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Abstract

We combine well-known techniques from the areas of error-correcting

codes and cryptography to achieve a new type of cryptographic primi-

tive that we refer to as a fuzzy commitment scheme. Like a conventional

cryptographic commitment scheme, our fuzzy commitment scheme is both

concealing and binding: it is infeasible for an attacker to learn the com-

mitted value, and also for the committer to decommit a value in more

than one way. In a conventional scheme, a commitment must be opened

using a unique witness, which acts, essentially, as a decryption key. By

contrast, our scheme is fuzzy in the sense that it accepts a witness that

is close to the original encrypting witness in a suitable metric, but not

necessarily identical.

This characteristic of our fuzzy commitment scheme makes it useful

for applications such as biometric authentication systems, in which data

is subject to random noise. Because the scheme is tolerant of error, it is

capable of protecting biometric data just as conventional cryptographic

techniques, like hash functions, are used to protect alphanumeric pass-

words. This addresses a major outstanding problem in the theory of bio-

metric authentication. We prove the security characteristics of our fuzzy

commitment scheme relative to the properties of an underlying crypto-

graphic hash function.

1 Introduction

Cryptographic protocols are conventionally predicated on exact knowledge. An
authentication system using RSA signatures, for example, derives its security
largely from the presumption that a legitimate user with public key (N, e) pos-
sesses a corresponding secret key of the uniquely specifiable form (N, d). There
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are situations, however, in which human and other factors undermine the pos-
sibility of exactness in a security system. In biometric systems where users
identify themselves by means of fingerprint features, for example, variability in
user interaction is such that a finger is rarely read exactly the same way twice.
Moreover, even if knowledge in a system is exact, its transmission may only
be approximate. Users typically make typing errors, for example, when enter-
ing passwords on keyboards. Similarly, data transmission channels are often
subject to random noise. Our aim in this paper is to describe a simple crypto-
graphic primitive, namely a type of commitment scheme, that uses well-known
algorithms to facilitate the use of approximate information in cryptographic sys-
tems. As a model for approximate reasoning in humans, researchers in artifical
intelligence have elaborated a notion known as “fuzzy logic” [37]. By analogy,
we call the primitive introduced in this paper a fuzzy commitment scheme.

In a conventional bit commitment scheme, one player, whom we denote the
sender, aims to conceal a bit b. The sender produces an encryption of b, denoted
by y, and sends y to a second player, known as the receiver. A bit commitment
scheme should be such that it is infeasible for the second player to learn the bit
b. Additionally, the sender should later be able to “open” the commitment y,
that is, to prove to the receiver that y indeed represents an encryption of b. It
should only be feasible, however, for the sender to “open” y in one way, that
is, to decrypt a unique value of b. We may view this, intuitively, as a process
whereby the sender places the bit b in a safe and gives the safe to the receiver.
Only the sender can open the safe, since she alone knows the combination.
Moreover, she cannot change the value contained in the safe while it is in the
keeping of the receiver.

Formally, a bit commitment scheme consists of a function F : {0, 1}×X → Y .
To commit a bit b, the sender chooses a witness x ∈ X , generally uniformly at
random. The sender then computes y = F (b, x). This value y is known as a blob.
It represents the bit b sealed in a “safe”. To “open” or decommit the blob y, the
sender produces the bit b and the witness x. The blob is successfully opened if
the receiver has been convinced that y indeed represents an encryption of b.

A bit commitment scheme is said to be concealing if it is infeasible for the
receiver to guess b with probability significantly greater than 1/2. It is said
to be binding if it is infeasible for the sender to decommit the blob y with
the incorrect bit, that is, with 1 − b. Note that it is possible to deploy a bit
commitment scheme as a commitment scheme on an arbitrarily long string of
bits by committing each bit independently. We shall use the term commitment
scheme in this paper to refer to a scheme that involves commitment of a bit
string c (or other potentially non-binary value) in a single blob, and for which it
is possible to extract c efficiently given a witness for the blob. Thus we assume
F : C×X → Y , where B is some potentially non-binary space. Additionally, our
scheme will be such that production of a valid witness x′ allows the committed
value c to be efficiently determined from a commitment F (c, x). This is not
the case in general for commitment schemes; often, both c and a valid witness
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x′ are required to enable the sender to prove that that F (c, x) represents a
commitment of c. Finally, we offer a stronger notion of binding than that
conventionally employed in the literature. We require not just the infeasibility
of decommitting two distinct values c and c′ from a single commitment, but
also that decommitment using two substantially different witnesses be infeasible.
This is discussed in detail in Section 5. For further details on bit commitment,
the reader may consult a standard cryptography textbook, such as [33], or one
of the seminal papers on the subject, such as [12].

