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Abstract—Security is a major barrier to enterprise adoption
of cloud computing. Physical co-residency with other tenants
poses a particular risk, due to pervasive virtualization in the
cloud. Recent research has shown how side channels in shared
hardware may enable attackers to exfiltrate sensitive data
across virtual machines (VMs). In view of such risks, cloud
providers may promise physically isolated resources to select
tenants, but a challenge remains: Tenants still need to be able
to verify physical isolation of their VMs.

We introduce HomeAlone, a system that lets a tenant verify
its VMs’ exclusive use of a physical machine. The key idea in
HomeAlone is to invert the usual application of side channels.
Rather than exploiting a side channel as a vector of attack,
HomeAlone uses a side-channel (in the L2 memory cache) as
a novel, defensive detection tool. By analyzing cache usage
during periods in which “friendly” VMs coordinate to avoid
portions of the cache, a tenant using HomeAlone can detect the
activity of a co-resident “foe” VM. Key technical contributions
of HomeAlone include classification techniques to analyze cache
usage and guest operating system kernel modifications that
minimize the performance impact of friendly VMs sidestepping
monitored cache portions. HomeAlone requires no modification
of existing hypervisors and no special action or cooperation by
the cloud provider.

Keywords-Cloud computing, Infrastructure-as-a-Service
(IaaS), co-residency detection, side-channel analysis

I. INTRODUCTION

With its massive pooling and multiplexing of computing
resources, the cloud offers enterprises the prospect of lower
IT costs, lighter administrative burdens, and rapid scaling of
resources. Security, however, is a widely cited impediment
to enterprise adoption of public clouds, i.e., clouds admin-
istered by third parties [45]. By relinquishing control over
their IT resources, cloud tenants expose themselves to the
security choices—and mistakes—of their providers. Because
many tenants share common pools of hardware, the cloud
makes strange bedfellows. Businesses may find themselves
sharing adjacent or overlapping computing resources with
partners, suppliers, competitors, or attackers.

Strong isolation among tenants is therefore a pillar of
secure cloud computing. Logical isolation of computing
resources can help protect against poorly or inadequately
implemented or conceived access-control policies. However,
other potential sources of information leakage often remain.
Virtual Machines (VMs) that execute on the same physical

machine share a range of hardware resources—computing,
memory, and so forth. Even when solid logical isolation
ensures against abuse of explicit logical channels, shared
hardware creates vulnerabilities to side-channel attacks, i.e.,
data leakage through implicit channels. Recent research
has demonstrated how hostile VMs can potentially extract
sensitive data, such as passwords and cryptographic keys,
from other VMs resident on the same physical machine by
using memory caches (L2) as side channels [38].

For such reasons, enterprises often demand physical iso-
lation for their cloud deployments. For example, NASA
and Amazon negotiated a cloud service contract for seven
months, due to wrangling over NASA’s rights to hard-
ware inspection [39]. (Ultimately, Amazon introduced a
new cloud service with physically isolated, tenant-specific
hardware.)

While cloud providers may promise physical isolation,
and even commit to it in service-level agreements (SLAs),
enforcement by tenants and auditors is a challenge. Cloud
systems make heavy use of virtualization to abstract away
underlying hardware for simplicity and flexibility. They are
architected to be hardware opaque, not hardware transparent,
and thus sit at odds with the goal of verifying physical
isolation.

A. HomeAlone

In this paper we introduce HomeAlone, a new tool that
allows a tenant or auditor to remotely verify that the tenant’s
VMs are physically isolated, i.e., that the tenant has exclu-
sive use of a given physical machine. HomeAlone permits
such verification with no hypervisor modification, and with
no explicit action on the part of the cloud provider. The
provider need not even be aware that HomeAlone is in
operation.

The key insight behind HomeAlone is that side channels
aren’t just vulnerabilities: They can aid defensive detection.
HomeAlone exploits side channels (via the L2 memory
cache) to detect undesired co-residency.

The basic idea in HomeAlone is for the tenant to coordi-
nate its VMs (called friendly VMs) so that they silence their
activity in a selected cache region for a period of time. The
tenant then measures the cache usage during the resulting
quiescent period and checks that there is no unexpected



activity. Any such activity suggests the presence of a foe
VM—our generic term for another tenant’s VM—running
on the same physical machine.

B. Technical Challenges and Contributions of HomeAlone

In practice, HomeAlone requires an approach more com-
plicated than simple silencing of friendly VMs and listening
for foe cache activity. Even without friendly VM activity, the
L2 cache in a virtualized environment is never entirely quiet,
and measurement of its activity (via techniques described
below) is error-prone. The timing channel by which Home-
Alone measures cache activity is subject to many forms
of noise, including scheduling interruptions, coarse timer
readings, and core migration in a multi-core environment.
Even more challenging is the background noise created by
low-level system activity (e.g., that of the hypervisor and
Dom0 in Xen), which our classifier needs to distinguish from
foe VM activity.

Consequently, a major challenge in the design of Home-
Alone is the construction of an effective classifier that can
distinguish normal cache activity in a friendly environment
from the activity introduced by a foe. This classifier in
HomeAlone is carefully designed to address complications
such as core migration and the impact of friendly-VM and
Dom0 activity on the cache.

Another major technical challenge in HomeAlone is
performance overhead: It is desirable in practice that si-
lencing friendly VMs doesn’t substantially degrade their
performance. HomeAlone thus silences VMs in a selective
manner. During detection periods, friendly VMs coordinate
avoidance of just a small, randomly selected region of the
cache, set aside for foe detection.

Selective cache avoidance is challenging, and requires
kernel modifications in the guest operating system (OS)
of the friendly VMs. By taking advantage of the double
indirection layer in memory virtualization, we build an
address remapper that remaps a set of physical memory
pages (corresponding to the cache region avoided by friendly
VMs) to a reserved pool of available pages. We show that
the impact of selective cache avoidance on the performance
of several realistic workloads is modest. For this reason, and
because HomeAlone requires no hypervisor modification or
cloud-provider support, tenants can use HomeAlone undis-
ruptively and as often as desired to verify isolation policies.

We demonstrate that HomeAlone effectively detects foe
VMs whose activities are significantly evidenced in the L2
cache during their execution. We believe that HomeAlone
will most commonly detect policy misconfigurations or cost
cutting by a service provider that produces undesired co-
residency. We further show, however, that HomeAlone can
impose significant obstacles even to hostile foe VMs that
attempt to use the L2 cache as an avenue for attack. So,
while the L2 cache has been demonstrated to be an easily

exploitable side-channel attack vector, it is one whose abuse
HomeAlone is well-positioned to detect.

Paper organization: In Section II, we describe the
cloud scenarios envisaged for use of HomeAlone and the
accompanying threat model. We explain the characteristics
of the L2-cache as a side channel in Section III. We detail the
design of HomeAlone in Section IV and its implementation
in Section V. In Section VI, we evaluate the detection
accuracy of HomeAlone on demonstration workloads and
the performance impact of HomeAlone. We discuss in
Section VII a number of issues that bear on the use of
HomeAlone in practice. Section VIII reviews related work.
We conclude in Section IX.

II. BACKGROUND AND SYSTEM MODEL

A. Cloud Infrastructure Service

Cloud services are often taxonymized—based on the ab-
straction layer they export—as Platform as a Service (PaaS),
Software as a Service (SaaS), or Infrastructure as a Service
(IaaS). PaaS offers an application-development environment
but abstracts away lower software layers such as the OS.
SaaS presents an application-level interface to the tenant.
Our focus in this paper is on IaaS.

In an IaaS system, computing resources are generally
made available to tenants in the form of VM instances.
Tenants essentially have complete control of these VMs
but no visibility into the lower layers of the infrastructure,
e.g., hypervisors (virtual machine monitors) and data-center
management consoles. The tenant VM instances may be
configured with operating systems from a catalog but are
also typically custom-configurable. (Supporting network and
storage are often bundled with computing instances but can
also be purchased separately.) Amazon’s Elastic Compute
Cloud (EC2), IBM Computing on Demand, and Rackspace
Cloud are well-known examples of IaaS offerings.

Cloud services can also be categorized as public or
private. Public clouds are operated for the benefit of mul-
tiple, organizationally distinct tenants—i.e., are multi-tenant
environments—and generally available as dynamically pro-
visioned, self-service offerings. Private clouds are operated
for the benefit of a single tenant, often within a facility
owned and/or managed by the tenant itself.

