Defining Strong Privacy for RFID

Ari Juels Stephen A. Weis
RSA Security Google
M Bedford, MA, USA Mountain View, CA, USA
ajuels @rsasecurity.com sw@google.com
Abstract

In this work, we consider privacy in Radio Frequency IDentification (RFID) systems. Qur contribution is
twofold: (1) We propose a simple, formal definition of strong privacy useful for basic analysis of RFID systems,
as well as a different (weaker) definition applicable to multi-verifier systems,; and (2) We apply our definition to
reveal vulnerabilities in several proposed privacy-enhancing RFID protocols.

Keywords: RFID, privacy, security, EPC, proximity cards
1 Introduction

Radio Frequency IDentification (RFID) systems offer improved efficiency in inventory control, logistics, and
supply chain management. As such, they are of great interest to enterprises intensively reliant on supply chains,
particularly large retailers and consumer product manufacturers. The long-term goal of these organizations is to
integrate RFID on the retail level. Without proper protection, widespread adoption of retail RFID could raise
privacy concerns for everyday consumers.

Briefly, RFID systems consist of two main components: fags and readers. Tags are radio transponders attached
to physical objects. Radio transceivers, or readers, query these tags for some (potentially unique) identifying
information about the objects to which tags are attached. Although readers are often regarded as a simple conduit
to a back-end database, for simplicity we treat a reader and a back-end database as a single entity.

Historically, tags have been expensive, bulky devices used for tagging objects like shipping containers, mu-
nitions, automobile parts, or even live cattle. The high value of such objects justifies relatively expensive RFID
devices that may perform complex computations, store ample data, and initiate their own communications. Since
people do not typically carry cattle or shipping containers around with them, individual privacy is not an issue in
these applications.

Concerns about privacy and security do arise, however, in new consumer applications of RFID. RFID technol-
ogy is present in proximity cards or “prox cards” for physical access control, automobile keys, and in a variety of
contactless payment systems. Many—if not the majority—of consumers in industrialized countries today make
regular use of such systems. One pervasive future application will be “electronic product code” (EPC) tags. EPC
tags will serve on consumer products as a successor to optical “UPC” bar codes.

In the case of EPC tags, private information might be read from tags attached to products like clothing, books,
or prescription drugs. An insecure prox card payment system might leak information about the movements of its
users. But even if the semantic meaning of information on tags is well protected, tags may still be recognizable



between appearances, and thus subject to tracking. This could violate individual “location privacy” for consumers,
or could reveal strategic information about an enterprise or military supply chain.

Because of their intentionally simple design, EPC tags cannot support expensive, traditional cryptography and
security functions—not even basic ciphers. Tight economic considerations suggest that this will remain the case
for the foreseeable future. Next-generation EPC tags (such as the emerging, more expensive “Class 2” type) and
other RFID tags, though, may be capable of performing symmetric-key cryptography. While some of the RFID
literature, e.g., [10, 15] addresses privacy in tags that cannot perform cryptography, we focus in this paper on
privacy in RFID systems where symmetric-key cryptographic operations are possible.

1.1 Privacy-preserving RFID protocols in the literature

Fortunately, much attention has been devoted to RFID security and privacy in recent years. Juels offers a survey
of much of the related literature in [14] and Avoine maintains a current online bibliography at [3]. Rather than
reviewing the literature here, we refer the reader to those sources. While many RFID security schemes have been
proposed, there has been little formal analysis. Lacking formal security definitions, much existing work offers ad
hoc notions of security.

1.2 Previous RFID-privacy definitions

Our proposed definition is similar in flavor to those of Avoine [2], who proposes very general and flexible
definitions of RFID privacy. The aim of Avoine, however, is to capture a range of adversarial abilities, while we
seek to characterize a very strong adversary with a relatively simple definition. Thus, we aim for specificity and
simplicity over flexibility. For example, the Avoine definitions distinguish between adversarial eavesdropping on
the reader-to-tag channel, i.e., reader transmissions to tags, and the tag-to-reader channel, i.e., tag transmissions to
the reader. (In practice, the former is easier to eavesdrop on than the latter, as readers emit more power than tags.)
In contrast, we simply assume the ability of an adversary to eavesdrop on both channels.

On the other hand, our model is more general than the Avoine models in one important respect: Ours character-
izes the privacy of systems in which tags carry correlated secrets, as in the proposed system of Molnar, Soppera,
and Wagner (MSW) [20, 19]. This feature is lacking in the Avoine models.