Our aim in designing a fuzzy commitment scheme F is to achieve a new
property that we loosely call “fuzziness”. By this, we mean that the commit-
ment scheme should be resilient to small corruptions in witness values. More
precisely, we aim to allow a blob y = F (b, x) to be opened using any witness
x′ that is close to x in some appropriate metric, such as Hamming distance,
but not necessarily identical to x. At first glance, the requirement for this
type of resilience seems contradictory to the requirements that F be binding
and concealing. After all, to achieve these two security aims, F must be an
encryption function of sorts. It would therefore seem necessary, in accordance
conventional encryption or hash function design, for small changes in input val-
ues to yield large, unpredictable changes in output values. In other words, F
should thoroughly and unpredictably “scramble” input bits. On the other hand,
the requirement of fuzziness in F suggests exactly the opposite, namely a high
degree of local structure. In this paper, we show how to reconcile these ostensi-
bly conflicting goals using well-known components drawn from error-correcting
codes and cryptography. We combine a conventional hash function h with an
error-correcting code used in a somewhat unorthodox way. Our construction is
quite simple, and provably secure with respect to the underlying hash function
h.

1.1 Organization of this paper

In Section 2, we give an overview of biometric authentication and a description
of related work. We provide a brief introduction to error-correcting codes in
Section 3. We describe our fuzzy commitment construction in Section 4, and
also discuss some applications to general security protocols. In Section 5, we
state theorems regarding the security characteristics of our construction and
analyze its resilience. We conclude in Section 6 with some suggestions for future
areas of research. Short proofs of our theorems are provided in the appendix.
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2 Background

2.1 Biometrics

An important motivation for our investigation of fuzzy commitment is the prob-
lem of secure storage of data in biometric systems. We now give a brief overview
of this area.

Biometric authentication is the process of establishing the identity of an
individual using measurements of some collection of his or her biological char-
acteristics. Applied in its broadest sense, biometric authentication describes the
processes that human beings use naturally to recognize one another, primarily
through the senses of sight and hearing. When you recognize a friend by her
face, you are performing a type of biometric authentication.

Biometric authentication can also assume automated forms involving the
identification of individuals to computer systems by such means as retinal and
fingerprint scans. Until recently, biometric technologies have been the preserve
of government agencies and science fiction movies, as in [2, 10, 27]. Recent
improvements in on-chip scanning technologies as well as a proliferation of pe-
ripheral devices such as microphones and video cameras in desktop systems com-
puters have promised to bring automated biometric authentication technologies
to a consumer level in the near future [11, 19]. A plethora of relatively inex-
pensive biometric authentication techologies are now available, including ones
based on fingerprint scanning, iris scanning, voice authentication, face recogni-
tion – and even body odor. These technologies promise to play a major role in
a broad range of data security applications.

Much of the appeal of biometric authentication is its promise of heightened
security relative to passwords. As security specialists know well, users often
choose passwords poorly and write them down in conspicuous places, making
them vulnerable to attack. Biometrics eliminate the problem of forgotten pass-
words and, according to industry claims, are largely resistant to remote capture.

Biometrics, however, pose a security risk that passwords do not. In many
operating systems, as in most implementations of UNIX, a given password P
is not stored explicitly in the system password file. Instead, a commitment of
P is stored in the form of a hash h(P ) [18, 26].1 (Note that this hash may be
regarded as a commitment on a null value for which P is the witness.) Thus it
is possible to verify that a user has entered her password correctly, while even
a system administrator cannot feasibly extract a well-chosen password P from
the password file entry h(P ). Protecting user secrets through a straightforward
means of commitment like hashing is not possible, though, for biometric au-
thentication. The reason is this: two readings of the same biometric are rarely
identical. Changes occur naturally in biological characteristics over time. Ad-
ditionally, there is substantial variability in human execution of physical tasks.

1Hashed passwords are typically also salted as a defensive measure against dictionary

attacks.
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Because users are inconsistent in the position and pressure with which they
apply their fingers to readers, for example, fingerprint reading devices almost
always extract different information from multiple readings of the same finger
– even when these readings occur in rapid succession.

To handle the variability inherent in biometric authentication, most systems
store for each user what is called a template. The template xU for user U
consists of a biometric reading or set of readings obtained from U during an
initial registration or enrollment process. When a user claiming to be U later
authenticates herself, resulting in biometric reading x′, a matching algorithm is
invoked to compare x′ with xU and determine whether the two belong to the
same user. How much x′ must look like xU to generate a match depends on
the matching algorithm and its parameterization. The parameterization of a
matching algorithm depends in turn on the false rejection and false acceptance
rates desired in a given authentication system.

Because of the resilience required for biometric authentication systems, tem-
plates are usually stored, unlike passwords, in explicit form. Yet the protection
of biometric information is far more critical than that of passwords. It is easy
to use separate passwords for different systems, and to change passwords on
a frequent basis. Using multiple biometrics across systems and changing bio-
metric passwords is harder. In a system employing fingerprints, for example, a
user can change her “password” at most nine times. Additionally, many users
have serious concerns about the threat to privacy posed by compromised bio-
metric information. These issues have been persistent points of contention in
the development of biometric authentication systems [11, 19].