The security concerns surrounding cloud computing arise
primarily in public clouds. (They carry over, however, to
private clouds that support disparate organizational func-
tions.) Multi-tenancy in public clouds creates sharing of
resources by organizations that have potentially competing
or conflicting interests and thus motivation to exfiltrate data
from one another and/or disrupt one another’s operations.
While public clouds enforce logical isolation among tenants,
they often multiplex tenants across hardware. This common
practice presents a realistic threat of data theft or covert
intelligence gathering in public clouds [38].



Such concerns—and interest by organizations in extend-
ing their private clouds into public clouds (creating so-
called hybrid clouds)—have prompted some tenants, e.g.,
U.S. federal agencies, to demand physical isolation as part
of their SLAs [18]. Others use only resource instances that
are meant to provide such isolation, such as full-physical-
machine instances with Amazon Web Services [11].

Even for tenants whose cloud providers offer assurances
of physical isolation, however, a problem remains. How
can these tenants verify that their computing resources (and
VMs, in particular) are actually physically isolated?

Given this challenge, HomeAlone is designed to provide
two benefits in public clouds. First, the system allows tenants
(or auditors acting on their behalf) to detect hardware co-
residency with foe VMs. Thus HomeAlone enables tenants
to detect and remediate the presence of potentially dangerous
side channels in cloud computing environments. Second—
and of perhaps equal importance—by merit of its detection
of unexpected co-residency, HomeAlone can give insight
into possible policy violations or system misconfigurations
by cloud administrators. In other words, by way of detect-
ing physical-isolation breaches, HomeAlone can serve as a
sentinel for potentially broader and more serious systemic
security lapses.

B. Threat Model

We consider an IaaS tenant that operates a collection
of one or more (friendly) VMs co-resident on a given
physical server. (Confirmation of friendly co-residency is
obtainable via techniques outlined in, e.g., [38].) The tenant
presumes—on the basis of a service agreement with the
cloud provider, for instance—that its VMs have exclusive
use of the physical server. The tenant’s goal is to disprove
or confirm its hypothesis via the detection or non-detection
of foe VMs.

The tenant has no control over or visibility into the
functioning of the hypervisor. That is, its only view into
platform resource allocation is the one presented by its VMs.

We model the cloud provider as neutral. The provider
does not facilitate foe-VM detection by the tenant by, e.g.,
giving hypervisor access to the tenant. At the same time, the
provider does not modify software or hardware specifically
to disable the tenant’s detection tools.1 We consider two
scenarios: (1) The “foe” VM is benign, i.e., oblivious to its
co-residency, or at least not attempting to exploit it to attack
friendly VMs; and (2) the foe VM is an active adversary
seeking to exfiltrate data from friendly VMs.

Benign “foe VMs”: Co-residency with a benign foe
VM may arise due to an unintentional policy violation or
a configuration error by the cloud provider (or perhaps
an intentional, cost-cutting violation, but not one that the

1A cloud provider has little incentive to actively enable foe VMs to
exfiltrate data via side channels: Its control of the infrastructure means that
it can simply exfiltrate data via the hypervisor if it so chooses.

cloud provider compounds via active cover-up). Indeed, we
anticipate that such errors will be more common in the cloud
than targeted exfiltration attacks via co-residency.

The ability to detect policy violations that lead to non-
adversarial co-residency is important for two reasons. The
first is regulatory compliance. Server isolation is an estab-
lished best practice, for instance, for PCI (Payment Card
Industry) DSS (Data Security Standards) compliance [21].
The second is the vulnerability that co-residency evidences.
Even if foe VMs are not actively targeting co-resident
friendly VMs, their existence highlights an isolation breach
that can ultimately lead to a true compromise.

As we demonstrate, HomeAlone effectively detects the
presence of a benign foe VM whose activities are sig-
nificantly evidenced in the L2 cache during its execution.
HomeAlone can thus serve as an early warning of accidental
co-residency and potentially even as an index into more
systemic security vulnerabilities.

Adversarial foe VMs: An adversarial foe VM is one
that attempts to exploit its co-residency to exfiltrate sensitive
data from friendly VMs. The benefit of HomeAlone in
detecting such foe VMs is clear.

As a countermeasure to detection by HomeAlone, a foe
VM could attempt to minimize its L2 cache footprint.
Wholesale avoidance of the L2 cache for an actively ex-
ecuting foe VM would be challenging, as it would severely
curtail use of memory (and necessitate avoidance of services,
e.g., network transmission, that induce an L2 footprint).
Specific avoidance of the region monitored by HomeAlone
would also be challenging. As we shall see, this region is
composed of a random selection of cache sets, and a foe VM
attempting to map this region would ostensibly generate L2
activity that would itself facilitate detection by HomeAlone.

Moreover, the L2 cache is a side-channel attack vector of
choice in server environments. Thus, a foe VM of particular
concern is one that tries to exfiltrate data by actively probing
this cache. As we demonstrate in our experiments, the L2-
cache footprint produced by such a foe VM renders it more
easily detectable by HomeAlone. Conversely, cornering the
attacker into avoiding the L2 cache in whole or in part would
be a success: It would strip a foe VM of a major adversarial
benefit of co-residency.

Alternatively, to evade detection, a foe VM might attempt
to limit its operation to short bursts or low-level activity over
a prolonged period. This approach, however, would constrain
exfiltration opportunities for critical, transient-use data such
as cryptographic keys.

C. Alternative Approaches

Of course, with the cooperation of the cloud provider, it
is possible for a tenant to detect foe VMs more directly
(and reliably) than HomeAlone permits. For example, given
control of the hypervisor, the tenant could list or enumerate
the set of currently executing VMs on a physical machine.



Such functionality, however, would require modification of a
service provider’s hypervisor software or management plane
to permit queries from tenants remotely or from tenant VMs
locally. Extensions of this type, while technically possible,
introduce their own access-control challenges and would
require adoption by cloud providers, which there is no reason
at present to anticipate in public clouds. As such, we focus
on solutions that do not require cloud provider support.

III. CACHE-BASED SIDE CHANNELS IN VIRTUALIZED
INFRASTRUCTURES

A. Caches in Modern Architectures

Modern processors benefit from multi-level caches to re-
duce latencies incurred by accesses to main memory. While
current main memory latencies are on the order of several
hundred nanoseconds, the fastest L1 cache has latency as low
as several nanoseconds, resulting in a difference of two to
three orders of magnitude. To amortize the cost of L1 cache
misses, current processors include larger L2 and sometimes
even L3 caches with slightly higher access latencies.

Cache sizes range from several KB to several MB. They
are organized as a sequence of blocks denoted cache lines,
with fixed size between 8 and 512 bytes. Typical caches are
set-associative. A w-way set-associative cache is partitioned
into m sets, each with w lines. Each block in the main
memory can be placed into only one cache set to which it
maps, but can be placed in any of the w lines in that set. The
spectrum of set-associative caches includes two extremes:
direct-mapped caches in which a memory block has a unique
location in the cache (corresponding to w = 1), and fully
associative caches in which a memory block can be mapped
to any location in the cache (corresponding to m = 1).
Increasing the degree of associativity usually decreases the
cache miss rate, but it increases the cost of searching a block
in the cache.

B. Cache-based Timing Channel

Cache-based timing channels have been widely studied
in various contexts (see Section VIII). In spite of different
methodologies employed in constructing these channels,
they all exploit the timing difference in access latencies
between the cache and main memory.

In our study, we consider the cache-based timing channel
constructed by measuring the cache load of a monitored
entity V that shares a common cache with the monitoring
entity U . A basic construction of such a timing channel is
what we call the PRIME-PROBE protocol:

PRIME: Entity U fills an entire cache set S by reading
memory region M from its own memory space.

IDLE: Entity U waits for a prespecified PRIME-PROBE
interval while the cache is utilized by monitored entity V .

PROBE: Entity U times the reading of the same memory
region M to learn V ’s cache activity on cache set S.

If there is much cache activity from V during U ’s PRIME-
PROBE interval, then U ’s data is likely to be evicted from
the cache set and replaced with data accessed by V . This
will result in a noticeably higher timing measurement in U ’s
PROBE phase than if there had been little activity from V .

Cache-based side channels are typically dependent on the
processor architecture and the cache level utilized. In this
paper we focus on last-level caches on x86 platforms; for
our experimental platforms, these are L2 caches. There are
several hardware features that impact the cache-based timing
channel we consider.

TLB misses: Most CPUs implement virtual memory
as a method of providing a contiguous address space to
processes. To speed up address translation, translation looka-
side buffers (TLBs) cache recently used page table entries
containing virtual-to-physical memory mappings. With the
hardware-based TLBs implemented by the x86 architecture,
TLB misses are expensive (as high as 100 cycles). Upon
a TLB miss, the CPU itself walks the page tables to look
for a mapping of the virtual address not found in the TLB.
Thus, the TLB can add significant noise to the timing
measurements of the PROBE phase.

