlinkability. We see that unlinkability follows from the fact that we use semantically secure
encryption of the collateral private keys and the pointers to the collateral public keys and
their associated CA; and that no information about other keys associated with a user is
used or included in a signature using one particular public key.

Efficiency. All of the protocols require the inclusion of a ciphertext describing or pointing
to the collateral public key. Additionally, ArcDL→RSA and ArcDL→DL require the inclusion
of a generator G as described above. Assuming (probabilistically padded) RSA encryption
is used when the proprietary key is an RSA key, and El Gamal encryption used when it is
a discrete log key, the encryption of the ”pointer” has size |N | resp. 2|p|.

The two arc establishment protocols that are directly based on Paillier encryption result
in ciphertexts of size 2|N |. The protocol using composite El Gamal alone results in cipher-

texts of that same size, while the protocol using both El Gamal encryption and Paillier
encryption naturally results in ciphertexts of size 4|N |.

Thus, for |N | = |p| = 1024 bits, the total certificate expansion is between 3|N | = 384
and 4|N | + 2|p| = 768 Bytes.