2.2 Related work

The idea of fuzziness in commitment schemes perhaps first arises in the lit-
erature in connection with “collisionful” hash functions, intended for use in
password protection. (Recall that the hash of a password may be viewed as a
commitment.) “Collisionful” hash functions, introduced in [9], aim to discour-
age guessing attacks against passwords by means of a dense pre-image space.
Gong [20] describes methods of carefully determining collision sets for this pur-
pose, enabling the selection of multiple, plausible passwords (or witnesses) as
pre-images for a given hash value. Other research in this area includes that of
Bakhtiari et al. [3, 4, 5].

As mentioned above, error-correcting codes play a central role in our fuzzy
commitment construction. The application of error-correcting codes to cryp-
tography has a long history. Error-correcting codes are particularly important
in non-standard cryptographic models. They serve, for example, as a means of
eliminating errors introduced by “dark counts” and other apparatus faults in
quantum cryptographic key distribution protocols (see, e.g., [6]). They are like-
wise a critical component in the implementation of oblivious transfer and key
agreement protocols over both quantum [7, 14] and noisy channels (see, e.g.,
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[13]).
Error-correcting codes can also be employed in the construction of traditional

cryptographic primitives. In [24], McEliece elaborates a well-known public-key
cryptosystem whose hardness is based on the NP-hard problem of decoding
an arbitrary linear code [8]. Researchers have also proposed identification [32]
and digital signature schemes [1] based on error-correcting codes, among other
applications. In a recent paper [21], Jakobsen demonstrates that a class of
error-correcting codes known as Reed-Solomon codes can even assist in the
cryptanalysis of block ciphers.

A notable feature of these efforts is their use of error-correcting codes to
subserve conventional cryptographic goals. In an important divergence from
this tradition, Davida, Frankel, and Matt [16] propose a synthesis of error-
correcting codes with cryptographic techniques to achieve a new and somewhat
unusual security goal. They describe a system in which a biometric template
can be stored in non-explicit, protected form, but such that some corruption in
subsequent readings can be tolerated. They achieve this by computing check
bits on the template using a linear error-correcting code, and storing these check
bits along with a hash of the template. Their construction offers important new
ideas, and may in fact be regarded as a kind of fuzzy commitment. Their
system does not have the necessary error tolerance to work in many real-world
applications. They require, for instance, that a biometric scan be repeated many
times in succession under the assumption that the errors in these scans will be
wholly independent. Follow-up analysis of their work may be found in [17].

Vendors of biometric systems have for some time recognized the importance
of achieving a practical system along the lines of that proposed by Davida et
al. To this end, the company Mytec Technologies has developed a related tech-
nology, consisting of an encryption process in which biometric data serves as an
unlocking key. Sold under the brand name BioscryptTM, this technology over-
comes the problem biometric data corruption by means of Fourier transforms.
While fairly efficient, however, it carries no rigorous security guarantees (see,
e.g., [30, 31]).

Our work on fuzzy commitment may be regarded as an improvement on and
generalization of that of Davida et al. As mentioned above, their scheme involves
the extension of a biometric template into an error-correcting codeword through
the addition of check bits. (See Section 3 for the definition of a codeword.) In
contrast, our fuzzy commitment scheme, as applied to biometric templates,
treats the template itself without any modification as a corrupted codeword.
This difference in perspective yields several advantages. Most importantly, our
construction links the number of codewords to the security parameter, while
that of Davida et al. links it to the significantly larger message (i.e., template)
size. In consequence, our construction uses much smaller error-correcting codes
than that of Davida et al. and achieves significantly higher resilience. Our fuzzy
commitment construction thereby brings the idea of secure biometric template
storage farther into the realm of practical application.
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3 Error-Correcting Codes

To provide background for the fuzzy commmitment construction presented in
the next section, we now give a brief overview of error-correcting codes. The
goal of an error-correcting code is to enable transmission of a message m intact
over a noisy communication channel. This is accomplished by mapping m to
a longer string c prior to transmission. The string c is constructed so as to
contain redundant elements. Therefore, even if some of the bits of this string
are corrupted by noise, it remains possible for a receiver to reconstruct c, and
consequently the message m.

More formally, an error-correcting code consists of a set C ⊆ {0, 1}n of
codewords. This set contains the strings to which messages are mapped prior
to transmission. Hence, in a code for use with k-bit messages, C contains 2k

distinct elements. To achieve redundancy, it is a requirement that n > k. Error-
correcting codes may of course be easily defined on non-binary spaces as well,
and our constructions are straightforwardly extensible to such spaces.

To use an error-correcting code, we require functions for encoding and de-
coding of messages. Let M = {0, 1}k represent the space of messages. The
function g : M → C, which we call a translation function, represents a one-to-
one mapping of messages to codewords. In other words, g is the mapping used
prior to message transmission. (Conversely, g−1 is used upon message receipt to
retrieve the transmitted message from a reconstructed codeword.) The function
f : {0, 1}n → C

⋃
{φ}, known as a decoding function, is used to map arbitrary

n-bit strings to codewords. When successful, f maps a given n-bit string x
to the nearest codeword in C (i.e., nearest in terms of Hamming distance).2

Otherwise, f fails, and outputs φ.3

The robustness of an error-correcting code depends upon the minimum dis-
tance between codewords. To make this idea precise, we require some basic
notation regarding strings of binary digits. Let the symbol + (and equivalently,
the symbol −) denote the bitwise XOR operator on bitstrings. (In this context,
the symbols + and − are more intuitively appealing than ⊕.) The Hamming
weight of an n-bit string u, denoted by ‖ u ‖, is defined to be the number of
‘1’ bits in u. The Hamming distance between two bitstrings u and v is likewise
defined to be the number of digits in which the two strings differ. Equivalently,
the Hamming distance is equal to ‖ u− v ‖.

