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Abstract. Naor, Pinkas, and Sumner introduced and implemented a
sealed-bid, two-server auction system that is perhaps the most efficient
and practical to date. Based on a cryptographic primitive known as obliv-
ious transfer, their system aims to ensure privacy and correctness pro-
vided that at least one auction server behaves honestly. As observed
in [19], however, the NPS system suffers from a security flaw in which
one of the two servers can cheat so as to modify bids almost arbitrar-
ily and without detection. We propose a means of repairing this flaw
while preserving the attractive practical elements of the NPS protocol,
including minimal round complexity for servers and minimal computa-
tion by players providing private inputs. Our proposal requires a slightly
greater amount of computation and communication on the part of the
two auction servers, but actually involves much less computation on the
part of bidders. This latter feature makes our proposal particularly at-
tractive for use with low-power devices. While the original proposal of
NPS involved several dozen exponentiations for a typical auction, ours
by contrast involves only several dozen modular multiplications.
The key idea in our proposal is a form of oblivious transfer that we refer
to as verifiable proxy oblivious transfer (VPOT).

Key words: auction, sealed-bid auction, oblivious transfer, secure multi-
party computation, secure function evaluation

1 Introduction

Cryptography offers a broad range of tools for distributing trust among com-
puting entities in flexible and often unexpected ways. In an electronic auction
setting, for example, a foundational cryptographic procedure known as secure

function evaluation enables the submission and processing of sealed bids with-
out the presence of a single, trusted auctioneer. As secure function evaluation is
rather impractical in its general form, a large body of research, e.g., [1, 5, 11, 17,
19, 24], has focused on tailoring cryptographic protocols specifically to achieve
efficient sealed-bid auction systems.

A recent architecture proposed and implemented by Naor, Pinkas, and Sum-
ner [20] represents substantial progress toward the goal of practical sealed-bid



auctioning with distributed trust. In their system, bidders submit encrypted bids
to a front-end server known as an auctioneer. With the involvement of a second,
back-end server known as an auction issuer, any type of sealed-bid auction may
be conducted, e.g., highest-bid auctions, Vickrey auctions, and so forth. The
architecture distributes trust between the two servers in the following simple
model: If at least one server is honest, the bids of all participants will remain
private, and any auction outcome is assured to be correct. There is no robust-
ness, however, in the sense that either server can cause the protocol to terminate.
NPS report good scalability, claiming that their system can accommodate thou-
sands of bidders with reasonable overhead. The computational requirement for
bidders in their system is approximately one modular exponentiation per bit in
a bid representation. See [20] for further details.

As identified in a footnote in work by Jakobsson and Juels [19], however, the
NPS system has a serious flaw that permits tampering by one of the servers.
Although not explicated in [19], it is easy to see that the auction issuer can
modify any bit in any bid without detection. The underlying problem is a variant
introduced by NPS on a cryptographic primitive known as 1-out-of-2 oblivious

transfer (1-2 OT), as we now explain.

Basic 1-2 OT is a procedure involving two players, a Chooser and a Sender.
The Sender possesses a pair of values (t0, t1). We refer to these values throughout
our paper as tags. The Chooser elects to receive from the Sender one of these two
tags tb for b ∈ {0, 1}. The 1-2 OT procedure is oblivious in the sense that the
Sender learns negligible information about b. An additional privacy property
of 1-2 OT that the Chooser learns negligible information about t1−b, i.e., the
value that she did not select. NPS consider a variant on 1-2 OT, called proxy

oblivious transfer. This variant involves an intervening third party known as a
Proxy, who receives the value tb on behalf of the Chooser, but herself learns
negligible information about b and t1−b. We provide details on the protocol
below. Proxy oblivious transfer accomplishes the goal for which it was designed,
namely privacy protection, but does not include any mechanism for verifiability.
In particular, the proxy oblivious transfer protocol does not ensure that the
Sender transmitted tb as desired. In the NPS auction setting, the Sender (auction
issuer) can substitute the tag t1−b. Thus the auction issuer can tamper with bids!

In this paper, we introduce a protocol called verifiable proxy oblivious trans-

fer (VPOT) that addresses the vulnerability in the NPS protocol. In principle,
introducing verifiability into proxy oblivious transfer is not difficult using basic
– and potentially expensive – cryptographic techniques such as zero-knowledge
proofs. Our contribution in the design of VPOT is a collection of techniques
that render the verification process computationally inexpensive and yet, at the
same time, provably secure. When VPOT is introduced into the NPS auction
protocol, it increases the computational burden on auction servers somewhat,
but actually results in much less computation for bidders. This is particularly
desirable given the fact that bidders in many settings may wish to employ low-



power, handheld devices. Thus, VPOT not only remedies the security flaw in
the NPS architecture, but renders the system even more practical.