Hardware prefetching: Modern CPUs implement sev-
eral optimizations: they reorder accesses to the cache and
prefetch several cache lines from a memory page that incurs
several cache misses. To obtain accurate timing measure-
ments in the PROBE phase, one technique is to access the
buffer in pseudo-random order in the PROBE phase [38].

Collisions from the instruction cache: The L2 cache is
shared by data and instructions, and thus data blocks can be
evicted in favor of instructions. Instruction caching generally
has a small effect on the timing measurements [35].

Multi-core architectures: On multi-core hosts, different
cores may or may not share a cache. For example, in the
four-core Intel Extreme processor, each core has its own L1
cache and each of the two L2 caches is shared by two cores.

Simultaneous multithreading (SMT): CPUs supporting
SMT allow multiple threads to execute simultaneously on
the same CPU core and share the same cache hierarchy.
This feature enables the monitoring entity to execute while
the monitored entity is running and to detect the activity of
the monitored entity with a finer time resolution.

C. Implications of Virtualization

Virtualization has been widely adopted in cloud comput-
ing for its flexibility, elasticity and ease of management.
While virtualization provides logical isolation of virtual
machines running on the same physical machine, it has been
shown that the cache-based timing channels are still viable
in virtualized environments [38], [36], albeit with reduced
bandwidth. As the Xen-based paravirtualization architecture
(dubbed PVM) is still dominating public clouds like Amazon
EC2, we consider some implications of the Xen PVM
virtualization technique to the cache timing channel. Many



of these features are common to hardware-assisted virtual
machine (HVM) functionality as supported by the Intel VT-
x/VT-i [32] and AMD-V technologies, as well.

Background activity: Xen offers a paravirtualized vir-
tual machine abstraction that requires some changes to
the guest operating systems running in each VM. Xen
implements a thin hypervisor that controls only basic opera-
tions, and a control management virtual machine, dubbed
Dom0. To perform privileged operations, guest VMs can
issue software traps into the hypervisor, called hypercalls.
Dom0 is responsible for creating and terminating other VMs,
configuring some of their parameters, and handling virtual
network interfaces and block devices.

Both the hypervisor and Dom0 produce cache activity that
introduces noise when measuring cache load. For example,
to ensure secure partitioning of VMs, Xen validates modifi-
cations to guest page tables. Updates to page tables trigger
hypercalls into Xen, and thus they induce hypervisor activity
that leaves a pattern in the cache. In the PRIME-PROBE
protocol, noise from the hypervisor might evict cache lines
primed by the monitoring VM and so increase the timings
observed in the PROBE phase, even when no foe VM is
present.

Processor virtualization: Virtual machines time-share
a physical machine and they run as scheduled by the
hypervisor scheduler. Xen implements multiple scheduling
algorithms (e.g., BVT, the credit scheduler). The default
credit scheduler uses a fixed 30ms time slice to allocate
VMs. Whether a monitoring VM U can observe the cache
activity of another, targeted VM V through the PRIME-
PROBE protocol depends on being scheduled on a core that
shares a cache with V and on both U and V remaining there
for sufficiently long.

I/O virtualization: In a virtualized environment, a guest
OS does not have direct control of I/O devices. In the
Xen architecture, Dom0 is responsible for multiplexing I/O
devices across different virtual machines. Dom0 implements
all device drivers and has access to the network and physical
hard drives. All other VMs transfer data through Dom0
using an asynchronous buffering mechanism. Thus, an I/O
intensive application triggers significant activity in Dom0,
resulting in a modification of cache access patterns.

IV. DESIGNING A CO-RESIDENCY DETECTOR

The PRIME-PROBE timing channel described in Sec-
tion III-B potentially provides a method for a monitoring
VM to discover a foe VM on its machine by analyzing
PROBE results for evidence of the foe. In this section, we
develop a classifier for PRIME-PROBE readings that yields
a classification of “foe present” or of “foe absent”. In Sec-
tion IV-A, we consider the effectiveness of a simple classifier
for a single PRIME-PROBE reading. Based on that experi-
ence, we design a multi-probe classifier in Section IV-B and
discuss training this multi-probe classifier in Section IV-C.

We perform a cursory evaluation of the classifier’s detection
capability in Section IV-D; this evaluation will be augmented
with additional evaluations in Section VI.

Much of our discussion in this section is informed by
experiences with the platform on which we performed the
experiments reported in this paper. This platform is a 3GHz
Intel Core 2 Quad computer (without SMT) with 8GB of
physical memory and two L2 caches, each serving two cores.
Each L2 cache is 24-way set-associative (w = 24) with
m = 4096 cache sets and a line size of l = 64B, yielding
a cache size of c = 6MB. The virtualization technology is
Xen. Unless otherwise specified, VMs use Ubuntu 10.04 as
their guest OS. We will often motivate our design decisions
based on our experiences on this platform, but we see no
reason that our framework should not extend to several other
platforms, as well.

A. A Single-Probe Classifier

In this section we consider a simple classifier for a single
PRIME-PROBE trial. This classifier works by averaging the
PROBE timings observed in the trial (i.e., averaging over the
cache sets utilized) and comparing this average to a thresh-
old. If the average PROBE timing is less than the threshold,
then this implies low baseline activity in the system, and thus
results in a foe-absent classification. Otherwise, the PROBE
timing implies high activity, and the classification returned
is foe-present.

A factor that impacts the detection accuracy is the fraction
of the cache examined in a PRIME-PROBE trial. It should be
more accurate to PROBE the entire cache to detect a foe
VM, but it is more desirable to utilize only a portion of the
cache, so friendly VMs can utilize the remainder of the cache
and, in particular, can continue execution during PRIME-
PROBE trials. (An implementation for achieving this property
is described in Section V.) Thus, in this section we evaluate
our classifier when using PROBE results from only a portion
(specifically, 1/16th ) of the cache that friendly VMs avoid.

The successful detection probability is also a function of
the foe VM activity. To allow us to examine our classifier
under a range of foe VM cache activity levels, we developed
a toy application inducing a random memory access pattern
with a frequency that we can tune. This toy application
allocates a buffer of size much larger than the cache size
and then periodically selects a random location in the buffer
to read. The frequency of reads can be tuned to adjust its
memory access frequency. We utilize this toy application to
simulate a range of foe activities.

On multi-core cloud computing platforms, VMs are usu-
ally allowed to run simultaneously and their virtual cores
to migrate among physical cores. Moreover, these physical
cores may or may not share a cache, depending on the
hardware architecture of the host. As a first step toward
evaluating our classifier, though, we consider a simplified
situation to test the potential of foe detection using a single



PRIME-PROBE trial. In this simplified setting, the foe VM
was pinned on one of the cores that shares a common cache
with another core where the monitoring VM was pinned.
Dom0 and other VMs were pinned away from the shared
cache so that the cache activity of the foe VM could be
sensed by the monitoring VM without interference.

In this simplified scenario, we measured the true detection
rate of our classifier as a function of the memory access rate
of the foe. In these tests, the detection threshold was set to
allow a false detection rate of 1%, i.e., we set this threshold
to be the 99th percentile of results from 1000 PRIME-PROBE
trials without foes present. The PRIME-PROBE interval was
30ms, and each true detection rate was computed using
1000 PRIME-PROBE trials (with a foe present). A high true
detection rate (100%) was achieved even when the memory
access rate of the foe was as low as 1000 per second.
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Figure 1. True detection rate of the
single-probe classifier when false de-
tection rate is configured to α = 1%.
Four friendly VMs and one foe VM.
All VMs unpinned. (Section IV-A)

While the results of
these experiments are en-
couraging, they unfortu-
nately did not persist
when the VMs were un-
pinned and allowed to
move from one physical
core to another, which is
typical in modern cloud
computing environments.
Figure 1 shows that when
all VMs were unpinned,
this classifier was not
nearly as effective in detecting foe VMs. In this experiment,
four friendly VMs were run on a shared platform, one of
which was an apache2 web server and three of which
were unloaded; each was given 1GB of memory. The web
server was driven by traffic generated by httperf from
clients external to our “cloud.” The apache2 server was
subjected to a workload consisting of requests for a 1MB
file at a rate sampled uniformly at random between 1 and 64
requests per second, and re-sampled every 5 seconds. The
monitoring VM (one of these four VMs) attempted to detect
the foe using the PRIME-PROBE protocol, using 1/16th of
the cache. Again, the toy application ran as the foe VM. As
shown in Figure 1, the maximum true detection rate achieved
was roughly only 6.5%.