Consider the following scheme. Suppose that x is a secret value; let h represent a hash function (modeled as
a random oracle) and E represent a symmetric-key cipher in the ideal-cipher model. At time step ¢, tag 1 out-
puts (E;[1,t],h(1,t,2)); tag 2 similarly outputs (Ey[2,t],h(2,t,z)). Tag 3 outputs (E[3,t],z & h(1,t,x) &
h(2,t,x)). Any pair of tags may be seen to offer strong privacy: An adversary cannot distinguish among dif-
ferent outputs of a given tag. But clearly an adversary capable of obtaining the outputs of the three tags at a
given time ¢ can completely break the privacy of this system by recovering . The Avoine definitions, however,
permit adversarial interaction with only two tags. They would classify this system as providing strong privacy
(“Existential-UNT”).

While this three-tag construction is slightly artificial, it actually reflects a feature in realistic RFID architectures.
In the MSW system [19], for example, tags contain overlapping sets of secret keys derived from a tree structure.

In other work, Juels [13] presents what he calls a “minimalist” model for tag privacy and security. This model
is geared at low-cost tags that cannot perform symmetric-key cryptography. The accompanying formal privacy
definition may be regarded as a specialized narrowing of our definitions here. The Juels definition specifically
assumes bounds on the number of queries that an adversary can make in mounting a man-in-the-middle attack.
Thus, that definition does not aim to capture RFID privacy in a strong sense. Similarly, Golle et al. [11] define
privacy is a sense specific to a cryptographic primitive they propose called “universal re-encryption” of which they
mention RFID as a possible application. Their definition excludes certain forms of active adversarial attack.



Organization

In section 2, we present our formal definition for strong RFID privacy. In section 3, we examine several different
privacy-preserving RFID systems proposed in the literature. We show how each of these systems falls short of our
strong definition of privacy; we demonstrate practical attacks that undermine important privacy characteristics.
We conclude in Section 4.

A full version of this work defines a weaker notion of RFID privacy known as “cross-reader” privacy, and
examines a privacy-preserving RFID idea called “Hash-Locks” that meets our definitional requirements [16].
These sections are omitted from this work due to space considerations.

2 Formal Privacy Definition

In this section we give a formal definition of privacy in RFID systems that can model a variety of security pro-
tocols and attacks. We regard a system as comprising a single reader R and a set of n tags 71, ..., 7,. Each party
is a probabilistic interactive Turing machine with an independent source of randomness and unlimited internal
storage. Tags and readers are modeled as “ideal functionalities,” similar to entities in Canetti’s Universal Compos-
ability paradigm [8]. Functionalities have a well-defined interface, may receive messages, and may respond with
messages of their own.

We do not use the term “oracle” to describe tags and readers, since it sometimes implies a deterministic func-
tion where inputs always have the same output. In our model, tags and readers may maintain internal state, are
randomized, and may adaptively change their output. We also want to avoid confusion when we later use “oracle”
in the context of the random oracle model.

2.1 Tag Functionalities

Each tag functionality 7; stores an internal secret key and a session identifier sid. A tag can be assigned a new
key via a SETKEY message. A tag responds to a SETKEY message by disgorging its current key. The caller may
then send an arbitrary new key to replace the prior key. A tag SID can be set to a new value sid via the message
(TAGINIT, sid). TAGINIT messages delete information associated with an existing sid. In other words, a tag may
be involved in only one protocol session at a time.

A tag may respond to a protocol message or challenge, denoted c;, with a response r;. The tag functionality
interface is illustrated in Figure 1. We explain it further below.

2.2 Reader Functionality

The reader R is initialized with private key material. For the purposes of this model, this key material is
immutable and internal to the reader. Tag data may be thought of as residing in a back-end database containing
records of the tags “owned” by a particular reader. The reader functionality initializes a new session upon receipt
of a message of the form READERINIT. When receiving a READERINIT message, R generates a fresh session
identifier, sid, and the first challenge of an interactive challenge-response protocol, cg.

For each READERINIT received, the reader creates a new internal entry of the form (sid, “open”, cp). Any
responses containing sid are appended to that entry, as well as subsequent challenges, or any other auxiliary data.
This entry is marked as “closed” and becomes read-only when the reader ultimately accepts or rejects a session.
The interface to a reader functionality R is illustrated in Figure 2; further explanation will follow.