1.1 Background: Two-party computation and the NPS protocol

Secure function evaluation (also known as secure multi-party computation) be-
gan with the work of Yao [26], and Goldreich, Micali, and Wigderson [15], and has
spawned an ever growing body of research papers. See [13] for a good overview
of early work. The general goal of secure multi-party computation is to enable
m players to apply a function F to respective private inputs X1, X2, . . . , Xm

such that some subset of players learns F (X1, X2, . . . , Xm), but no player learns
additional, non-negligible information. Privacy and robustness against active (in-
deed, adaptive) adversaries are possible to achieve provided that the adversary
controls at most a fraction of the players. Assuming the existence of a broadcast
channel, this fraction is 1/2; otherwise, it is 1/3. For some recent work aiming
to achieve practical multi-party protocols, see, e.g., [8, 18].

The two-player case of secure function evaluation is distinguished by its rela-
tive simplicity and practicality. The original secure function evaluation protocol
of Yao [26] treated this case, and remains an important tool even now. In con-
trast to more general techniques, in which field operations such as addition and
multiplication are the atomic unit of computation, the Yao protocol involves
direct computation on boolean gates. While this is a limitation in the general
case, many real-world protocols such as auctions involve intensive bitwise ma-
nipulation such that boolean circuits are in fact a natural form of representation
for the required functions. The Yao protocol is appealing for other reasons as
well. Provided that only one player is to learn the output, it is in fact possible
to execute the Yao protocol with only one-round of interaction, an observation
first set forth implicitly in [20] and explored in detail in [7]. While constant-
round secure function evaluation is possible for multiple players, it requires both
high overhead and the availability of a broadcast channel [3]. A model in which
both players in the Yao protocol learn the output of such computation in a fair
manner (given a passive trusted entity) is also possible, and is explored in [6].

Suppose that Alice and Bob wish to engage in the Yao protocol on respective
private inputs XA and XB such that Bob learns the output y = F (XA, XB).
Alice constructs a “garbled” circuit representing F . She sends this circuit to Bob,
along with a “garbled” representation of XA. In order to evaluate the “garbled”
circuit, Bob additionally needs a “garbled” version of his input XB . He obtains
this from Alice using some form of 1-2 oblivious transfer (OT) [21] protocol. This
is the component of the Yao protocol that we focus on in detail in this paper.
In the case where Alice may cheat, another important component in two-player
secure function evaluation protocols are proofs of correct construction of the Yao
circuits. A cut-and-choose protocol for this is proposed in [20], while [7] explores
use of general non-interactive proof techniques. (If Alice wishes Bob to send y to
her such that she can verify its correctness, she need merely embed a verification
tag in her “garbled” version of F in the appropriate manner.)



Numerous variants of oblivious transfer have been considered in the literature
[13]. Notions of combining bit commitment with oblivious transfer in a theoreti-
cal setting to achieve a committed or verifiable oblivious transfer are explored for
example in [10] and [9]. These works explore theoretical approaches that treat
oblivious transfer and bit commitment as black boxes, and are thus necessarily
expensive. An alternative proposal makes use of a trusted initializer [22]. The
key observation made by NPS in their auction system design is that by involving
a Proxy in the oblivious transfer procedure, it is possible to expand application
of basic Yao style two-server function evaluation so as to accept inputs from an
arbitrarily large number of players, i.e., bidders, while the evaluation process is
restricted to two auction servers.

Briefly stated, the NPS construction is as follows. The auction issuer (again,
the back-end server) constructs a “garbled” representation of a function F that
describes the auction protocol. The auctioneer (again, the front-end server) eval-
uates the circuit for F using “garbled” inputs representing the bids. In order to
obtain the “garbled” input for a bit b in a given bid, it is necessary to invoke the
proxy oblivious transfer protocol. In this protocol, the bidder plays the role of
the Chooser, the auctioneer plays the role of the Proxy, and the auction issuer
plays the role of the Sender. The Sender transmits “garbled” inputs (t0, t1) for
the circuit corresponding to a ’0’ bit and a ’1’ bit in the bid. The Chooser selects
tb, which the Proxy receives through the transfer protocol. Having done this for
all bits in all bids, the Proxy is able to evaluate F on the input bids and deter-
mine the outcome of the auction. The privacy properties of the proxy oblivious
transfer protocol ensure that the Proxy does not learn b or t1−b for any bit. The
Proxy therefore does not learn any bidding information and can only evaluate
F on correct bid amounts. Likewise, the Sender does not learn the bid amounts.
Only if the Proxy and Sender collude is this privacy guarantee breached.