The reasons behind this low true detection rate are
twofold. First, the Xen scheduler balances the workload
via core migration and, in doing so, varies the view of the
monitoring VM. Second, because there was significant I/O
activity in these tests, when the monitoring VM and Dom0
shared a cache, there was significant cache noise induced
by Dom0 due to this friendly I/O. That is, the friendly I/O
activity increased Dom0 activity, making it appear similar to
that of a foe when it shared a cache with the monitoring VM.
The amount of noise in cache timings introduced by Dom0
dynamically changes according to the I/O workload to/from

VMs. While we are able to modify friendly guest operating
systems at will (see Section V), it appears to be impossible
to control the cache activity of Dom0 from within a VM.

B. A Multi-Probe Classifier

In light of the difficulties in interpreting the results of
a single PRIME-PROBE trial discussed in Section IV-A, in
this section we design a classifier that works using n trials
for n > 1. For simplicity, we first describe our classifier
assuming that friendly-VM activities (mainly I/O activity),
as well as the number of friendly VMs, are constant and
known a priori, and then we relax these assumptions to
present a general solution.

Constant friendly-VM activity: Assuming a constant
and known number of friendly VMs and level of friendly-
VM activity, a PRIME-PROBE trial yields a result—namely,
the PROBE time, averaged over all cache sets probed. Recall
that the result of the timing measurement should be largely
(though, as we will discuss in Section V, not completely)
independent of friendly VM memory activity, since friendly
VMs will have been instructed to avoid the parts of their
caches on which the monitoring VM conducts its PRIME-
PROBE trials.
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Figure 2. Distribution of timing results of PRIME-PROBE trials with no
foe present.

As a first step towards our goal of detecting a foe VM
based on the results of PRIME-PROBE trials, we plot in
Figure 2 the distribution of timing results for 2000 PRIME-
PROBE trials when no foe VM is present. The trial results
exhibit a bimodal distribution, which is roughly a mixture
of two normal distributions. The first normal distribution
characterizes the (low) level of activity that the monitoring
VM registers when running on a different cache than Dom0
during the PRIME-PROBE trial. The second normal distribu-
tion characterizes the (moderate) level of activity observed
when the monitoring VM shares a cache with Dom0. Based
on these findings, we define two overlapping classes for trial
results. The first includes the majority of readings from the
first normal distribution, and the second consists of the large



majority of readings from both normal distributions. This
design is motivated by the observation that the presence of
a foe VM will tend to decrease the number of readings that
fall into either class, as will be described below.

To determine if a given PRIME-PROBE trial result r be-
longs to one of these two classes, we empirically determine
two thresholds tc and td, where tc < td, such that the cache
timing measurements from the first class fall into [0, tc] and
those from the second class are in the range [0, td] (Figure 2).
We next experimentally measure the empirical probability
with which r actually falls into each of the two classes
over many PRIME-PROBE trials for the friendly workload
(assumed constant for the present discussion). Assuming
independent trials—we revisit this assumption below—we
let πc denote the empirical probability with which r falls
into the first class and πd be the empirical probability with
which it falls into the second class. Given n independent
trials, we expect r to land in the first class c = πcn times,
and the second class d = πdn times.

Let us then consider an actual execution of our detection
algorithm: A sequence of n monitoring trials that aim to
determine whether a foe is present. Let c denote the number
of times that r actually belongs to the first class, and d
denote the number of times it belongs to the second class.
In any of several ways, the presence of a foe VM might
cause c to deviate from its expected value c (and d from d).
The foe VM could induce what would be a rare event under
a friendly workload, namely a measurement r that lands
above td and so outside of the second class. Alternatively,
even if the foe VM induces only moderate cache activity
(i.e., similar to that of Dom0), the presence of the foe could
perturb the scheduling of VMs so as to decrease the odds
that the monitoring VM observes a quiet cache, either by
pushing the monitoring VM onto the same cache as Dom0
or by registering cache activity itself, causing lower c than
expected.

Our detection strategy, then, is to presume a foe’s presence
if either c or d is substantially lower than expected. More
precisely, we treat a sequence of n PRIME-PROBE trials as
independent events. We choose α as a desired upper bound
on the rate of false detection of a foe VM. In each trial, we
can view the hit/miss of the first class (i.e., r ∈ [0, tc] or
r ̸∈ [0, tc]) as a Bernoulli trial with Pr[r ∈ [0, tc]] = πc. It
is then straightforward to compute the maximum threshold
Tc < c such that Pr[c < Tc] ≤ α/2 when no foe is present.
We can similarly compute Td < d such that Pr[d < Td] ≤
α/2. Summarizing, then, our basic strategy is to suspect a
foe’s presence if in n PRIME-PROBE trials, either c < Tc or
d < Td. The probability of false detection of a foe over this
combined test is at most ∼ α.

Arbitrary friendly-VM activity: The preceding descrip-
tion assumed that during the n PRIME-PROBE trials, the
number of friendly VMs and the I/O activity levels of those
friendly VMs were constant. In practice, this will generally

not be the case, since for realistic values of n (e.g., n ≈ 25)
and for realistic times to conduct n trials (in particular, with
delays between them, as will be discussed below), the total
time that will elapse during the n trials would be more than
long enough to witness potentially large swings in load due
to fluctuations in inbound requests, for example.

As such, in practice it is necessary to compute the
thresholds tc and td per trial as a function of the set F
of activity profiles of the friendly VMs during that trial.
That is, F includes a profile for each of the friendly VMs’
activities during the PRIME-PROBE trial. Each VM’s entry
could include its level of I/O and amount of computation,
for example. We give details of what we included in F at
the end of Section IV-C.

The monitoring VM collects this information F after each
PRIME-PROBE trial. (We will discuss how in Section V.) It
uses this information to select tFc and tFd , and then evaluates
whether the trial result r satisfies r ∈ [0, tFc ] (in which case
it increments c) and whether it satisfies r ∈ [0, tFd ] (in which
case it increments d).

Besides adjusting tFc and tFd as a function of F, we
have found it helpful to adjust πc and πd as a function
of F, as well. So, henceforth we denote them πF

c and πF
d .

Specifically, we take πF
c to be the fraction of training trials

(see Section IV-C) with friendly-VM activity as described
by F in which r ∈ [0, tFc ], and πF

d to be the fraction of
training trials with friendly-VM activity as described by F
in which r ∈ [0, tFd ].

For n detection trials, we denote the profile characterizing
the activity of the ith trial by Fi. Define binary indicator
random variables

γi =

{
1 if ri ∈ [0, tFi

c ]
0 otherwise and δi =

{
1 if ri ∈ [0, tFi

d ]
0 otherwise

where ri denotes the result of a testing trial with friendly-
VM activity characterized by Fi. We treat the observations
γ1 . . . γn and δ1 . . . δn as Poisson trials. Training data sug-
gest that under the foe-absent hypothesis, Pr[γi = 1] = πFi

c

and Pr[δi = 1] = πFi

d . Under this hypothesis, we can
then calculate probability distributions for c =

∑n
i=1 γi and

d =
∑n

i=1 δi (e.g., [19]) and maximum thresholds Tc and
Td such that Pr[c < Tc] ≤ α/2 and Pr[d < Td] ≤ α/2 for
a chosen false detection rate of α. As such, by detecting a
foe if c < Tc or d < Td we should achieve a false detection
rate of at most roughly α.

We reiterate that the thresholds Tc and Td are computed
during testing as a function of F1, . . ., Fn, using values
πFi
c and πFi

d obtained from training (see Section IV-C). The
thresholds tFc and tFd are similarly determined using training,
but which ones are used during testing is determined by the
profile sets F1, . . ., Fn actually observed.

On independence: The test outlined above requires
trials that are independent, in the sense that the probability of
the trial result r satisfying r ∈ [0, tFc ] or r ∈ [0, tFd ] is a func-



tion only of F and foe activities (if any), and is otherwise
independent of the results of preceding trials. Achieving this
independence is not straightforward, however. In practice,
an effective scheduler does not migrate virtual cores across
physical cores randomly. In fact, in our experience, if the
number of virtual cores is fewer than the number of physical
cores, then Xen will not migrate virtual cores at all. This
behavior clearly can impact achieving independent trials—
in this example, if the monitoring VM is the same VM each
time and if Dom0 does not share a cache with this monitoring
VM, then it never will.

