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Abstract—We present CanDID, a platform for practical, user-
friendly realization of decentralized identity, the idea of empow-
ering end users with management of their own credentials.

While decentralized identity promises to give users greater
control over their private data, it burdens users with management
of private keys, creating a significant risk of key loss. Existing and
proposed approaches also presume the spontaneous availability
of a credential-issuance ecosystem, creating a bootstrapping
problem. They also omit essential functionality, like resistance to
Sybil attacks and the ability to detect misbehaving or sanctioned
users while preserving user privacy.

CanDID addresses these challenges by issuing credentials
in a user-friendly way that draws securely and privately on
data from existing, unmodified web service providers. Such
legacy compatibility similarly enables CanDID users to leverage
their existing online accounts for recovery of lost keys. Using
a decentralized committee of nodes, CanDID provides strong
confidentiality for user’s keys, real-world identities, and data,
yet prevents users from spawning multiple identities and allows
identification (and blacklisting) of sanctioned users.

We present the CanDID architecture and its technical inno-
vations and report on experiments demonstrating its practical
performance.

I. INTRODUCTION

Identity management lies at the heart of any user-facing
system, be it a social media platform, online game, or col-
laborative tool. Backlash against the handling of personal
information by large tech firms [3], [4] has recently spawned
a new approach to identity management called decentralized
identity—a.k.a. self-sovereign identity [8], [10], [28], [71].

Decentralized identity systems allow users to gather and
manage their own credentials under the banner of self-created
decentralized identifiers (DIDs). By controlling private keys
associated with DIDs, users are empowered to disclose or
withhold their credentials as desired in online interactions.
Enterprises also benefit by limiting the liability associated with
storage of sensitive user data [45].

The most commonly cited use cases for DIDs involve
users authorizing release of personal credentials from user
devices to websites [58]. For example, an online job applicant
might release a digitally signed credential from her university
showing that she has received a bachelor’s degree and a proof
of residency in the country in which she is applying. Initiatives
such as the Decentralized Identity Foundation [28] and Decen-
tralized Identifiers (DID) working group of W3C [71] are de-
veloping standards and use cases to support such transactions.
They largely fail, however, to address four main technical and
usability goals that we target in this work. Specifically, these
goals are especially challenging to achieve, as we seek to do,
in a privacy-preserving way:

1) Legacy compatibility: Most proposed decentralized identity
systems presume the existence of a community of issuers
of digitally signed credentials. But such issuers may not
arise—and existing credential issuers may not begin to
issue digitally signed variants of existing credentials—until
decentralized identity infrastructure sees use. The result is a
bootstrapping problem. A big impediment to DID adoption
is the inability of proposed systems to leverage the rich data
on users available in existing web services that do not issue
signed attestations.

2) Sybil-resistance: Proposed decentralized identity systems
do not deduplicate user identities. Unique per-user iden-
tities are critical, though, in many systems: anonymous
voting, fair currency distribution (“airdrops”), etc.

3) Accountability: It is challenging both to provide user pri-
vacy, i.e., conceal users’ real-world identities, and achieve
compliance with regulations such as Know-Your-Customer
(KYC) / Anti-Money-Laundering (AML). Particularly im-
portant is an ability to screen users of the system, i.e.,
identify and bar identified misbehaving or criminal users.

4) Key recovery: In decentralized identity systems, users bear
the burden of managing their own private keys. Key recov-
ery is potentially the Achilles’ heel of such systems, as it is
well known that users regularly lose valuable keys. Billions
of dollars of cryptocurrency are known to have vanished
because of lost keys [57].

Proposed solutions to these problems are problematic in
various ways. For example, for key management / recovery,
users can delegate or escrow their private keys with an online
service (like Coinbase for cryptocurrency [5])—but would then
effectively re-centralize identity management. W3C proposes
a quorum of trusted parties to enable key recovery, but omits
details [71]; Microsoft plans to unveil a new approach, but
details remain forthcoming at the time of writing [50].

The other three enumerated challenges, legacy compat-
ibility, Sybil-resistance, and (privacy-preserving) sanctions
screening, have seen little or no treatment in proposed decen-
tralized identity systems, and treatment relevant to such sys-
tems in only a few works in the research literature, e.g., [17],
[18], [22], [24], [34], [79].

A. CanDID

In this paper, we present CanDID1, a decentralized-identity
system that aims to address the four major challenges high-
lighted above, while providing strong privacy properties. Can-

1The name means “honestly presenting information”; we also use it to
signify that users “can do decentralized identities (DIDs)”.
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DID can act as a freestanding service or can be coupled
with other decentralized identity systems. It is decentralized
in the sense that it relies on a committee of nodes, which may
represent distinct entities.

CanDID consists of two subsystems: An identity system for
issuing and managing credentials, and a key recovery system.

1) Identity system: CanDID leverages an oracle—
specifically, either DECO [84] or Town Crier [83]—to port
identities and credentials securely from existing web services.
These services can be social media platforms, online bank
accounts, e-mail accounts, etc. The oracles used by CanDID
allow it to scrape websites in order to construct trustworthy
credentials without providers needing to explicitly create
DID-compatible credentials or even be aware of CanDID,
easing the way for ecosystem bootstrapping.

Credential privacy: In support of its strong privacy ob-
jectives, CanDID allows users to construct credentials that
reveal information selectively via zero-knowledge arguments.
For instance, a user can construct a credential proving that
she is at least 18 years of age. In doing so, she need not
reveal her actual birthdate either to committee nodes or to
entities to which she presents the credential. Second, CanDID
provides strong membership privacy. Committee nodes and
web-identity providers not only cannot learn users’ real-world
identities, but cannot learn user membership, i.e., whether a
given real-world user is active in CanDID.