NPS include other security enhancements in the protocol. For example, for
the auctioneer to ensure that the auction issuer has constructed F correctly, the
two engage in a cut-in-choose protocol. Thus, the auctioneer in fact evaluates
multiple, independent circuits representing F . We provide more details below.

1.2 Our contribution: Verifiable proxy oblivious transfer (VPOT)

The failing in the NPS protocol is that the auction issuer can transmit t1−b

instead of tb without detection. To address this problem, we propose a pro-
tocol known as verifiable proxy oblivious transfer (VPOT). VPOT enables the
Proxy (auctioneer) to ensure that the Sender (auction issuer) sent tb, as required.
VPOT retains all of the privacy characteristics of proxy oblivious transfer.

Here is a simplified overview of VPOT. The Sender provides commitments
C0 and C1 to tags t0 and t1 (respectively representing a ’0’ bit and ’1’ bit in a
bid). These commitments take the form of a randomly ordered pair (Ca, C1−a),
i.e., a is a randomly selected bit. The Sender also provides a commitment E[a]



to ordering a. Observe that the triple (C0, C1, E[a]) binds the Sender to values
for t0 and t1.

As usual in a 1-2 OT protocol, the Chooser selects a value tb to be decom-
mitted by the Sender. The Chooser in fact splits this bit b into two shares bP

and bS such that b = bP ⊕ bS . The Chooser sends the share bS to the Sender.
This is transmitted (via the Proxy) as a ciphertext E[bS ]. She sends the share bP

to the Proxy, also in a specially committed form that we do not describe here.
It is the splitting of b into two shares that ensures privacy with respect to the
two auction servers (provided that there is no collusion).

Finally, the Chooser transmits to the Proxy a secret value x that enables the
Proxy to receive the selected tag tb. The Sender decommits tb for the Proxy, who
then checks the correctness of the decommitment.

Here is a list of the more interesting cryptographic building blocks used in
the construction of VPOT. While none is individually novel per se, our new con-
structions combine them in a novel way, providing a new fundamental building
block useful for securely extending traditional two-party techniques to settings
with multiple contributors.

– Double commitment: The Sender’s commitment Ck(t) on tag t in fact consists
of a pair of values (Y1, Y2). The first value, Y1, is the commitment on a key
or witness k. In particular here, Y1 = H(k3), where the cubing operation
takes place over an RSA modulus provided by the Sender (as discussed in
more detail below). H here is a hash function (modelled as a random oracle
for security proofs on the system). Observe that as the hash of a cube, Y1

is really a commitment within a commitment. It is for this reason that we
refer to Ck(t) as a double commitment. The second value of the commitment
pair, Y2, represents an encryption of t under k. In particular, Y2 = H(k)⊕ t,
where ⊕ denotes the bitwise XOR operator. Knowledge of the witness k is
sufficient both to open the commitment and obtain t and also to verify that
the commitment has been correctly opened. This double commitment scheme
may be seen to be both computationally binding and computationally hiding
under the RSA assumption, with the random oracle model invoked for H .

– RSA-based oblivious transfer: Most oblivious transfer protocols designed for
practical use in two-party secure function evaluation, e.g., in [20, 2], employ
El Gamal-based encryption of tags [14]. The result is that the Chooser must
perform at least one exponentiation per 1-2 OT invocation. In contrast,
we introduce an RSA-based 1-2 OT scheme as the foundation for VPOT.
The result is that the Chooser need only perform one RSA cubing, i.e., two
modular multiplications, per 1-2 OT invocation. When employed in VPOT,
this idea reduces the work of the Chooser by over an order of magnitude
with respect to the proxy oblivious transfer protocol of NPS.