SETKEY

A tag returns its old key and keyou s !
sets its key to a new value. key,,, |
A tag is initialized with a session .
ID. Data associated with the old TacINIT, 5id Z
sid is erased.
. C .
The tag receives a challenge and J
returns a response, which may r l
be null. < J
Figure 1. lllustration of the Tag functionality interface.
READERINIT A reader initializes a new
R (sid, c,) session and returns the first
> 0 » challenge.
(sid, r;)

A

R Accept, Reject, or Civl

v

A reader receives a response
and either accepts, rejects, or
returns a new challenge.

Figure 2. lllustration of the Reader functionality interface.

2.3 Functionality Interaction

The sid values generated by passing READERINIT messages to R may be passed as a TAGINIT message to
some 7. Once a tag is initialized with a sid, it can respond to challenge c; with response r;. This response can
be a function of the key, sid, the j — 1 previous challenge-response pairs, and locally generated randomness. The
tag may internally log both the latest received c; and the response r;. This protocol log and any other data except
key are deleted by a tag upon receipt of a TAGINIT message. Thus, a tag’s responses can only depend on that

particular session.

Similarly, reader functionality R responds to messages of the form (sid, r;) by first searching for a (sid, “open”, co, 79, . . .

session entry, if any exists. At this point, R performs a verification step by computing a function over its entire
internal state, including all open and closed sessions and any internal key material. R can output an “accept” or

“reject” and mark the session entry as (sid, “closed”, co, ro, . .

.,¢j,7;5). Alternatively, R can compute the next

challenge c¢;;1 and append it to the corresponding session entry.

:Cj)



2.4 Parameterized Adversaries

An adversary A can issue its own SETKEY, TAGINIT, READERINIT, challenge, and response messages. We
parameterize the number of READERINIT messages sent by .4 with r, the number of computational steps it per-
forms by s, and the number of TAGINIT messages sent by {. We do not parameterize the number of explicit
challenge and response messages an adversary may issue because it will be determined by the number of TAGINIT
and READERINIT messages. That is, communication costs are entirely determined by r and t.

Nor do we parameterize the number of SETKEY messages sent by .A. An adversary able to issue SETKEY
messages essentially models both the ability to corrupt a tag, since adversaries obtain its internal tag keys, and to
manufacture arbitrary tags, since adversaries can then set tag’s key to an arbitrary value. For this reason, we will
consider any tag that receives a SETKEY message from the adversary as “corrupted.” We assume an adversary is
able to send as many SETKEY messages as it likes (within its computational step bound s), at any time, to any set
of at most n — 2 tags. The rationale for this n — 2 bound will be explained in the following section.

2.5 Privacy Experiment

We now present a “privacy experiment” reminiscent of the classic indistinguishability under chosen-plaintext
attack (IND-CPA) and under chosen-ciphertext attack (IND-CCA) cryptosystem security experiments. The idea
is that an RFID protocol may be considered private for some parameter values if no adversary has a significant
advantage in this experiment. The goal of the adversary in this experiment is to distinguish between two different
tags within the limits of its computational power and functionality-call bounds.

That is why at least two tags need to be uncorrupted. In the first phase of this experiment, an adversary A
will be able to issue any messages and perform any computation within its parameter bounds. The adversary A
controls the communication channel between R and each 7;, and may obtain or corrupt any sid, c;, or r; values
at will.

The adversary selects two uncorrupted tags as challenge candidates. These challenge candidates are removed
from the pool of tags at large. One of these challenge candidates is then randomly selected and presented to A
(effectively as a tag oracle). .4 may then issue any messages and perform any computation it likes within its
parameter bounds, except issuing a SETKEY command to the tag oracle. (For most protocols, that would make the
experiment trivial, although later we briefly explore variants allowing corruption of challenge candidates.)

All key material is generated using a randomized function GEN(1¥) — (keyo, ..., key,). This function is
considered part of the overall RFID system and thus privacy depends on its characteristics. This function is
computable by an adversary. Obviously, its output in the experiment is kept secret from A.

We denote our privacy experiment for an RFID system by Expﬁc 's[k,n,r,s,t]. Here, S = (GEN, R,{T;}),
where {7;} contains n tags. We let k be a security parameter. Adversary .A with parameters r, s, and ¢ is denoted
by A[r, s, t], where r, s and t are respective parameters for reader initializations, computation steps, and tag
initializations. We detail our experiment in Figure 3.

2.6 Privacy Definition

A protocol run within an RFID system S =(GEN,R, {7Z;}) is defined to be private if no adversary A[r, s, t] has
a non-negligible advantage in successfully guessing b in the experiment in Figure 3.