For this reason, in our detector we take steps to make trials
as independent as possible. Most importantly, we assign
the monitoring VM randomly for each PRIME-PROBE trial
from among the available friendly VMs. In addition, we
employ random delays between trials to increase the like-
lihood that two trials encounter different virtual-to-physical
core mappings (provided that friendly VMs include enough
virtual cores to induce changes to these mappings). As
we will show below, we believe that these steps increase
the independence between trials sufficiently to construct an
effective foe detector.

C. Training the Multi-Probe Classifier

The need to determine tFc and tFd as a function of F
introduces a training requirement for our classifier. In this
paper we presume it is possible to train on a hardware
platform that is similar, in terms of numbers of cores and
caches, the arrangement of caches to cores, cache sizes, etc.,
to that on which the friendly VMs will eventually be run,
and that this hardware platform can be equipped with the
same virtualization substrate (i.e., Xen for the purposes of
our discussion here) for training purposes. Of course, one
way to accomplish this is to train on the cloud machines
themselves, trusting that the interval in which training occurs
is absent of any foes—a well-known “trust on first use”
(TOFU) approach that is (unfortunately) common today in
intrusion detection, key exchange, and many other contexts.
A safer approach would be to replicate a machine from
the cloud and use it for training, though this may require
cooperation from the cloud provider.

While precisely determining tFc requires ground truth as
to the cores (and thus caches) that Dom0 utilized during a
PRIME-PROBE trial, such ground truth would typically not
be available if training were done using the first (TOFU)
approach described above. To leave room for both possi-
bilities, we employ a training regimen that does not rely
on such knowledge. Specifically, we collect PRIME-PROBE
trial results for fixed F in the (assumed or enforced) absence
of a foe and then model these results using a mixture of
two normal distributions. Intuitively, one normal distribution
should capture readings when Dom0 is absent from the
cache observed by the monitoring VM, and one normal
distribution should represent readings when Dom0 is present.

As such, we compute a best fit of the training trial results
to a Gaussian mixture model of two normal distributions,
and call one normal distribution (with the smaller mean) the
quiet distribution and the other the like-Dom0 distribution
for F. We then use these two distributions to generate values
for tFc and tFd . Specifically, we choose tFc to be the mean
plus the standard deviation of the quiet distribution, and we
choose tFd to be the the mean plus the standard deviation of
the like-Dom0 distribution.

As described previously, each element of F describes
the relevant activities of a distinct friendly VM during the
PRIME-PROBE trial from which the result will be tested using
tFc and tFd . Moreover, F includes a distinct such descriptor
for each friendly VM. To train our classifier, it is necessary
to incorporate training executions that match the profiles
F likely to be seen in practice. The extensiveness of this
data collection depends in large part on the features that are
incorporated into the VM activity descriptors in F and on
the granularity at which these features need to be captured.
The training executions should also range over the possible
number of VMs on the same computer, which we assume
the party deploying the VMs can determine (c.f., [38]).

While our framework permits building a detector based on
a variety of features included in the friendly VM profiles,
we found in our experiments that the most relevant feature
to capture is the level of I/O activity in each friendly VM.
As already discussed, the I/O activity of friendly VMs is
highly correlated with Dom0’s activity evidenced in the
cache. Fortunately, capturing this information at only a
coarse granularity is sufficient to build an effective detector.
Specifically, in the experiments we report in this paper,
we compute the aggregate number of bytes of I/O activity
involving friendly VMs during the PRIME-PROBE trial (as
measured in sys_read and sys_write calls). We bin
the total friendly-VM I/O activity during the PRIME-PROBE
trials into one of 20 bins. Any two profiles F and F ′ falling
into the same bin are treated as equivalent for our purposes.

D. Multi-Probe Detection Capability

In this section we provide a cursory evaluation to confirm
that our multi-probe detector overcomes the limitations of
the single-probe detector of Section IV-A. Our results here
are not intended to be exhaustive; we will consider detection
in the context of additional workloads in Section VI.

Recall that the shortcoming of our single-probe detec-
tor was revealed when we unpinned VMs, allowing them
to migrate among the available cores. We consider only
this case here; all VMs are unpinned. We introduced four
friendly VMs on our platform, the configurations of which
were exactly the same as those in experiments for Figure 1,
namely one apache2 server and three unloaded VMs.

We first collected the results of 20,000 PRIME-PROBE tri-
als employing 1/16th of the cache with no foe present. The
delay between PRIME-PROBE trials was chosen uniformly



at random between 1 and 5 seconds. To confirm our ability
to configure the false detection rate, we conducted a 10-
fold cross-validation, in which we partitioned these 20,000
results into 10 equally sized sets and then tested on each set
after training on the remainder (with α = 1%). Each testing
set was broken into non-overlapping windows of n PRIME-
PROBE trials (n ∈ {25, 50, 100}), each window yielding a
foe or no-foe classification. The false detection rate that we
observed was indeed less than 1% for each value of n.
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Figure 3. True detection rate of
multi-probe detector of Section IV-B
with four friendly VMs (α = 1%).

We then added a foe,
using the same toy pro-
gram as in Section IV-A.
Figure 3 shows the true
detection rate for testing
performed in the same
fashion, after training on
the previously collected
20,000 trials with α =
1%. For each value of n,
the sum of all n-trial win-
dows was 2000 PRIME-
PROBE trials, meaning that the curves for smaller values
of n show averages over a greater number of windows. In
this figure, the memory access rate of the foe application is
indicated on the x-axis. Our multi-probe classifier improves
substantially over the single-probe classifier, for the same
false detection rate. The tradeoff is that our multi-probe
classifier takes longer to evaluate, due to its use of multiple
PRIME-PROBE trials separated by random intervals.

V. IMPLEMENTATION

Coordinator

Co-Residency
Detector

Address
Remapper

System Call

Hypercall

Hypervisor

User
Space

Guest
Kernel

Figure 4. Architecture of our imple-
mentation within one guest VM

In order to execute
the detection technique
described in Section IV,
the cloud customer must
modify the VMs that
it deploys to the cloud
(the “friendly VMs”). In
this section we describe
our proof-of-concept
implementation, which
we developed within
64-bit PVOps Linux
kernel 2.6.32.16 for Xen.
Our modifications have
been tested with the Xen
4.0.1-rc2 hypervisor.

Our implementation consists of a suite of tools that is
installed within each friendly VM. As shown in Figure 4,
this suite includes a user-level coordinator and two kernel
extensions in each guest OS kernel, namely an address
remapper and a co-residency detector.

A. Coordinator

Each friendly-VM coordinator works in user space and is
responsible for coordinating the detection task with coordi-
nators in other friendly VMs residing on the same physical
cloud host. We presume that coordinators can determine the
friendly VMs residing on the same physical host, either
because this has been configured by the cloud customer
deploying these VMs or by detecting which friendly VMs
do so (e.g., see [38]).

A detection period is begun by one coordinator, here
called the initiator for the detection period, sending com-
mands (in our implementation, using TCP/IP) to the other
friendly-VM coordinators. This command indicates a ran-
domly selected color that defines the cache sets in each
cache on the host that will be used during this detection
period for executing PRIME-PROBE trials. A coordinator that
receives this message must invoke its local address remapper
(via a system call) to vacate use of those cache sets (to
the extent that it can; see Section V-B), so that execution
of this VM will minimize pollution of those cache sets
during the detection period. We note that each coordinator
makes no effort to determine whether it is presently on
the same cache as the initiator (if the host has multiple
caches), either during initiation or at any point during the
detection period. Rather, each coordinator uses its address
remapper to vacate the cache sets of the color indicated by
the initiator, for any cache used by its VM for the duration
of the detection period. Upon receiving confirmation from
its address remapper that those cache sets have been vacated,
the local coordinator sends a confirmation to the initiator.

Once the initiator has received confirmation from the
friendly VMs on the host, it creates a token, selects a friendly
VM on the host uniformly at random, and passes the token to
the selected VM. The selected VM now becomes the token
holder and will act as the monitoring VM for one PRIME-
PROBE trial. More specifically, the token holder alerts the
other coordinators of its impending trial and then contacts
its local co-residency detector to perform the PRIME-PROBE
trial. Once the co-residency detector has completed the trial
and returned the trial result r, the token holder collects an
activity profile F from the friendly VMs. Each entry of this
activity profile characterizes the I/O activity (bytes passed
through sys_read or sys_write) of the friendly VM
from which the entry was received, since that VM received
the alert preceding the PRIME-PROBE trial. Finally, the token
holder induces a random delay (to improve independence
of trials; see Section IV-B) and then selects the next token
holder uniformly at random (again, for independence) from
the friendly VMs on the host. When passing the token to the
new token holder, the sender includes all trial results r and
corresponding activity profiles F collected in this detection
period so far.