We say that a decoding function f has a correction threshold of size t if
it can correct any set of up to t bit errors. More precisely, for any codeword

2The task of mapping an arbitrary string to its nearest codeword is known as the maximum

likelihood decoding problem. Practical classes of codes with polynomial-time solutions to this

broad problem are at present unknown. Conventional decoding functions perform a more

limited task: they successfully decode any word that lies within a certain radius of some

codeword. This is all that our fuzzy commmitment algorithm requires.
3Error correcting codes may work somewhat differently. For example, with use of list

decoding, f may yield a set of candidate codewords, rather than a single correct one. The

underlying principles in our construction remain the same in such settings.

7



c ∈ C and any error or offset δ ∈ {0, 1}n with ‖ δ ‖≤ t, it is the case that
f(c+ δ) = c. We say that a code C has a correction threshold of size t if there
exists a decoding function f for C that has correction threshold t. Observe
that the distance between any two codewords in C must be at least 2t + 1.
We define the neighborhood of a codeword c to be f−1(c). In other words, the
neighborhood of c consists of a subset of the n-bit strings that f maps to c. The
decoding function f is generally such that any codeword in f−1(c) is closer to c
than to any other codeword.

Example 1 Let n = 3, k = 1, and C = {000, 111}. Let the decoding function
f compute majority, i.e., f maps a bitstring x ∈ {0, 1}3 to 000 if at least two
digits of x are 0 and to 1 if at least two are 111. This decoding function has
t = 1. In other words, f can correct a single error, since changing a single digit
in either 000 or 111 does not change the majority.

The ratio k/n in an error-correcting code is known as its coding efficiency,
and measures the degree of redundancy in the code. (The lower the coding
efficiency, the more redundancy in the codewords.) The {000, 111} code, for
instance, has a coding efficiency of 1/3. In general, codes that can correct a
large number of errors must have a low coding efficiency.

Further details on error-correcting codes are available in any of a number of
textbooks on the topic, such as, e.g., [23, 28, 36].

3.1 How we use error-correcting codes

As explained above, an error-correcting code traditionally involves changing a
message to a codeword before transmitting it across a noisy channel. In some
situations, however, this initial encoding step is impossible because the message
cannot be modified. For instance, in the case of biometric identification the
noisy channel might be an error-prone fingerprint reading machine, and the
“message” might be an actual fingertip. Thus, we do not have the ability to
add redundancy to the “message”. Because this constraint arises in our use of
fuzzy commitment, we treat a witness (e.g., biometric template) as a corrupted
codeword, rather than a message. In consequence, our construction does not
map messages from the space M to the set of codewords. In fact, we do not
make use of M at all. Rather, we make use of only half of an error-correcting
code: we use the decoding function f , but not really the translation function
g. This use of error-correcting codes is somewhat unorthodox. It represents the
novel element in our construction.

The commonest class of error-correcting codes consists of what are known
as linear codes. These are codes whose set of codewords, in the binary case,
forms a vector space over the field with two elements. Almost all of the error-
correcting codes used in practice are linear. Although not strictly necessary, it
is for several reasons convenient to choose a linear code for our construction.
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For example, one property of linear codes useful in a number of applications of
our fuzzy commitment construction, as we shall see, is that it is very easy to
select a codeword c uniformly at random from C.

4 Construction of our fuzzy commitment scheme

4.1 Intuition

Let us now describe the construction of our fuzzy commitment scheme F . We
shall construct F so as to commit a codeword c using a witness x, where both
c and x are n-bit strings.

Observe that an n-bit witness x can be uniquely expressed in terms of the
codeword (committed value) c along with an offset δ ∈ {0, 1}n such that x =
c + δ. Given a witness x expressed in this way, the idea behind the fuzzy
commitment function F is to conceal c using a conventional hash function h,
while leaving δ in the clear. The information δ provides resilence in the witness
required to open F . In particular, δ provides some partial information about x.
On the other hand, the remaining information needed to specify x, namely the
codeword c, is presented in a concealed form as h(c).

Recall that we define |C| = 2k. The amount of information contained in the
codeword c, and thus the amount of information about the witness x concealed
in h(c) depends on k, that is, on the number of codewords in C. The greater
the number of codewords, the greater the amount of information about the
witness x that is concealed in h(c). In contrast, the amount of information in
δ determines the level of resilience in F . If we are presented with a witness x′

that is near x, we can use δ to translate x′ in the direction of x, facilitating our
recovery of the committed codeword c. As we shall see, we achieve a tradeoff
between resilience and security by varying k, and thus the relative distribution
of information between δ and c.