We now define the notion of (r, s, t)-privacy for RFID systems. The variables r, s, and ¢ can be functions of
system parameters like k, if desired, as we shall see in our analyses. We use the notation poly (k) to represent any
polynomial function of k.



K RFID Privacy Experiment \

Experiment Exp®/ Zg [k, n,r, s, t]:

Setup:
(1) GEN(1%) — (keyo, . . ., keyy).
(2) Initialize R with (keyo, . .., keyy).
(3) Set each 7;’s key to key; with a SETKEY call.
Phase 1 (Learning):
(4) A may do the following in any interleaved order:
(a) Make READERINIT calls, without exceeding r overall calls.
(b) Make TAGINIT calls, without exceeding ¢ overall calls.
(c) Make arbitrary SETKEY calls to any (n — 2) tags.
(d) Communicate and compute, without exceeding s overall steps.
Phase 2 (Challenge):
(5) A selects two tags 7; and 7; to which it did not send SETKEY messages.
(6) Let 7" = 7; and 7" = 7; and remove both of these from the current tag set.

(7) Let b & {0, 1} and provide A access to 7,*.
(8) A may do the following in any interleaved order:
(a) Make READERINIT calls, without exceeding r overall calls.
(b) Make TAGINIT calls, without exceeding ¢ overall calls.
(c) Make arbitrary SETKEY calls to any tag in the current tag set except T,".
(d) Communicate and compute, without exceeding s overall steps.
(9) A outputs a guess bit b'.

\ Exp succeeds if b = U'. /

Figure 3. The parameterized privacy experiment for the RFID system (GEN, R, {7;}).

Definition 1 (RFID (r, s, t)-Privacy) A protocol initiated by R in an RFID system S = (GEN,R,{71,...,7T,})
with security parameter k is (1,s,t)-private if:

+ 1/poly(k).

N | =

VA[r, s, t] Pr [Expgf g’[k, n,r,s,t] succeeds in guessing b.] <
2.7 TImplications of (r, s, t)-Privacy

A few observations on our privacy definition are in order. Definition 1 requires that R not differ significantly in
its acceptance rate across tags. Otherwise, A could just pick, for example, one tag that R accepts frequently and
one that it accepts less frequently as its challenge candidates. R must essentially “own” all the tags in {7;}, or at
least treat them all equally.

‘R also cannot be trivially history-dependent nor can its acceptance be influenced significantly by A. For
example, an R which accepts each tag only a fixed number m times cannot be private in the face of an A able to
make more than m + 1 READERINIT calls. Such an adversary could simply complete m legitimate queries to a
tag Phase 1, and see if the reader accepts 7;" in Phase 2. We discuss exactly this attack in Section 3.

Our definition treats protocol-level privacy issues only. In the real world, there are effectively many possible
side channels. As Avoine and Oechslin observe [5], for example, if tags emit a distinctive “radio fingerprint,” then
no protocol-level countermeasures can prevent privacy infringement. And of course, bearers of privacy-preserving
RFID tags are vulnerable to tracking if they additionally carry wireless devices that lack privacy protections.



An important implication of Definition 1 is that the GEN function cannot output low-entropy or strongly cor-
related keys. Otherwise, A might have a significant advantage in guessing keys given the output from SETKEY
calls. This illustrates how privacy by our definition depends on the entire RFID system (GEN, R, {7;}). There are
classes of R and GEN that simply cannot be private under this definition.

Remarks: (1) A superficial difference between the Avoine model and our own is that the target tags in the Avoine
model are determined not by the adversary, but by a “Challenger.” This Challenger has unspecified functionality,
but presumably selects target tags uniformly at random. In an asymptotic sense, adversarial and random selection
of target tags are equivalent: Random selection will yield any desired pair of target tags with non-negligible
probability. ‘

(2) One may consider a variant of Expi{zg experiment with a stronger adversary A that is allowed to corrupt 7,*
in Phase 2 of the experiment, i.e. removing the words “except 7, from experiment step (8c). In most schemes,
this will trivially violate privacy. It is worthwhile, however, to consider this definition of forward (rs,t)-privacy.
In a scheme with forward privacy of this kind, corrupting a tag does not link it to its past output. (Forward privacy
is a goal of the OSK/AO scheme that we analyze below.) Forward privacy is strictly stronger than (r, s, t)-privacy
as defined in Definition 1.