– Goldwasser-Micali encryption: The encryption function E in our brief de-
scription above is the Goldwasser-Micali cryptosystem [16]. Encryption in
this system takes place with respect to an RSA modulus n. A ’0’ bit is
encrypted as a random quadratic non-residue over Zn, while a ’1’ bit is en-



crypted as a random quadratic residue. The key property of this system is its
additive homomorphism. In particular, given encryptions E[b0] and E[b1] of
bits b0 and b1 respectively, the Proxy can non-interactively compute E[b0⊕b1]
as E[b0]E[b1]. Composition of commitments in this manner enables the Proxy
to obtain an efficiently checkable proof of correct decommitment from the
Sender, as we shall see. We sometimes refer to a Goldwasser-Micali cipher-
text as a quadratic-residue commitment, abbreviated QR-commitment. We
use the very loose notation E[b] to denote a Goldwasser-Micali encryption
of (QR-commitment to) a bit b.

1.3 Other work on auctions

Because of the difficulties involved in deploying standard general secure function
evaluation techniques, a number of other secure protocols have been proposed
that are specially tailored for auctions. One of the earliest of these is the scheme
of Franklin and Reiter [12]. This scheme is not fully private, in the sense that it
only ensures the confidentiality of bids until the end of the protocol (although
the authors mention a fully private variant). Some more recent schemes include
those of Harkavy, Tygar, and Kikuchi [17], Cachin [5], Stubblebine and Syverson
[25], Sako [24], Di Crescenzo [11], and Jakobsson and Juels [19]. The Harkavy et

al. scheme is fully privacy preserving, but involves intensive bidder involvement
[17], and is not easily adaptable to different auction types or to related protocols.
The scheme of Cachin involves two servers, and requires some communication
among bidders. At the end of the protocol, a list of bidders is obtained, but not
the bid amounts. The scheme of Di Crescenzo [11] requires no communication
between bidders, and has low round complexity, but involves the participation of
only a single server. The scheme of Sako [24] works on a different principle from
these others, involving opening of bids in what is effectively a privacy-preserving
Dutch-style auction. Efficient for small auctions, it involves costs linear in the
range of possible bids, and does not accommodate second-price and other auc-
tion types. The Jakobsson and Juels [19] protocol aims at streamlining general
secure multi-party computation for functions that involve intensive bitwise ma-
nipulation, of which auction protocols, as mentioned above, are a good example.
A very recent protocol is that of Baudron and Stern [1]. This protocol is expen-
sive, and involves only a single server, with privacy ensured under the condition
that there is no collusion between the auction server and any bidder.

Organization

Section 2 reviews some cryptographic building blocks required for our construc-
tion. In section 3, we consider some new methods for combining bit commitment
with oblivious transfer, and introduce our VPOT protocol. We show how to
apply VPOT to the problem of secure function evaluation in section 4. In sec-
tion 5, we discuss the motivating example: private auction computations. Due to



space constraints in this version of the paper, we do not provide formal security
modelling.

2 Building Blocks and Background

We review several standard building blocks for our protocols. Further details
regarding these primitives may found in the literature. We let ∈U denote uniform,
random selection from a set. A useful summary of details of the Yao construction
may be found in [20].

Private channels: We assume the use of private, authenticated channels be-
tween all three possible pairings of the Chooser, Proxy, and Sender. The private
channel between the Chooser and Sender involves the Proxy as an intermediary,
for the sake of protocol simplification. We assume that messages are authenti-
cated in a non-repudiable fashion. We do not devote attention to the crypto-
graphic elements underlying these channels. In practice, private channels may
be realized by way of, e.g., the Secure Sockets Layer protocol (SSL) with sup-
plementary use of digital signatures.

RSA-based 1-2 OT: Recall from above that the aim of 1-2 OT is for the
Chooser to obtain a tag tb for b ∈ {0, 1} from the Sender, who possesses the
pair of tags (t0, t1). The Chooser should not learn t1−b, and the Sender should
not learn b. Most of the proposed practical 1-2 OT protocols in the literature
rely on use of El Gamal encryption or some close variant. As an example, we
describe the proxy oblivious-transfer protocol of NPS in detail at the beginning
of section 3.

In this paper, we introduce a special, RSA-based 1-2 OT protocol. We do
not make direct use of the RSA cryptosystem as such in the construction of this
primitive. We do, however, employ the familiar RSA setup [23], which we briefly
review here. An RSA public key consists of an RSA modulus n = pq, where
p and q are primes, and a public exponent e such that gcd(e, φ(n)) = 1. The
corresponding private key d is such that ed = 1 mod φ(n). Our protocols involve
exclusive knowledge and use of a private RSA key d by the Sender.