In biometric scenarios, x will typically represent a biometric template, such
as a fingerprint. The codeword c will represent a secret key protected under
this template. For example, c might be a decryption key protected under the
user’s fingerprint x as the commitment F (c, x). In order to unlock and reveal
this key, it suffices for the user to present a corrupted fingerprint image x′

sufficiently close to x. Note that in some scenarios where is not necessary to
protect c itself, the codeword c must still be drawn from a large space C, in order
to conceal the witness x. Consider, for example, a straightforward fingerprint
authentication scenario meant to model the use of hashed passwords on UNIX
systems. Here, F (c, x) is stored on a server. In order to demonstrate her identity,
it suffices for the user simply to present to the server a fingerprint image that
succesfully decommits F (c, x). The committed value c does not serve here as
a cryptographic key. Nonetheless, c must be drawn from a large enough space
C to ensure that F (c, x) does not reveal x. If |C| (or, equivalently k) is small,
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then an attacker can guess c and extract x from F (c, x).
It is helpful to describe these ideas in terms of a geometric analogy. Let C

be the set of points on the lattice {100u, 100v} for integer values u and v. Let
us think of the witness x as a point on the Euclidian plane, say, (745, 260). Let
the decoding function f map a given point to the nearest lattice point in C.
E.g., f(120, 94) = (100, 100). Suppose we choose an arbitrary lattice point, say,
c = (300, 300). We can express x in the form x = c+δ by letting δ = (445,−40).

Suppose now that without knowing the codeword c, we are given the blob y =
(h(c), δ). (This y, as we shall see, is exactly the commitment of c.) Observe that
δ tells us the position of x relative to c, but gives us no information about what
c is. Thus, assuming that h is a secure one-way function, the only information
that y effectively reveals about the witness x is that it takes the form (100u′ +
45, 100v′ + 60) for some integers u′ and v′. Subject to this constraint, x could
otherwise lie anywhere in plane.

Consider the case, now, if we are additionally given some point x′ that is
close to x, say x′ = (720, 240). By subtracting δ, we translate x′ to the region
near the codeword c. In particular, x′−δ = (275, 280). By applying the decoding
function f to this last point, we obtain f(x′−δ) = c. Thus, knowledge of x′ and
use of the decoding function f enable us to determine x from y and decommit
c.

Say that x were the fingerprint template of a user. Then an attacker with
knowledge of y alone would be unable to find a witness to decommit c. On the
other hand, as demonstrated above, if the user were to present her finger to a
reading device, generating read data x′, then it would be possible to extract c
from y. It is easy to see, in consequence, that knowledge of y makes it possible
to verify that x′ is close to x, and thus to authenticate the user. In loose terms,
x′ may be viewed as a fuzzy representation of the original witness x. Let us
proceed to make this intuition more precise.

4.2 Construction of F

Our construction for F is now quite straightforward. Let h : {0, 1}n → {0, 1}l

be a hash (or one-way) function such as, e.g., SHA-1. We now formally define
F : ({0, 1}n, {0, 1}n) → ({0, 1}l, {0, 1}n) as follows:

F (c, x) = (h(c), x− c).

To decommit F (c, x) = (α, δ) using witness x′, the receiver computes c′ =
f(x′ − δ) = f(c + (x′ − x)). If α = h(c′), then the blob has been successfully
decommitted, with c′ representing the extracted commitment. Otherwise, x′

is an incorrect witness. Provided f is an efficient decoding function (which is
the case, of course, for codes used in practice), then decommitment is likewise
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an efficient process. In the remainder of the paper, we shall denote the en-
tire commitment scheme, both the commitment and decommitment processes,
informally by F .

Recall that the “fuzziness” of F consists of the notion that if x′ is close
to x, then x′ can be used to decommit F (c, x). This notion formalized in the
following lemma, whose proof is given in the appendix. Note that the converse
does not necessarily hold.

Lemma 1 Suppose that ‖ x − x′ ‖≤ t. Then for any c, the witness x′ can be
used to decommit F (c, x) successfully.

4.3 Applications of the fuzzy commitment function F

To provide a flavor of how a fuzzy commitment scheme might be deployed
in a biometric systems, we now sketch how F can be used to achieve three
different security goals, namely static (or off-line) authentication, challenge-
response authentication, and encryption/decryption. We assume that a user
presents a secret x in an enrollment (or encryption) phase and in any given
subsequent interaction presents some x′ that, if legitimate, differs from x by at
most the correction threshold t. In a biometric system, once again, x might be
the fingerprint template presented by the user in an enrollment phase. In this
case, x′ is fingerprint information presented for authentication at the initiation
of a login session. We use ∈R in what follows to denote uniform random selection
from a set.

In all three protocols, the basic idea is the same. The witness x is used to
commit to a secret codeword c. Presentation of a witness x′ close to x opens
this secret c, which may then be used to achieve the desired security goal, be it
encryption, decryption, or authentication. Note as mentioned above, however,
that in the first authentication protocol, the committed value c does not play a
direct role as a cryptographic key. It must nonetheless be selected from a large
space C in order to ensure that x remains well concealed, as well as to achieve
a sufficiently high level of security in the authentication scheme.