2.8 Cross-reader (r, s, t)-privacy

A limitation of our definition is that it models a world in which a reader R “owns” every tag, i.e., a monolithic
and closed system. While this model provides important insights into the privacy properties of an RFID system,
different (weaker) definitions can be useful for analyzing real-world scenarios. The authors propose such a notion
“cross-reader” privacy that supports multiple readers in a full version of this work [16].

3 Analysis of Several Proposed RFID Schemes

We now examine several RFID privacy schemes proposed in the literature: (1) That of Ohkubo, Suzuki, and
Kinoshita (OSK) [24] and a variant proposed by Avoine and Oechslin (AO) [6] (with a follow-up by Avoine,
Dysli, and Oechslin [4]); (2) That of Nohara, Inoue, Baba, and Yasuura (NIBY) [21]; (3) The YA-TRAP scheme
of Tsudik [26]; and (4) A recent “zero-knowledge” scheme of Engberg, Harning, and Jensen (EHJ) [9] (EHJ).

In our analyses of OSK/AO and NIBY, we demonstrate an adversarial algorithm that shows that the algorithms
do not achieve strong privacy according to our definition. We believe that this adversarial algorithm is practical
and that it reveals a privacy vulnerability that has gone unnoticed in the literature. The vulnerability is similar in
both OSK/AO and NIBY. It involves an adversary interacting with a target tag and modifying its state. The aim of
the modification is to “mark” the target tag so that it is recognizable by the adversary at a later time. The “mark”
takes the form of state that is invalid in the view of a legitimate RFID reader. The adversary effectively plants a
timestamp in a tag that is too far in the future to be treated as valid by the reader.

We believe that this vulnerability in tags that do not accept reader input has been overlooked in the literature
because it bypasses the natural intuitive view of privacy modeling. For example, in the OSK/AO system, tags do
not accept input from a querying reader (apart from a trivial read command). The only state change in tags is the
incrementing of an internal counter. Thus, these systems appear to reduce an adversary to strictly passive attacks.
Our formal definition of privacy, however, highlights the fact that an adversary can in fact mount an active attack
by aggressively changing the internal state of tags. Tags in OSK/AO and NIBY systems are counter based and
output-only. We also examine two systems in which readers modify tag state by means of timestamps.

The YA-TRAP system is a new proposal by Tsudik that has not yet received formal security analysis. Tsudik
already notes that the system does not withstand the full range of possible active attacks. With these limitations
in mind, Tsudik has designed YA-TRAP for settings in which RFID-tag information is batched, as in warehouses,



rather than for consumer applications. Our analysis gives firmer shape to this design aim. We show a privacy
limitation in which, as in OSK/AO, a tag may be “marked” by being invalidated. More interestingly, an extension
of this attack can “mark” a tag with a unique timestamp that may be indirectly read by an adversary. Our analysis
confirms Tsudik’s view of the circumscribed settings for which YA-TRAP is appropriate.

The EHJ system is particularly interesting because it is under commercial development, with privacy being
emphasized as its distinguishing feature. The vulnerability we highlight in the EHJ system is of a different nature
than the others. In that system, an adversary can intercept a flow in the authentication protocol between a tag 7;
and the reader, and interrupt the associated session. By resuming the session at a later time using the intercepted
flow, the adversary can uniquely identify 7;.

There is one common thread across all of the vulnerabilities we explore. As our formal definition shows,
even a single bit of information—namely whether a tag functions or malfunctions—has an important bearing on
RFID-system privacy.

3.1 OSK/AO schemes

Ohkubo, Suzuki and, Kinoshita (OSK) [24] propose a simple scheme for privacy-preserving tag identification
in the face of active attacks; the OSK scheme also provides forward security. Suppose that tag ¢ is initialized with
secret x;; let hy and hy be independent one-way functions (most conveniently modeled as random oracles). When
queried, the tag updates its secret key by applying h. The tag outputs I D; ; = hg(hgt) (x4)).

Readers in the OSK scheme share secrets with tags. On input /.D; ;, a reader determines ¢ by brute-force search.
OSK propose a fixed upper bound m on the number of time steps over which tags operate. (After m time steps,
presumably a tag yields no output or random output while it awaits re-initialization or retirement.) OSK propose
that readers pre-compute a giant table 7' = {[ID;4, (i,t)]} where 1 < i < nand 1 < ¢t < m. When structured
appropriately, T' can support rapid look-up of a tag identifier. Kinoshita et al. have implemented the OSK protocol
in an active RFID tag [18].