As a first step in the 1-2 OT protocol, the Sender must provide the Chooser
with double commitments C0 = Ck0

(t0) and C1 = Ck1
(t1) on tags t0 and t1

respectively. The Sender additionally selects an integer C ∈U Z∗

n, which he sends
to the Chooser. The Chooser, wishing to receive tag tb, chooses an element x ∈U

Z∗

n. If b = 0, the Chooser transmits (x0, x1) = (x3, Cx3) to the Sender; otherwise,
she transmits (x0, x1) = (x3/C, x3). The Sender checks that x1/x0 = C. If so,

he uses his private key to construct (z0, z1) = (x
1/3

0
k0, x

1/3

1
k1), which he sends

to the Chooser. The Chooser then makes use of x to extract kb in the obvious
fashion. Given kb, the chooser can extract tb from Cb as desired.

Lacking knowledge of the cube root C, the RSA assumption implies that
the Chooser cannot obtain k1−b. In the random oracle model, then, it may be
seen that t1−b is hidden from the Chooser in a semantically secure manner. As



the Sender does not know for which element in the pair (x0, x1) the Chooser
possesses the corresponding cube root, it may be seen that b is hidden in an
information-theoretic sense from the Sender. Our VPOT protocol is essentially
a variant on this basic 1-2 OT scheme.

As noted above, our choice of RSA for our protocols stems from a desire to
render computation by the Chooser (corresponding to the bidder in an auction
protocol) as efficient as possible. We employ e = 3, a common choice, in order
to render these computations as rapid as possible, although none of our results
depends on this fact.

Yao Circuit Evaluation: As discussed above, Yao circuit evaluation [26, 20]
serves as the cornerstone of our VPOT protocol, as it does for NPS. Informally,
the Yao construction encrypts an entire boolean function, using ciphertexts to
represent the 0 and 1’s in a table composing a “boolean gate”. It is easy to see
how any function with finite domain and range can be compiled into a circuit,
namely a finite set of interdependent boolean gates. Construction of Yao cir-
cuits is conceptually straightforward for auction functions, which incorporate a
collection of ’>’ comparisons.

Goldwasser-Micali encryption: The concept of probabilistic encryption was
introduced [16] and elaborated on in [4] to set forth the notion of semantic
security in an encryption scheme. The basic scheme employs a Blum integer
n = pq; this is the product of two primes, where each prime is congruent to
3 mod 4. (To facilitate our security proofs, we assume that the Blum integer
employed here is not the same as the RSA modulus employed for 1-2 OT. In
practice, and to simplify our protocol descriptions, we believe that use of the
same modulus in both cases is acceptable.) The two primes constitute the private
decryption key. Encryption is bitwise: a ’0’ bit is encoded as a random square
modulo n, and a ’1’ bit as a random non-square modulo n with Jacobi symbol
1. In other words, the quadratic residuosity (QR) of a ciphertext indicates the
value of the plaintext bit. Knowledge of p and q enables efficient determination
of the quadratic residuosity of an element in Zn.

The Goldwasser-Micali encryption scheme can be employed straightforwardly
as a commitment scheme for a player that does not know the factorization of n.
To decommit a commitment Cb as a ’0’ bit, a player provides a square root of Cb

modulo n; to decommit as a ’1’ bit, she provides a square root of −Cb modulo n.
It is easy to see that the scheme is unconditionally binding. Privacy is reducible
to the quadratic residuosity assumption. Recall from above that a key element
of this encryption scheme, and indeed, our reason for employing it, is its useful
additive homomorphism: E[b0]E[b1] = E[b0 ⊕ b1]. We use this to prove the value
of the XOR of two committed bits without revealing any additional information
about the individual values of the bits themselves.



3 Verifiable Proxy Oblivious Transfer

As a basis for comparison, we begin by presenting details of the NPS proxy
oblivious transfer protocol, whose intuition we sketched above. In an initializa-
tion process, the Chooser and Sender agree on a cyclic group G of order w over
which computation of discrete logarithms is hard and an associated generator g,
as well as a random value C ∈U G whose discrete log is unknown to any player.
As usual, we let b denote the choice of the bidder, the pair (t0, t1), the tags held
by the Sender. The protocol is as follows [20]:

1. The Chooser selects a private key x ∈ Zw, and computes a pair (PKb, PK1−b)
= (gx, C/gx), and sends PK0 to the Sender via the Proxy. She sends x to
the Proxy.