Fuzzy authentication Let S denote the authentication entity, such as a
server verifying biometric data to control resource access. Let U denote the
user. Our protocol is as follows.

• Enrollment The user U presents biometric data x. The authentica-
tion system S selects a codeword c ∈R C. S computes the commitment
yU = F (c, x), and stores it in a file for user U . Alternatively, for off-line
applications, it is possible to store yU and a digital signature of S on yU
in, say, a smart card.

• Authentication A user purporting to be U presents a value x′ for au-
thentication. S looks up yU and checks whether the witness x′ yields a
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successful decommitment. If so, the user is authenticated as U ; otherwise,
the authentication fails. The authentication may, alternatively, take place
off-line in some trusted module.

Note also that the length of the authentication data yU is just n + l bits,
the length of the value x plus the length of the image of h. For a standard hash
function like SHA-1, the fuzzy commitment of a biometric template is only 20
bytes longer than the template itself.

The following small example is intended to provide some flavor of how au-
thentication might work under a fuzzy commitment.

Example 2 Let us extend our simple zero-one-block code of Example 1 and
consider its application to a toy fingerprint authentication system in which n =
10. Let C consist of the set of four codewords {00000, 11111}2. Let f perform
majority error-correction sequentially on blocks of five bits in the obvious way.
Observe that t = 2 for this code.

Suppose that a user enrolls a fingerprint template x = 01010 10101 in an
authentication system (the space in the representation of x is inserted here for
clarity). Suppose further that the system randomly chooses the codeword c =
00000 11111. Thus, δ = 01010 01010. The authentication system should store
the commitment F (c, x) = (α, δ) = (h(00000 11111), 01010 01010).

Now suppose that when the user goes to authenticate herself, she presents
fingerprint data x′ = 11010 11101. Observe that the value x′ differs from x in
two bit positions. Now h(f(x′−δ)) = h(f(10000 10111)) = h(00000 11111) = α.
As the decommitment is succesful, the authentication succeeds.

Fuzzy challenge-response authentication protocol F can serve as the
basis of a fuzzy challenge-response authentication using any public key cryp-
tosystem. Let K be a deterministic algorithm that takes as input a seed and
outputs a corresponding secret/public key pair (SK,PK). Let DSK(m) de-
note the decryption (signature) of a message m using secret key SK, and let
EPK(Σ) denote the encryption (verification) using public key PK of a message
(signature) Σ. The protocol is as follows.

• Enrollment The User selects a codeword c ∈R C. She computes F (c, x)
and (SKU , PKU) = K(c). She stores F (c, x), and registers the key PKU

with S.

• Authentication The authentication entity S sends the user a random
message m. The user takes data x′ and tries to decommit F (c, x). If
successful, she uses the secret c as a seed to K to derive (SKU , PKU ).
She then produces the digital signature DSKU

(m) and sends it to S, who
verifies that the signature is valid under public key PKU .

12



Fuzzy encryption Let Ew(m) denote encryption under a symmetric encryp-
tion algorithm of message m using key w. We have the following encryption
algorithm based on use of fuzzy commitment.

• Encryption The User selects a codeword c ∈R C. She encrypts message
m as (Ec(m), F (c, x)).

• Decryption To decrypt using x′, the user first seeks to decommit F (x, c)
using witness x′. If successful, she extracts the encryption/decryption key
c, which she can use to recover the plaintext m.

Fuzzy encryption allows applications such as that in which a user employs a
fingerprint as a secret enabling encryption and decryption of files.

5 Security and Resilience

In this section, we investigate the security of our fuzzy commitment function
construction. To simplify our analysis, we assume that the witness x is drawn
uniformly at random from {0, 1}n. Also in this section, we consider the resilience
of F . As the the reader shall see, the resilience of F is complementary, i.e.,
inversely related, to its level of concealment.

5.1 Security

Recall that the security of a commitment scheme consists of two properties: it
must be both concealing and binding. The following theorem characterizes the
property of concealment in F . The proof and some discussion may be found in
the appendix.

Theorem 1 Suppose that for c ∈R C and x ∈R {0, 1}n an attacker is able to
determine c from F (c, x) in time T with probability p(T ). Then it is possible for
the attacker to invert h(z) on a random input z ∈R C in time T with probability
p(T ).

As |C| = 2k, Theorem 1 indicates that k is a security parameter governing
the concealment of our construction. For most applications, a value of about
k = 80 should provide an adequate level of security. Under common assumptions
about hash functions – in, e.g., the random oracle model – this security level
will require from an attacker seeking to open a commitment under F an average
of 279 hash function computations. This is comparable to the computational
effort required for factoring RSA-1024 or finding a collision in SHA-1.