After n trials have been performed, the new token holder



can evaluate the results and activity profiles to determine
whether to declare that a foe is present on the machine,
using the technique described in Section IV.

B. Address Remapper

The address remapper is provided a color, which defines
cache sets that need to be avoided due to their planned use in
the pending detection period. To avoid the use of these cache
sets, the address remapper colors each physical memory
page (c.f., [31], [17]) by the (unique, in our implementation)
color of the cache sets to which its contents are mapped,
and then causes its VM to avoid touching cache sets of the
designated color by causing it to avoid accessing physical
memory pages of the same color.

A straightforward way of causing its VM to avoid these
memory pages would be to to alter the view of memory that
the guest OS perceives. For instance, we can “unplug” the
memory pages that need to be avoided, by indicating that
such pages are unusable in the page descriptor structure in
the guest OS. A drawback of this approach is that it breaks
up physical memory as perceived by the OS, so that the
OS no longer has access to a large, contiguous memory
space. For example, the buddy memory allocator used in
Linux maintains an array of lists, the j-th entry of which
collects a list of free memory blocks of size 2j pages, where
j = 0, 1, . . . , 10. Therefore, “unplugging” memory pages of
one color will result in empty lists for j ≥ 6 in the case of
64 page colors, since a block of 26 = 64 pages (or larger)
will contain one page of each color. Others have cautioned
against this in other contexts, due to serious performance
issues that it may cause [20].

Instead, we take advantage of the additional indirection
layer in the mapping from virtual to physical memory
introduced by virtualization. The Xen hypervisor provides a
pseudo-physical address space to each guest virtual machine
and maintains the mapping from pseudo-physical to physical
memory. Because physical memory is allocated at page
granularity in Xen, the memory allocated to each VM is
not guaranteed to be actually contiguous, but the contiguous
pseudo-physical address space in each guest virtual machine
provides the illusion to the guest OS that it is running on an
intact physical memory. In paravirtualized virtual machines,
whereas the pseudo-physical address space is the one that
is used across the operating system, the guest OS is also
aware of the corresponding machine address of each page,
which is embedded in the page table entry for the hardware
MMU to look up during translation (i.e., translation is
done directly from guest virtual address to real machine
address). This design leaves us an opportunity to modify
the pseudo-physical-to-machine-address mapping to avoid
touching certain physical pages while keeping the guest
OS’ view of memory layout unchanged. In particular, to
remap the machine address of a single pseudo-physical page,
the address remapper issues a hypercall to the hypervisor

indicating the new machine address and then modifies the
guest OS’ copy of this mapping. So as to prevent accesses
to these mappings while they are being reconfigured, the
address remapper disables interrupts and preemption of its
virtual core and suspends its guest OS’ other virtual cores
(if any) prior performing the remapping.

In the process of address remapping to avoid using
physical pages of the specified color, the address remapper
needs to copy page contents out of pages that need to be
avoided and then update page tables accordingly. To provide
a destination for these copies, a pool of memory pages is
reserved when the guest OS is booted. This pool should
be large enough to hold an entire color of memory. During
the remapping process, the address remapper copies each
physical page of the specified color to a page in the reserved
memory pool of a different color, and then updates the page
tables accordingly by issuing hypercalls to the hypervisor.
One caveat is that if a page of the specified color corresponds
to a page table or page directory that is write protected by
the hypervisor, then this page cannot be exchanged and has
to be left alone. These pages, and a few other pages that
cannot be moved, are the primary cause of the remaining
cache noise in our PRIME-PROBE trials.

To summarize, the remapper performs the following steps.
It enumerates the pseudo-physical pages that are visible
from the guest OS. For each page P , the machine address
of the page is determined to figure out whether it is the
designated color. If so, in which case this page would
ideally be remapped, the remapper examines the page table
entries pointing to P and also the page descriptor structure.
In several cases—e.g., if P is reserved by HomeAlone,
write-protected by the hypervisor, or a kernel stack page
currently in use—then the remapper must leave the page
alone. Otherwise, the remapper identifies a new page (of a
different color) from its pool and exchanges the machine
address of P with that of this new page (via a hypercall).
Prior to doing so, it copies P ’s content to this new page if
P was in use. The remapper updates the kernel page table
(also by hypercall) and, if P was used in user space, then
the remapper updates the user-space page tables. The per-
formance of this algorithm will be evaluated in Section VI.

This implementation constrains the number of colors in
our scheme and thus the granularity at which we can select
cache sets to avoid. Let w denote the way-associativity of
the cache; m be the number of cache sets; c be the size of
the cache in bytes; l be the size of a cache line in bytes; p
be the size of a page in bytes; and k denote the maximum
number of page colors. Each l-sized block of a page can
be stored in a distinct cache set, and avoiding a particular
cache set implies avoiding every page that includes a block
that it could be asked to cache. Since the p/l blocks of the
page with index i map to cache set indices {i(p/l) mod
m, . . . , (i+1)(p/l)− 1 mod m}, the most granular way of
coloring cache sets is to have one color correspond to cache



sets with indices in {i(p/l) mod m, . . . , (i+1)(p/l)−1 mod
m} for a given i ∈ {0, . . . , m

p/l − 1}. Since m = c/(w× l),
the number k of colors that our implementation can support
is

k =
c/(w × l)

p/l
=

c

w × p

On our experimental platform, an Intel Core 2 Quad pro-
cessor, the L2 cache is characterized by c = 6MB, w = 24,
and l = 64B, and Linux page size is p = 4KB. Thus the
number of page colors in our system is k = 64.

C. Co-Residency Detector

The co-residency detector, which is implemented as a
Linux kernel extension, executes the PRIME-PROBE protocol
for measuring L2 cache activity. To PRIME the cache sets to
be used in the PRIME-PROBE trial (i.e., of the color specified
by the coordinator), the co-residency detector must request
data from pages that map to those cache sets. To do so,
at initialization the co-residency detector allocates physical
pages sufficient to ensure that it can PRIME any cache set.

When invoked by the coordinator, the co-residency detec-
tor PRIMEs the cache sets of the specified color, and then
waits for the PRIME-PROBE interval. In our experiments, this
interval is configured empirically to be long enough for a
reasonably active foe to divulge its presence in the cache
but not so long that core migration of the monitoring VM
becomes likely. In our experiments we use a PRIME-PROBE
interval of 30ms.

The co-residency detector is tuned to improve its detection
ability in several ways. First, on our experimental platform,
every cache miss causes one line to be filled with the re-
quested content and another to be filled through prefetching;
i.e., a cache miss fills two cache lines in consecutive cache
sets. As such, our co-residency detector PROBEs only every
other cache set. Second, to eliminate noise due to the TLB,
the co-residency detector flushes the TLB before its PROBE
of each cache set, so as to ensure a TLB miss. Third,
the co-residency detector disables interrupts and preemption
during the PRIME-PROBE protocol to limit activity that might
disrupt its detection.

VI. EVALUATION

In this section, we deploy HomeAlone on a small private
cloud in which four friendly VMs are running on one
physical host virtualized with Xen. The host is the same
as that employed in the experiments of Section IV.

The applications that we employ in our VMs are taken
from the PARSEC benchmarks [12], [13]. PARSEC is distin-
guished from most other suites in focusing on multithreaded
benchmarks representative of diverse, emerging workloads,
and so we take it as representative of future cloud com-
puting workloads. In particular, we utilized the following
benchmarks from PARSEC.

1) blackscholes: This benchmark simulates financial
analysis and, in particular, calculates the prices of
a portfolio of options using Black-Scholes partial
differential equations.

2) bodytrack: This computer vision application tracks
a 3D pose of human bodies and represents video
surveillance and character animation applications.

3) canneal: This is a benchmark using cache-aware
simulated annealing to design chips that minimize
routing costs; it is representative of engineering ap-
plications.

4) dedup: This benchmark is short for “deduplication”,
which is a compression approach that combines global
and local compression in order to obtain a high com-
pression ratio; it is used to simulate next-generation
backup storage systems.

5) facesim: This benchmark simulates human faces
and is representative of applications like computer
games that employ physical simulation to create vir-
tual environments.

6) streamcluster: This benchmark was developed
for solving online clustering problems and is included
for its representation of data mining algorithms.

7) x264: This is an H.264/AVC video encoder that can
be used to simulate next-generation video systems.

Each benchmark was provided the “native” input des-
ignated for the benchmark. In addition to these PARSEC
benchmark applications, in some tests we employed an
apache2 web server on which we induced a workload as
described in Section IV-A.