2. The Sender computes PK1 = C/PK0. The Sender computes the pair (z0, z1) =
(EPK0

[ρ(t0)], EPK1
[ρ(t1)]), where EPKi

denotes El Gamal encryption under
public key PKi and ρ denotes a suitable error-detection function. The Sender
transmits the pair (z0, z1) to the Proxy in a random order.

3. The Proxy attempts to decrypt both values in the pair using x. The Proxy
knows he has obtained tb when the error-detection function ρ shows that the
decryption is successful.

It may be observed that provided there is no collusion, neither the Sender
nor the Proxy can learn b. It may be shown that under the Decisional Diffie-
Hellman assumption, even if the Proxy and Chooser collude, they cannot learn
both t0 and t1. The weakness in this protocol, hinted at above, is the fact that
the Sender can choose to send tb′ for b′ of its choice simply by transmitting
(z0, z1) = (EPK0

[ρ(tb′)], EPK1
[ρ(tb′)]). Even in the NPS auction protocol, neither

the Chooser (i.e., a bidder) nor the Proxy (i.e., the auctioneer) can detect this
tampering, which permits arbitrary alteration of bids.

We are now ready to remedy this problem by introducing our VPOT protocol.
Due to space constraints, we provide only informal descriptions of the security
properties of the protocol.

3.1 Verifiable Proxy Oblivious Transfer (VPOT)

VPOT detects the sort of cheating possible in NPS though use of a zero-knowledge
proof based on QR-commitment. Here is a summary: the Sender provides a pair
(C0, C1) of commitments to the tags t0 and t1, in a random order. The Sender
also commits to an ordering a of these commitments. In particular, a = 0 if C0

represents a commitment to t0 (and C1 represents a commitment of t1); other-
wise, a = 1. The Sender provides this bit a for the Proxy as a QR-commitment
of the form E[a]. The Sender obtains a share bS of b, the ciphertext E[bS ] being
observed by the Proxy. The Proxy therefore can compute a commitment to the
bit c = a⊕bS ; in particular, E[c] = E[a]E[bS ]. If the Sender decommits correctly,



the value c will specify whether the Proxy should be able to open C0 or C1. In
particular, if c = 0, the Proxy should be able to open C0; otherwise the Proxy
should be able to open C1. To prove correct behavior, the Sender decommits c
for the Proxy by proving the quadratic residuosity of E[c]. Observe that the bit
c, since it is “masked” by the secret bit a, does not reveal information about
bS to the Proxy. Hence the Proxy does not learn the bit b specifying the tag
requested by the Chooser. The following is the full VPOT protocol.

1. The Sender chooses his desired tags t0, t1 ∈U {0, 1}l and also an integer
C ∈U Z∗

n.
2. The Sender computes commitments C0 = Cka

(ta) and C1 = Ck1−a
(t1−a).

Let u = E[a], i.e., a QR-commitment of a. The Sender also computes a
commitment CO = H [u] to ordering of (C0, C1). The Sender transmits the
pair (C0, C1) to the Proxy, along with CO.

3. The Chooser receives C from the Proxy and splits b uniformly at random
into bits bP and bS such that b = bP ⊕ bS . She also selects x ∈U Z∗

n. If
bP = 0 she computes x0 = x3; otherwise, she computes x0 = x3/C. She also
computes v = E[bS].

4. The Chooser sends (x0, v, x) to the Proxy. She also sends (x0, v) to the Sender
(via the Proxy, if desired).

5. The Sender receives x0 and computes x1 = Cx0. He then computes y0 =

x
1/3

0
and y1 = x

1/3

1
. He decrypts bS . If bS = 0, the Sender transmits the

pair (z0, z1) = (y0k0, y1k1) to the Proxy; otherwise he transmits the pair
(y0k1, y1k0).

6. The Sender transmits u to the Proxy (undoing the outer commitment in
CO). The Sender then reveals c = a⊕bS by decommitting uv = E[a]E[bS ] =
E[c]. The decommitment of uv is provided as a value ρ such that ρ2 = uv
if c = 0 and ρ2 = −uv if c = 1. The Proxy checks the correctness of these
decommitments.

7. The Proxy first computes the cube of both z0 and z1 and checks that
H(z3

0
/x0) and H(z3

1
/x1) are equal to the first element of C0 and the first

element of C1, in either order. As a final step, the Proxy checks that he can
use x to open C0 if c = 0 and C1 if c = 1. This check ensures that the Sender
decommitted in the correct order.