Avoine, Dysli, and Oechslin (AO) [6, 4] propose use of Hellman tables as a special form of pre-computation
on 7. Hellman [12] originally studied the problem of breaking symmetric keys. He considered the resource
requirements of an attacker seeking to recover secret key k from a ciphertext C' = e; (M) on a pre-determined
message M. Of course, the attacker might simply perform a brute-force key search, investing computational effort
O(n), where n is the size of the full key space. Or she might pre-compute and store a table of size O(n) consisting
of C = {C; = ey, (M) }k,ex, and simply look up C' in the table; this is what OSK originally proposed.

Hellman, however, identified a useful time-space trade-off. An attacker can pre-compute a table of size
O(N 2/ 3), now known as a Hellman table, that permits successful key search with computational effort only
O(N 2/ 3). Loosely speaking, the idea is to group sequences of ciphertexts in C' into deterministically traversable
chains of size O(N?/3). Within the Hellman table are stored only the first and last elements of these chains.
Starting with a ciphertext C', the attacker can traverse the induced chain until she locates the last element. By
consulting the Hellman table, she can then determine the first element in the chain; on traversing the chain from
this point, she can determine k;.

AOQ cleverly observed that the problem of symmetric-key search for readers in privacy-preserving RFID systems
is nearly identical with that of breaking keys. For a reader to determine which tag it is communicating with, the
reader can “crack” the ciphertext C; to determine k; and thus 7;. AO apply a variant of the Hellman technique to
the OSK system, yielding a scheme with considerably more practical look-up costs. (They in fact propose use of
a variant called rainbow chains put forth by Oechslin [23].) Rather than constructing a simple look-up table 7', a
reader can make use of a Hellman table 7. The AO approach can thus render the original OSK more practical. !

'Note, however, that because a Hellman table T requires pre-computation over a fixed number of entries, it is unclear how to modify
the table to accommodate new entries. Insertion of new entries into a simple table 7" is more straightforward.



Privacy vulnerability in OSK/AQO: Avoine analyzes the OSK (and, by extension, the AO) scheme for tag
identification, and concludes that it affords the strongest form of privacy [2]. As we now explain, however, OSK
is in fact vulnerable to an attack that undermines strong privacy in the system.?

Very simply, an adversary can exploit the upper bound m on the number of tag time steps accommodated in
the look-up table T' or T. The adversary queries a tag until its counter value exceeds m. In essence it mounts a
denial-of-service attack against the tag: The adversary exhausts the supply of valid output values stored in the tag.

This strategy depends upon the ability of the adversary to obtain a single bit of information from a reader,
namely whether or not it recognizes the output of a given tag as valid. For most natural RFID tag applications,
such information will be easily obtainable. For example, a proximity card either opens or fails to open a door, a
payment card is either accepted or rejected by a point-of-sale device, and so forth. The adversarial algorithm in
Figure 4 demonstrates that OSK/AO does no achieve (r, s,t)-privacy for £ > m and r > 1 (and s > m). Indeed,
for these parameters, Expﬁc sl k,ros,t] = 1.

f OSK/AO Adversarial Algorithm \
1. In Phase 1, A selects a pair of distinct tags 7; and 7; uniformly at random.
2. A sends m queries to 7; (sends m TAGINITS).

3. A submits 7; and 7; as its challenge candidates.

4. In Phase 2, A initializes a protocol between 7;" and R.

kS. If R accepts 7,*, A guesses b = 1,i.e. T* = 7. Else A guesses b = 0,i.e. 7" =7;. J

Figure 4. Adversarial algorithm for OSK/AO

A simple modification of the adversarial algorithm in Figure 4 allows an adversary to distinguish among mul-
tiple tags by desynchronizing them in different degrees. The adversary queries 7; a total of g; times to “mark” it;
the adversary lets ¢; be unique for each tag. On later sighting a target tag 7, the adversary queries 7 a total of
m times. Let 1,79, ...,y be the resulting outputs. The adversary feeds these outputs to the reader in reverse
order 7y, Tm—1, - . . until the reader accepts some ;. The adversary concludes that the counter value for the tag
q = m — k. Assuming that no normal reading has taken place during the interval of time between the “marking”
and the sighting of the tag, the adversary concludes that if ¢ = ¢;, the sighted tag is 7;. Note that it the adversary
staggers q; values sufficiently, this strategy works even when some limited amount of normal reading has effected
changes in tag counter values.