A. Detection

To test the effectiveness of our co-residency detector,
we trained our classifier on a workload that included
four friendly VMs, one running apache2, one running
facesim, one running streamcluster, and one run-
ning blackscholes. Each VM was given one 1GB of
memory and one virtual core. We do not claim that this
request profile, or that this mix of applications, is represen-
tative of any particular cloud tenant workload. We simply
used this mix of applications to capture a broad range of
reasonably intensive activities.

Training consisted of collecting results from 20,000
PRIME-PROBE trials on 1/16th of the cache, each pair
separated by an interval chosen independently and uniformly
from between 1 and 5 seconds. Training was performed as
prescribed in Section IV-C and tuned to a false detection rate
of α = 1%. We confirmed this false detection rate using a
10-fold cross validation as in Section IV-D with n = 25.

Detecting benign foe VMs: After training, we con-
ducted seven runs with the same friendly workload and one
foe VM. In each of the seven runs, the foe executed one
of the seven PARSEC benchmark applications. Each run
yielded 2000 PRIME-PROBE trials on 1/16th of the cache,
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Figure 5. True detection rates for different foe applications (n = 25,
α = 1%)

each pair again separated by a random interval between 1
and 5 seconds. Nonoverlapping subsequences of n = 25 tri-
als were then classified using our detector. The true detection
rates observed are shown in Figure 5. As shown there, for
the single-core foe VMs, true detection rates ranged from
roughly 84% (bodytrack) to 100% (streamcluster).
Except for dedup, true detection rates improved slightly
when the foe VM employed two cores. The improvement of
detection rates during the foe VM’s use of multiple cores is
possibly due to increased contention for the physical CPU
resources. We believe that the variation in true detection rates
across foe applications is caused by the different features of
these applications, e.g., their CPU usage patterns and I/O
intensities. Future research may help determine the relation-
ship between detection rates and application properties.

An interesting limiting case for detecting benign foe VMs
is a foe VM that runs nothing more than a guest OS. We
briefly experimented with the possibility of detecting such a
foe VM. In particular, we ran HomeAlone against an “idle”
Linux foe VM (Ubuntu 10.04) and an “idle” Windows 7
foe VM, i.e., VMs with no actively running applications.
HomeAlone proved effective even in this challenging setting:
It achieved almost a 15% true detection rate against the
Linux foe, and a 70% true detection rate for the Windows
foe. (In both cases, α = 1% and n = 25.) While further
experimentation is warranted, these preliminary results per-
haps provide rough lower bounds for the true detection rates
of benign foe VMs of these types.

Detecting adversarial foe VMs: We further evaluated
HomeAlone by studying its effectiveness against adversarial
foe VMs, as described in section II-B. The adversarial foe
VMs we considered actively attempted to exfiltrate data
from friendly VMs by themselves running the PRIME-PROBE
protocol on portions of the L2 cache. Furthermore, the
adversary’s targeted collection of cache sets was fixed, as we
expect an adversary would generally need to target the same
cache sets for a substantial duration to exfiltrate meaningful
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Figure 6. ROC curve for detecting adversarial foe VMs with different
aggressiveness (n = 25, α = 1%).

information from friendly VMs.
The detection accuracy of HomeAlone depends on how

frequently the foe VM executes PRIME-PROBE trials and
on the number of cache sets in the intersection between the
regions probed by HomeAlone and by the foe VM. Figure 6
shows the true and false detection rates over a range of
adversarial foe VM PRIME-PROBE frequencies and amounts
of cache-set overlap. The experimental parameters used for
detection (e.g., n, α, PRIME-PROBE interval, total number
and time between PRIME-PROBE trials by HomeAlone) were
selected as in our detection experiments above.

As illustrated in Figure 6(a), for an adversary that per-
forms PRIME-PROBE protocols back-to-back with a minimal
intervening delay, detection accuracy improved as the over-
lapping cache region grew. With as few as 32 overlapping
cache sets, HomeAlone achieved a 20% true detection rate
with a false detection rate of 1%. When the full 1/16th

of the cache monitored by HomeAlone overlapped with
the foe VM’s region of activity, the true detection rate
rose to 85%. As seen in Figure 6(b), the true detection
rate of HomeAlone increased, as expected, with the foe
VM’s PRIME-PROBE frequency. Such detection is possible,
however, only when the foe VM executes PRIME-PROBE
protocols with sufficient frequency and scope. A sufficiently
inactive foe VM, i.e., one probing a small portion of the
cache (e.g., 32 cache sets) with low frequency (e.g., every
10 seconds) will likely escape detection. The bandwidth of
the resulting side-channel, though, would render meaningful
data exfiltration challenging.

Responding to detections: When co-residency is de-
tected by HomeAlone, the customer whose friendly VMs
are at risk has several options available to respond. If the
customer is not immediately concerned about attacks on
friendly VMs (e.g., if the customer employs HomeAlone
primarily to detect service-provider misconfigurations as
opposed to truly hostile foe VMs), the customer might
simply attempt to confirm the detection to a higher degree



of assurance. For example, the friendly VMs could increase
the portion of the cache they use for detection, increase
n, or leverage multiple n-sized tests as described below.
If this additional testing confirms the presence of foe VMs,
then the customer should presumably report this problem to
the cloud provider. If some of the customer’s VMs contain
highly sensitive data that warrant more immediate reaction
to a detection, then the customer might suspend processing
of that data while the aforementioned steps are performed
to confirm the detection.

Probability amplification: In most of our tests, the
separation of the true detection rate from the false detection
rate (of ≤ 1%) was substantial. This separation can be lever-
aged to substantially improve HomeAlone’s sensitivity—
both its true detection rate and its false detection rate—using
the known technique of probability amplification. In this
approach, a series of N detection periods (each of n trials) is
executed, each yielding a binary detection hypothesis (“foe
present” / “foe absent”). A meta-classifier is applied to these
N outputs. The output of the meta-classifier (“Foe Present”
/ “Foe Absent”) is based on the fraction of “foe present”
results across runs, according to a statistical test that we
briefly describe.

Let α denote the false detection rate for a run of Home-
Alone and β the true detection rate (with the requirement
that α < β). Let z denote the number of “foe present” out-
puts over the N runs; E[z] = αN with no foe present, while
E[z] = βN with a foe truly present. The meta-classifier then
outputs “Foe Present” if z ≥ (α+ β)N/2, i.e., z exceeds a
threshold defined as the mid-point between expected values
under the two hypotheses; it outputs “Foe Absent” otherwise.
(The threshold can be adjusted, of course.)

Assuming that the outputs of individual HomeAlone runs
are statistically independent (even partially independent),
this meta-classifier can achieve very high detection rates
and very low false detection rates for moderate values of
N . For example, assuming complete independence, a single-
run true detection rate of β = 84% (the lowest we observed
for the PARSEC benchmarks) and a false detection rate of
α = 1%, with N = 10, the meta-classifier detection rate
would be > 99.8%, with a false detection rate < 2.5×10−8.
When HomeAlone is used in particular to detect cloud
configuration errors (and thus a long-persisting foe), it is
feasible to support many more detection periods.

The degree of independence between runs increases with
the length of time between them. Run-independence can also
be reinforced, we expect, with a resampling of the cache
color monitored by HomeAlone. Further research would be
required to characterize the statistical dependence between
runs and to determine the most appropriate tradeoff between
execution time and sensitivity for probability amplification.

B. Performance

In this section, we examine the overhead induced by
HomeAlone when avoiding 1/16th of the cache.

Overhead of address remapping: At the beginning of
a detection period, HomeAlone can change the region of
the cache being avoided by friendly VMs by transmitting
a randomly chosen cache color to all friendly VMs. This
mechanism is useful to conceal the monitored region from
an active foe that tries to escape detection. (Such a foe
is discussed more in Section VII.) However, changing the
cache color induces performance overhead caused by the
address remapping procedure (see Section V-B). In Figure 7,
we show the overhead of address remapping in our (unop-
timized) implementation, as a function of the total memory
size, assuming 16 colors (and so each color constitutes
1/16th of the memory).
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In our implementation,
applications running on
friendly VMs are paused
during remapping. So, the
costs shown in Figure 7
are not inconsequential to
applications. That said,
a more refined imple-
mentation could perform
remapping incrementally
(e.g., one or a few pages
at a time), permitting ap-
plications to run between
remapping increments. As such, remapping need not incur a
large contiguous pause in activity, but rather the remapping
costs can be amortized over a longer interval and interleaved
with application execution.