Security Features:

– The Sender learns no information about bP . Under the quadratic residuosity
assumption governing the security of E, the Proxy does not learn bS. Thus
the Sender or Proxy cannot individually determine the Chooser’s choice b.

– The Proxy cannot feasibly compute the cube root of C under the RSA
assumption, and therefore cannot learn the cube roots of both x0 and x1.
The unselected tag is in fact hidden in a semantically secure sense from the
Proxy. This is true even if the Proxy cheats or colludes with the Chooser.

– The Proxy can verify that the Sender has correctly transmitted both t0 and
t1, even though he can extract only one of them.



– The Proxy can verify that the Sender has correctly sent him tb for the bit
b selected by the Chooser. Assuming that the Sender and Proxy do not
collude, therefore, the Chooser can be assured that the Proxy has received
the correct tag tb.

4 Two-Server Secure-Function Evaluation

In this section we describe an architecture for secure computation based on Yao
circuits and VPOT. Due to lack of space, we cannot provide security modeling
and proofs for our auction protocol in this paper. As above, we do assume the
availability of private, authenticated channels among participating players.

4.1 Putting together VPOT and Yao circuits

We now combine the VPOT protocol with Yao circuit to construct a secure func-
tion evaluation protocol involving two servers (evaluators) and multiple contrib-
utors of input values. For consistency with our protocol descriptions above, we
refer to the two servers as the Proxy and the Sender. Our secure-computation
protocol is designed to evaluate functions on inputs contributed by an arbitrarily
large number m of players. We refer to these players as Choosers.

Our aim is to evaluate a function F on the m inputs of the Choosers. The
Proxy and Sender together evaluate and publish the result of the function com-
putation, and also provide each player with a receipt to guarantee correctness.
The role of the Sender here is to construct Yao circuits and that of the Proxy, to
evaluate these circuits. To compute input tags for the Yao circuits, these servers
must process separate, parallel invocations of VPOT for every individual bit.

The complete function evaluation protocol is as follows:

Offline Steps

1. The Sender generates an RSA modulus n and publishes this for the VPOT
invocations in the current function evaluation session. (Note: It is in fact
critical that a new RSA modulus be published for each session so as to ensure
the privacy properties of VPOT across sessions.)

2. The Sender constructs N copies of Yao circuits to evaluate the function F . He
sends these circuits to the Proxy, with double commitments to the garbled
input tags, as in VPOT. He also publishes a lookup hash table enabling
Yao-output-to-plaintext translation.

3. The Proxy selects half of the circuits at random, and asks the Sender to
“open” them.

4. The Sender “opens” the selected circuits and sends the keys to all of their
committed garbled input tags. This enables verification of their correct con-
struction. This constitutes half of a cut-and-choose proof, the remaining half
involving verification of consistent output on the unopened circuits.



5. The Proxy verifies that the “opened” circuits and committed input tags do
indeed calculate the correct function.

VPOT steps

1. The Choosers submit their inputs bitwise to the Proxy according to the
VPOT protocol.

2. The Proxy forwards these choices to the Sender according to the VPOT
protocol.

3. The Sender sends the garbled input tags according to VPOT for each input
bit, and also each of the N/2 unopened circuits.

4. If either the Proxy or Sender detects the presence of an ill-formed input by
a Chooser, this is proven to the other server. Together the two servers can
annul the input of any Chooser, provided that F is suitably constructed.
Details are straightforward, and omitted here.

Circuit Evaluation

1. The Proxy checks the garbled tags against the commitments, and evaluates
the unopened N/2 Yao circuits.

2. The Proxy looks up the Yao circuit outputs in the lookup tables, and verifies
that the results of the N/2 trials are identical.

3. The Proxy publishes the output entries of the Yao tables, along with the
function output. If the entries and output are correct, then the Sender cer-
tifies the output.

We remark that the Proxy should not publish the garbled output strings if
the outputs are inconsistent. Such a situation only occurs if the Sender cheats,
and revealing the outputs might leak information about input values. Once the
correct output values are published, the result is verifiable by any outside party.

5 Application to Auctions

The two-server secure-function evaluation scheme presented in the previous sec-
tion can be applied straightforwardly, of course, to create a sealed-bid auction
system. As auctions are our key motivating application for the work in this pa-
per, it is worth a brief, concluding discussion of the particular benefits of our
approach to auctions.