The adversarial algorithm we describe here would appear to be feasible in a practical setting. In [6], Avoine
and Oechslin propose m = 1024 as an example parameter for a practically realizable AO system. As EPC tags
(Class 1 Gen 2) have a theoretical read rate of up to 1000 per second [1], the adversarial algorithm we describe
could well be feasible in many systems. In the original OSK system, which is less efficient than the AO variant,
m would have to be considerably smaller to permit practical deployment, and the vulnerability we describe more
easily exploitable.

Remarks: (1) The adversarial strategy we describe for OSK/AO here induces de-synchronization between tags
and the reader. It is tempting to try to evade this problem with a protocol modification in which the reader rejects
input from a 7; if the current tag counter ¢; differs by more than d from the previous counter perceived by the

The vulnerability we demonstrate appears to exist even within the Avoine privacy model. The analysis in [2] may simply represent an
oversight.



reader. This does not solve the privacy problem, however: It is equivalent to setting m = d. Moreover, if d is
small, then the system becomes vulnerable to denial-of-service attacks. Another possible countermeasure is simply
to cause tags to stop yielding output after the m!”* query. Again, this creates a vulnerability to denial-of-service
attacks.

In a natural setting, the adversary might not always have access to fresh tags, i.e., tags whose counters are equal
to 0. A simple modification of the adversarial algorithm in Figure 4, however, can still distinguish between tags.
By querying a target tag a sufficient number of times, the adversary can “mark” it. For example, suppose that
m = 1024, and suppose that prior to the testing phase of our definition experiment, 7; and 7; have each been
queried ¢; and ¢; times, where ¢;,¢; €y [0,1,2,...,50]. Then the adversary merely has to submit 51 queries to
7; to “mark” it such that it may be distinguished from 7; in the guessing phase 2.

One possible countermeasure to such attacks is “throttling,” i.e., deliberate slowing of the rate of tag response.
A rather different privacy model for tags would be needed to accommodate the effect of this countermeasure,
however [13].

3.2 Unlinkable ID-Matching Scheme

At WPES ’05, Nohara, Inoue, Baba, and Yasuura (NIBY) [21] proposed a scheme similar in flavor to MSW.
Their basic protocol permits leaves of potentially non-uniform depth within a tree 7' of maximum depth d. A tag
is presumed to output random values when depth-first-search queries exceed the depth of its corresponding leaf.

An adversary can undermine strong privacy in this scheme in much the same manner as OSK/AO; non-
uniformity in the NIBY scheme, however, renders it more vulnerable. In particular, for a given tag 7;, an ad-
versary can learn the depth d; of the corresponding leaf in the identifier tree with overwhelming probability using
the following algorithm:

Algorithm Probe(d, 7;)

1. Send d queries to 7; (send d TAGINITs).; let Z, = {zéz) gl:l denote the sequence of d outputs yielded by
the e” query, for 1 < e < d.

@ -1 ()

2. Foreverye, 1 < e < d, replace z¢ /, 2¢ e with random values.

3. Feed Z., Z._1,...to R until R accepts some Z.
4. Output €.

Suppose that the probability that two leaves in the tree T differ in depth is non-negligible. With use of the Probe
algorithm as a subroutine, we can construct an adversarial algorithm that breaks (r, s, t)-privacy in NIBY for
r,t > 3d (and s > 2d). This algorithm is depicted in Figure 5.

The authors analyze the security of a restricted case of their scheme in which all leaves are presumed to have
equal depth. The adversarial algorithm we describe here is not applicable in that case. Our analysis therefore
suggests that use of a uniform tree for NIBY is essential to privacy.

3.3 YA-TRAP: Yet Another Trivial RFID Authentication Protocol

Tsudik describes an RFID authentication protocol that he calls YA-TRAP (Yet Another Trivial RFID Authen-
tication Protocol) [26]. As discussed above, Tsudik aims this protocol at environments in which tag information
is processed in batches, rather than for more fine-grained applications like access control and tagging of individ-
ual consumer items. Tsudik has not yet formally analyzed the security properties of YA-TRAP; such analysis is
forthcoming [25]. In the meantime, our investigation here confirms the importance of confining YA-TRAP to the
limited settings for which it is designed.

10



- NIBY Adversarial Algorithm I
1. In Phase 1, A selects a pair of distinct tags 7; and 7; uniformly at random.
2. A computes d; = Probe(d, 7;) and d; = Probe(d, 7}).
3. A submits 7; and 7; as its challenge candidates.