Recall that the notion of binding in a commitment scheme conventionally
refers to the property whereby it is infeasible for any polynomially bounded
player to produce valid decommitments of F (c, x) for two distinct values c and
c′. For our scheme, we consider a strictly stronger notion of binding. We
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say that F is strongly binding if it is infeasible for any polynomially bounded
player to produce a witness collision on F . A witness collision is a commitment
F (x, c) and a pair of witnesses (x1, x2) both of which yield valid decommitments,
but such that x1 and x2 are not “close”. We say that x1 and x2 are close if
f(x1−δ) = f(x2−δ), i.e., x1 and x2 are close in a sense defined by the underlying
error-correcting code. Observe that this definition of strong binding subsumes
the conventional definition of binding.4 In particular, it is easy to see that if F
is strongly binding, then F is also binding. We now have the following claim,
whose proof is straightforward. 5

Claim 1 F is strongly binding if h is collision resistant. In particular, suppose
that an attacker is capable of finding a witness collision. Then the attacker can
find a collision on h.

The notion of strong binding is particularly useful for biometric authentica-
tion scenarios. For example, consider a situation in which an attacker is capable
of finding a commitment F (x, c) and two substantially different witnesses x and
x′, both of which yield a valid decommitment of the value c. This situation is
not captured by the weaker definition of binding. In the setting of biometric
authentication, however, it might correspond to a situation in which the at-
tacker can register a pair of fingerprints from two different people that would
be identified as belonging to the same person. Thus, strong binding ensures
against, e.g., a repudiation attack, in which the user of security system registers
two different keys and then claims his data has been compromised by a party
possessing a different key. This is sometimes an important property for the
applications described in Section 4.3.

Claim 1 states that the length l of images output by h dictates the security
level of the strong binding property, i.e., the hardness of finding a witness col-
lision. Under the common assumption that the most effective means of finding
a collision in a hash function is a birthday attack (see [25] for definition), the
induced work factor is 2l/2. Hence a security parameter of l = 160, which cor-
responds to the image length of SHA-1, yields a minimum work factor of about
280.

5.2 Resilience: What % error can F tolerate?

We now consider the tolerance of our technique to errors in the witness. Let
F be a fuzzy commitment scheme and let F (c, x) = (α, δ) be the commitment
generated for a bitstring x with a randomly generated codeword c. We say that

4Strong binding may, of course, also be defined in a conventional commitment scheme by

allowing a witness collision to include any x1 and x2 that are distinct.
5In contrast to Theorem 1, we do not measure the success of the attacker as a function of

time here. This is due to our use of a fixed hash function, since for any given hash function

h, there exists a trivial, constant-time algorithm that finds a collision. This algorithm simply

outputs a known collision.
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F has q% resilience for the pair (x, c) if for error term e such that ‖ e ‖≤ qn
100

,
x′ = x+ e is also a witness sufficient to decommit (α, δ). If F has q% resilience
for all pairs of bitstrings and codewords (x, c), we say simply that F is q%
resilient.

The resilience of a fuzzy commitment scheme is easily seen to be bounded
below by the resilience of the error-correcting code used in its construction. If
the code itself has a correction threshold of qn

100
, then F is q% resilient. This

follows since by definition f(c + e) = f(c) for any codeword c and any error
term e such that ‖ e ‖≤ qn

100
. Thus for any bitstring x and codeword c, we have

h(f(x + e − δ)) = h(f(x + e − (x − c))) = h(f(c + e)) = h(f(c)) = α, so that
x+ e will decommit (α, δ).

As remarked above, the correction threshold of an error-correcting code is
bounded by the minimum Hamming distance between codewords in C (known as
the minimum distance of the code). In general, the larger the coding efficiency
k/n, the larger the minimum distance achievable in an error-correcting code.
(This is logical, as k/n is proportional to the redundancy permitted in the
code.) Often, however, we do not have much control over the values n and k.
As detailed in our security analysis, k should be approximately 80 to prevent
brute-force inversion attacks against the underlying hash function h. The value
n is typically fixed by the particular application.

For fixed parameters k and n, there is no straightforward way to determine
the most efficient error-correcting code. The design of codes to handle particular
parameter sets is a broad research topic covered in some degree by classic texts
such as [23] or [28]. In general, practicioners resort to tables of the best known
codes, such as those given in [28].

To provide some sense of the level of resilience achievable in practical set-
tings, however, let us consider the case where n = 540. This corresponds to
a rough lower bound on the amount of information in a typical template ex-
tracted by the latest generation of fingerprint scanning chips manufactured by
Veridicom [22]. Consulting the table in [28] on an efficiently computable class of
error-correcting codes known as BCH codes, we find that a BCH code exists with
k = 76, n = 511 and a correction threshold of 85 bits. The parameter k = 76
provides an acceptable security level, and we can use codewords of length 511 by
truncating or compressing some data. This BCH code enables us to construct a
fuzzy commitment scheme that tolerates errors in any witness of up to almost
17% of the component bits.