As explained above, our scheme in this paper addresses the flaw in the NPS
auction protocol [20]. The NPS protocol is privacy preserving, but effectively
operates (unbeknownst to the authors) under the assumption that both the
servers are honest. The flaw in this paper is simple: the sender may flip or set
constant the two tags which he sends in the oblivious transfer for a given bit,
e.g., he can send only ’0’ tags for a given bit submitted by a bidder. This allows



the Sender to change the bid of any bidder to any value that the Sender chooses.
Nonetheless, we believe that NPS offer a key insight in suggesting a two-server
model to exploit the high computational efficiency and low round complexity of
the Yao construction. This represents an important step toward the realization
of practical, privacy-preserving auction protocols.

The secure-function evaluation procedure that we propose in section 4 not
only fixes the flaw in the NPS protocol but, as already noted, has the addi-
tional benefit of substantially reducing the computation required by bidders. In
summary, then, our proposed architecture offers the following features:

1. Non-interactivity: Bidders submit bids in a non-interactive fashion. That is,
they present their bids to the servers, but need not participate subsequently
in the auction protocol except to learn the outcome.

2. Auction adaptability: Our auction protocol is readily adaptable with little
overhead to a range of auction types, such as highest-price auctions and
Vickrey auctions.

3. Full privacy: We characterize privacy in terms of a static, active adversary
that controls at most one server and an arbitrary number of bidders. The
only information revealed to such an adversary at the conclusion of the
protocol about the bids of any honest bidders is the outcome of the auction.
In a highest-price auction, for example, such an adversary learns only the
winning bid and the identity of the winning bidder.

4. Correctness: Any player can be assured of the correctness of the auction
execution assuming that the two auction servers do not collude.

5. Robustness: While we do not achieve robustness against failure by either of
the auction servers, the servers can eliminate any ill-formed bids and process
the remaining ones correctly.

6. Low round-complexity: The protocol involves only five communication passes;
this includes the offline cut-and-choose proof of correct Yao circuit construc-
tion.

7. High computational efficiency: Our protocol is highly efficient in terms of
computational requirements. For bidders, it is more so than any other cryp-
tographically based privacy-preserving auction scheme in the literature. The
requirement for a bidder in a typical auction would be several tens of modular
multiplications (as opposed to a comparable number of modular exponentia-

tions in NPS). The cost for the servers is about twice that in NPS. (While in
general it is desirable to shed server load in favor of computation on the part
of clients, the NPS protocol is so computationally intensive for clients as to
pose a likely bottleneck even for reasonably powerful handheld devices.)

The principal drawback of our scheme is that, like the NPS protocol, it does not
extend to a trust model involving more than two servers. Whether or not the
NPS scheme can incorporate multiple servers is an open research question.

We emphasize that given the successful implementation experiments of NPS,
our proposed architecture is likely to be amenable to practical software deploy-
ment. With this in mind, we provide a brief efficiency analysis in the appendix.
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A Efficiency Considerations

The protocol VPOT involves both offline and online calculations; the latter may
be considered of more practical relevance. A typical implementation might use
a 1024-bit RSA modulus with exponent 3. Disregarding the cost of hash func-
tions computations, which is relatively small, we observe that the Sender must
compute seven modular multiplications offline. Online, the Sender must calcu-
late three modular exponentiations. The Proxy has much less computational
expense: only five modular multiplications and two modular divisions. Best of
all, the Chooser need only calculate five modular multiplications per bit selec-
tion. Note that these are the costs for only one invocation of VPOT. A full
auction protocol will involve many, of course, as we now consider.

A.1 A typical auction

To provide a flavor of the resource requirements for our proposed architecture,
we summarize the computational requirements in a typical auction setting. We
omit the relatively small cost of private channel establishment (via, e.g., SSL)
and negligible cost of hash calculations; we count circuit evaluations as a unit.

In our example there are 10 bidders in the auction, the bids are 10 bits long,
and 10 circuits out of 20 remain after the cut-and-choose step. The Sender must
create the 20 circuits offline, and he can also calculate 10,000 of his modular
multiplications off-line. During the protocol, he must calculate 2000 modular
multiplications and 2000 modular exponentiations. The Proxy must evaluate
20 circuits accepting 100 inputs each, calculate 10,000 modular multiplications,
and 2000 modular divisions. About half of this effort can be done off-line before
bidding commences. Finally, the Choosers (bidders) need only perform at most
50 modular multiplications each in total to construct their bids.