4. In Phase 2, A computes d’ = Probe(d, 7,").

\5. If d =dj, Aguessesb=1,ie. 7" = T;. Else, A guesses b = 0, i.e. 7* =T,. J

Figure 5. Adversarial algorithm for NIBY

In YA-TRAP, the reader shares a unique key x; with tag 7;. A tag 7; also stores an internal timestamp t;,
namely the time at which it was last interrogated by a reader. To interrogate a tag, a reader transmits the current
time tR. The tag compares ¢ with ¢;. If ¢ is stale with respect to ¢;, i.e., tg < t, then the tag outputs a random
response. Otherwise, the tag outputs R = H,,[tr], where H,, represents an HMAC computed with secret key x;;
the tag also sets t; < tg, i.e., updates its timestamp.®> To validate the response of a tag, a reader checks whether
R = Hy,[tr] for any secret key z; in its database. If so, the reader accepts the tag, otherwise it rejects it.

We consider two adversarial strategies against the YA-TRAP protocol. The first is based on denial of service.
An adversary queries a tag with £,,4, to “mark” it, where ?,,4, 1S some time in the far future. The tag sets its
internal time value ¢; < ,,42, and outputs random values in response to all future queries. Thus, a reader rejects
the tag in all future sessions, permitting the adversary to distinguish the tag from one that is “unmarked.” We
outline this adversarial strategy in Figure 6.

K YA-TRAP Adversarial Algorithm \

1. In Phase 1, A selects an arbitrary pair of distinct tags 7; and 7;.

2. A sends a TAGINIT to 7; and sends ¢y = tyqz-

3. A submits 7; and 7; as its challenge candidates.

4. In Phase 2, A initializes a query by sending a READERINIT to R and a TAGINIT to 7.

5. Arelays R’s challenge co = tx to 7, and the response ry back to R.

Kﬁ If R accepts rg, A guesses b = 0, i.e. 7* = 7;, and otherwise guesses b = 1. J

Figure 6. Adversarial DoS algorithm for YA-TRAP

As the adversarial algorithm in Figure 6 demonstrates, the YA-TRAP protocol does not achieve (r,s,t) =
(1,0(k), 2)-privacy. It is worth noting that the phase 1 portion of the attack does not involve R and can be
mounted by an adversary with access to 7; alone. The phase 2 portion does not require a man-in-the-middle
setting. A real-life adversary could wait until R tries to legitimately query 7,*, and then eavesdrop, i.e., play a
purely passive role.

3The premise is that HMAC output is indistinguishable from a random distribution, so successful or failed tag responses are indistin-
guishable to an adversary. While this premise is not true of HMAC in general, it may be achieved with an appropriate underlying hash
function.

11



Building on this first strategy, we arrive at a second and more potent adversarial strategy that allows an adversary
to “mark” a tag uniquely—not simply to invalidate it. To mark a tag 7; in this way, the adversary selects a future
time u;. The adversary queries tag 7; with it, causing ¢; < w,;. The time u; serves as a uniquely individuating
“mark” for tag 7;. Starting at any time prior to u;, an attacker can test whether a given, unidentified tag 7 is in
fact 7;. The process involves two stages:

after
i

b

before such that u;

i
after
i

efore <y <
, obtaining responses 7y fore and 7 frer-

1. Probing T': The adversary selects two slightly spaced times u and u

t b
uqf er efore

... The adversary then queries the tag 7" with u, and u

2. Testing the results: The adversary interacts with R at time u?ef "¢ and u?f *" and replays responses T fore

and 7 f¢e,. If the reader accepts rye fore and rejects rq rier, then it is almost certain that 7 = 7;.

Note that this strategy does not require an active man in the middle. A can interact with the tag and the reader
at separate times. This adversarial algorithm can be extended, of course, to mark multiple tags uniquely. In the
real-world, an attacker could identify an individual on the basis of a single marked tag 7,—regardless of how many
other tags the consumer is carrying.

In the setting for which YA-TRAP was designed, where a reader batches tag information exclusively for pro-
cessing by a back-end system that does not reveal information to an adversary about the results of its identification
of tags, YA-TRAP is not subject to the attacks we describe.

3.4 A “Zero-Knowledge” RFID Protocol

Engberg, Harning, and Jensen [9] (EHJ) have proposed a privacy-preserving RFID protocol that they call “zero-
knowledge device authentication.” (The protocol, as they note, is not zero-knowledge in the received sense of the
term.) Media reports suggest that this protocol is serving as the basis of a commercial offering by a company
called RFIDSec [17]. As we show, their protocol does not provide strong priva