5.3 Modifying distribution assumptions

Non-uniform distributions on witness x We have assumed throughout
our exposition above that witnesses x to the commitment scheme are selected
uniformly at random from {0, 1}n. If this is not the case, and x is drawn from
some non-uniform distribution D over {0, 1}n, then Theorem 1 no longer holds.
Some distributions D will not result in a significant diminution in the security
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parameter k, while others will yield a lesser security level. A good security
analysis will, in general, require detailed knowledge of D. On the other hand,
if D is only slightly non-uniform, then it is straightforward to show that only a
slight diminution in security will result. Larger diminutions in security can be
compensated for by increasing k (and thereby possibly reducing the resilience
of the commitment scheme).

Beating the correction threshold The error term e = x′ − x will, in a
biometric system, typically represent the difference between a biometric tem-
plate and data presented during an authentication. In many cases, the bits in e
are distributed independently. In other words, the corrupted witness x′ results
from the addition of noise that alters every bit of x independently with some
probability p. In this case, it is generally not possible to achieve resilience much
better than the correction threshold t for the error-correcting code. On the other
hand, if bits in e are correlated, then we can sometimes construct codes that
achieve higher level of resilience that the correction threshold. This is because
correlations in e restrict the number of likely error patterns. If errors tend to
occur in sequence, for example, then it is advantageous to use Reed-Solomon
codes, well-known for their use in the digital recording media such as compact
discs, where so-called burst errors are common [36]. An additional advantage of
Reed-Solomon codes is that for this class of code much progress has been made
recently in achieving probable error correction beyond the correction threshold
[29, 34, 35]. In certain cases, it may even be possible to use such codes to achieve
good error correction under independence of bits in e.

Real-world biometric systems Regrettably, a rigorous characterization of
the typical error level in the Veridicom and other fingerprint readers is not yet
available. The error level and typical input distributions for some readers, such
as the iris scanner of IrisScanTM, are better understood (see, e.g., [15]), but not
sufficiently for a good analysis of their potential for secure error correction. The
distribution characteristics for biometric readers on typical human population
segments represents an important research topic.

Another important research topic treats the conversion of biometric tem-
plates to bitstrings or other representations amenable to fuzzy commitment.
While IrisScanTM and some other biometric templates take the form of bit-
strings, many fingerprint image templates do not. Pattern matching methods
that involve conversion from native to more conventional representations, how-
ever, are an active area of research [22]. In order to apply our fuzzy commitment
scheme with firm security guarantees to existing biometric systems, it may be
necessary to await advances in this area, as well as in characterization of tem-
plate structures.
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6 Conclusion

We have constructed a simple and practical fuzzy commitment scheme using
well-known techniques from error-correcting codes and cryptography. Our work
prompts a number of further questions. Foremost is the question of the distri-
bution of inputs in biometric authentication and other real-world applications.
Are there common biometric template types that are uniformly or near uni-
formly distributed? If not, can our fuzzy commitment function construction be
adapted to provide strong security guarantees? Also important is the question
of what types of error patterns are common in real-world applications and, con-
sequently, what error-correcting codes are most suitable. (It is our suspicion
that recent research on Reed-Solomon codes may provide useful results in this
area.) A final avenue of exploration is to find new applications of fuzzy com-
mitment schemes, perhaps to such areas as multimedia transmission over noisy
channels or digital watermarking.
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A Proofs

Lemma 1 Let F be a fuzzy commitment scheme based on an error-correcting
code with error-correcting threshold t. Suppose that ‖ x−x′ ‖≤ t. Then for any
c, the witness x′ can be used to decommit F (c, x) = (α, β).

Proof: Since t is the correction threshold of the code C, for any e ∈ {0, 1}n

with ‖ e ‖≤ t we have f(c+ e) = c = f(c). Since ‖ x − x′ ‖≤ t, it follow that
for any bitstring x and codeword c, we have h(f(x′ −β)) = h(f(x′ − (x− c))) =
h(f(c+ x′ − x)) = h(f(c)) = α, so that x′ will decommit (α, β).

Theorem 1 Suppose that for c ∈R C and x ∈R {0, 1}n an attacker is able to
determine c from F (c, x) in time T with probability p(T ). Then it is possible for
the attacker to invert h(z) on a random input z ∈R C in time T with probability
p(T ).

Proof: Since x and c are selected independently and uniformly at random, it
is clear that δ = x− c reveals no information about the codeword c. It follows
that the task of an attacker in determining c is equivalent to the task, given
knowledge only of h(c), of finding a string z ∈ C such that h(z) = h(c). The
theorem follows.
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Remark The underlying assumption in Theorem 1, that it is hard to invert h
on images drawn from C, is somewhat non-standard. It is in accordance, though,
with common security assumptions on hash functions, such as those provided
by the random oracle model. Nonetheless, we can easily recast Theorem 1 to
use more canonical security assumptions. For any c ∈ C, let h̃(c) = h′(g−1(c)),
where h′ : {0, 1}k → {0, 1}k is a one-way permutation. (Recall here that g−1

is a one-to-one function that maps a codeword to its corresponding message in
M .) If we substitute h̃ for h in our construction of F , then the security of F
relies on the hardness of inverting the one-way permutation h′ on a random
image. Theorem 1 can be modified accordingly to rely on this more standard
security assumption.
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