Overhead during detection periods: During detection
periods, applications inside friendly VMs continue to run,
but the VMs do not utilize the entire cache. In addition,
a detection thread runs inside the monitoring VM, and
the coordinators of the VMs interact to perform PRIME-
PROBE trials (see Section V). In this section we show the
overhead that this induced on the seven PARSEC benchmark
applications during detection periods.

To measure these costs, we first ran each benchmark
10 times without HomeAlone; in each of these runs, the
benchmark ran alone on the platform but within a VM
with one virtual core.2 In 10 subsequent tests, we ran the
benchmark in one VM (with HomeAlone) that participated
with three other, unloaded VMs in our foe detection pro-
tocol. Notably, this involved avoiding 1/16th of its cache,
conducting PRIME-PROBE trials at random intervals chosen
between 1 and 5 seconds, and coordinating detection across

2All benchmarks were run in a virtual machine with 1GB of memory,
except for dedup and canneal, which were given 3GB of memory to
avoid frequent swapping.



these VMs. (These tests did not include remapping. As
discussed above, this happens before the detection period
and the costs can be amortized over an arbitrary amount of
time in advance.) We then computed a normalized runtime
of each benchmark when run with HomeAlone enabled, by
dividing the average runtime of the benchmark when run
with HomeAlone by the average runtime of the benchmark
when run without it.
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The results, shown in
Figure 8, suggest that
there is modest perfor-
mance degradation in the
benchmarks we exam-
ined. The benchmark that
suffered the most, namely
x264, did so by approx-
imately 4.6% on average.
We believe the reasons
for the modest overhead
of HomeAlone are multi-
fold: First, in rare instances do applications utilize the entire
cache, and thus avoiding 1/16th of the cache impacts the
performance of most applications minimally. Second, we
conjecture that due to artifacts of virtualization, avoiding
a portion of the cache is less disruptive to application
performance than it would be in a traditional environment.

VII. DISCUSSION

In this section we briefly consider several issues that may
affect how our techniques are applied in practice.

Machine migration during detection: Our experiments
assumed that the number of friendly VMs is constant during
detection periods. The unexpected machine migration of a
friendly VM to or from the host, or the instantiation of a
new friendly VM on the host, could potentially produce
a false detection. If this is a possibility, then additional
measures will be needed to report these events and, if
necessary, disregard any detections based on observations
with which these events may have interfered. As discussed
in Section V-A, our techniques already assume the ability
to coordinate across friendly VMs on the same host. These
additional measures to address changes in the population of
friendly VMs are simply an extension of that requirement.

Hardware-assisted virtualization: With HVM technol-
ogy, the hypervisor can utilize hardware assistance to better
isolate one guest OS from another [32], [22]. Although
major computing infrastructure providers like Amazon [1]
and Rackspace [3] still support PVM guests, we expect a
move to HVM in the future. Some technical differences
between HVM and PVM alter the cache-based side channel
for our purposes.

The most acute complication comes from virtualization
of the MMU. In HVM, only pseudo-physical memory ad-
dresses are visible to guests and stored in the guest page

table entries. The mapping from the pseudo-physical to the
machine address space is done through a shadow page table
maintained by the hypervisor [22]. In HVMs, guests do not
have direct control of the physical memory addresses, and
this impacts our cache coloring technique used for avoiding
certain cache regions during detection.

To our advantage, more and more hardware-assisted vir-
tual machines seek paravirtualized functionality. Hypercalls,
traditionally used only by PVM, are now used in HVM for
better performance. Examples include hypercalls that allow
guests direct control of device drivers [2], and hypercalls
that make the real machine address visible to guests. We thus
believe that minor modifications would make our detection
techniques viable in cloud environments with HVM guests.

Evading detection: As shown, HomeAlone detects a
foe VM whose activities are significantly evidenced in the
L2 cache during its execution. A foe VM with knowledge of
HomeAlone could try to limit its cache footprint in order to
evade detection. Since HomeAlone selects a different cache
region (color) in each detection period, to escape detection
the foe would presumably need to lower its utilization of
most or all of the cache or else discern the color being used
by HomeAlone and avoid only those portions of the cache.
To discern the color, however, the foe would presumably
need to probe the cache, an activity that HomeAlone is
designed to detect. More generally, HomeAlone is well
positioned to detect side-channel attacks via the cache (e.g.,
of cryptographic keys), and so a foe that avoids the cache,
either in whole or in part, to evade detection sacrifices a
significant attack vector to do so. Of course, it can make use
of other timing channels—e.g., the instruction cache [4], the
branch target cache [6], [7], or shared functional units [46],
[9]—but these channels require SMT, which is not supported
in some clouds, and far less has been shown about the
efficacy of these channels. Moreover, it may be possible to
extend HomeAlone to monitor those channels as well.

VIII. RELATED WORK

Most prior work on cache timing channels has focused on
their use as a side or covert channel. Here we briefly review
related research and highlight its differences from our own.

Cryptanalytic techniques based on timing measurements
of arithmetic operations were introduced by Kocher [27].
Subsequently, timing attacks based on shared data caches
have been widely studied in the cryptanalysis of crypto-
graphic protocols, e.g., [43], [42], [35], [8], [5], [15], [33],
[34], [44], [23], [40], [25], [30], [16], [37], [49], [14], [24],
[41]. The focus of this (still active) research area is to exploit
the characteristics of the data cache (in particular the access
latency gap between the cache and main memory) to develop
cryptanalytic techniques specifically tailored to particular
cryptographic implementations. In contrast, our work uses
timing measurements on the L2 cache as a defensive tool.
Moreover, our techniques are general in that we aim at



detecting arbitrary foe VMs and we do not assume any
knowledge about the foe VM implementation or workload.

Methods proposed to mitigate the threats posed by data-
cache side channels generally fall into three categories. First,
they include new cache designs (e.g., [46], [47], [26], [28],
[48]). Second, Aviram et al. [10] have proposed to eliminate
timing channels in cloud computing by forcing VM execu-
tion to be deterministic, but the success of this approach still
needs to be demonstrated. Third, a promising direction is to
construct cryptographic implementations that resist cache-
based timing attacks (e.g., [29], [25]). Techniques such as
new cache designs and forced determinism could potentially
hinder the detection capability that we have developed in this
paper. However, we do not anticipate that these mechanisms
will be widely adopted in the near future. Another defense
applicable in cloud computing is to disallow cache sharing
among tenants altogether, either by grouping friendly VMs
on cores sharing a cache or by partitioning the cache among
VMs [36]. Of course, our techniques enable friendly VMs
to detect if the service provider fails to correctly implement
such cache isolation policies.

Besides the data cache, other architectural side channels
have been exploited in cryptanalysis; as mentioned above,
these include the instruction cache [4], the branch target
cache [6], [7], and shared functional units [46], [9]. It is
conceivable that these or other side channels could be used
for foe detection, though we leave investigation of this
possibility to future work.

IX. CONCLUSION

With the growing movement of sensitive applications to
clouds, there is increasing demand for physical isolation of
tenants’ workloads (e.g., [18], [11]). In this paper we have
developed an approach called HomeAlone by which a tenant
of an IaaS cloud can detect if this isolation is violated, with-
out requiring cooperation from the cloud service provider. In
addition to providing the first such capability of which we
are aware, our approach is novel in utilizing cache timing
channels as a defensive monitoring technique, in contrast to
the significant body of literature that uses them as an attack
vector (see Section VIII).

We detailed the design of our cache timing classifier for
detecting the co-residence of “foe VMs” with a tenant’s own
“friendly VMs” and how we overcame significant obstacles
to make this detection viable. We also implemented our
detector within Linux for Xen, and demonstrated that our
detector impacted performance modestly (less than 5%)
in a range of benchmark applications. Foe detection tests
indicate that reasonably active, benign foes can be detected
in 25 PRIME-PROBE trials of 1/16th of the cache with a
true detection rate ranging from 84% up to 100%, while
permitting a false detection rate of only ∼ 1%. For similar
parameter settings, foe VMs that attempted to exploit the
cache as a side-channel were detected with rates ranging

from 15% to 85% in our tests, depending on the frequencies
with which they probed and the extents to which the cache
sets they probed overlapped those monitored by HomeAlone.

As an initial example of using side channels to monitor
for co-resident foes, we believe our work opens up new
directions for research, both in better classifiers for cache
timing behavior and in use of other side channels. And,
while we believe that avoiding detection by HomeAlone
imposes significant penalties on a foe VM—namely avoiding
its own cache and thus dispensing of a potent attack vector
of its own—we anticipate and welcome additional progress
in testing the limits of this approach.
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