As in other DID schemes, e.g., [10], [28], [71], CanDID
supports the use of pairwise credentials. That is, it permits
users to generate credentials unique to each user-service rela-
tionship and unlinkable to those used in other relationships.
CanDID can in principle alternatively support fully anonymous
credentials. Conversely, CanDID is compatible with models in
which users register pseudonymous decentralized identifiers
(DIDs) on a blockchain or other distributed ledger.

Novel capabilities: Beyond credential issuance, which is
fundamental to any decentralized identity system, CanDID’s
identity system includes two new and distinctive capabilities:
Sybil-resistance and sanctions screening.

a) Sybil-resistance: CanDID deduplicates identities, en-
abling relying parties to achieve high assurance that users are
presenting credentials that are unique to them, and that a single
user does not spawn multiple identities. CanDID supports
deduplication of identities with respect to unique numerical
identifiers like Social Security Numbers. It uses a special-
purpose MPC protocol that is privacy-preserving, meaning
values of attributes used for deduplication are hidden even
from committee nodes.

b) Accountability: The CanDID committee can screen
users of the system so as to identify the credentials of
suspect users or known malefactors. This operation is privacy-
preserving: the committee learns nothing about users not on
the list. Lists of users banned from participation in financial
systems, i.e., sanctions lists, in practice identify individuals
based on attributes such as name / address represented as
strings, not unique numerical identifiers [69]. Thus CanDID
supports fuzzy matching, i.e., tolerance of small edit-distance
variances. The CanDID committee can create a public revo-
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Fig. 1: CanDID architecture overview and workflow.

cation list of credentials identified by the screening process.
CanDID performs privacy-preserving fuzzy matching using

secure multiparty computation (MPC), a technically chal-
lenging goal. We explore a range of performance-optimizing
techniques, including different data structures for representing
user attributes in secret-shared form in the system.

We show the basic workflow for credential issuance (without
sanctions screening) in Fig. 1a.

2) Key-recovery system: To enable users to back up and
recover private keys in a secure, user-friendly way, CanDID
uses a oracle-based workflow like that for credential issuance.

This approach allows users to leverage existing web au-
thentication schemes and engage in a familiar, user-friendly
workflow to recover their keys. Users may store their private
keys on whatever devices, e.g., mobile phones, they choose
for regular use. Users can back up their private keys with
the CanDID committee (privately, via secret-sharing) and
prespecify recovery accounts on web services of their choice,
along with a recovery policy (e.g., successful authentication
for 2-out-of-3 accounts). To recover her key, a user proves
successful logins under her chosen policy.

Fig. 1b shows CanDID’s key-recovery workflow.

Key-recovery privacy: CanDID’s use of oracles allows a user
to prove she was successful in logging into a preselected
account, but without revealing account information to com-
mittee nodes or CanDID use to web service providers. Naı̈ve
approaches, e.g., use of OAuth, would leak such information.

B. Contributions and Paper Organization

To summarize, CanDID offers a practical approach to de-
centralized identity management that overcomes a number of
significant challenges.

In what follows, we present brief background on oracles
(Sec. II), followed by an overview of CanDID (Sec. III) and
its system and security models (Sec. IV).

Our main technical contributions are:
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• Legacy-compatible credential issuance: CanDID leverages
oracle systems to construct user’s credentials based on data
with existing, unmodified web services (Sec. V).

• Sybil-resistance: CanDID enforces deduplication of identi-
ties, meaning that it issues credentials in a manner that is
unique per user (Sec. V).

• Accountability: The CanDID committee can identify creden-
tials associated with users who should be prevented from
using the system, e.g., appearing on a sanctions list, for
further action such as blacklisting. This process involves
privacy-preserving fuzzy matching of identifier strings using
new techniques in an MPC setting (Sec. VI).

• Key recovery: CanDID allows a user to store her key with
the CanDID committee to facilitate recovery, should a user
lose her private key. She may leverage existing online
accounts according to any policy she desires in order to
recover her key in an manner that provides privacy for
account identifiers (Sec. VII).

• Implementation and evaluation: We describe and report on
the performance of a basic implementation of CanDID. We
also report on experiments on the most computationally de-
manding system component: MPC-based privacy-preserving
fuzzy matching for sanctions screening (Sec. VIII).
We describe several example applications of CanDID

(Sec. IX), and discuss related work (Sec. X) before concluding
with a discussion of future research directions (Sec. XI).

II. BACKGROUND: ORACLES

CanDID relies on a blockchain-style oracle system [23],
[84], [56], [83] for credential issuance and key recovery, al-
though CanDID does not require use of the oracle to interface
with a blockchain.

An oracle relays and provides assurance around the authen-
ticity of data retrieved from authoritative sources—typically
web servers accessed via a secure channel such as TLS.
Specifically, it allows a prover to prove (publicly or to a
particular verifier) that a piece of data originates with a
particular source (e.g., as identified by its TLS certificate)—
and optionally prove arbitrary statements about the data.

CanDID uses an oracle system to allow users to import
identities securely from existing systems. For example, Alice
can use the profile page of her Social Security Administration
(SSA) account to generate a credential attesting to her Social
Security Number (SSN). The idea is for Alice to execute an or-
acle protocol—as the prover—to prove that a web page fetched
from the SSA site contains a string SSN: 123-45-6789 in
the appropriate context.

Currently, the only oracle protocols that provide privacy for
user data and are legacy-compatible, i.e., require no modifi-
cation of data sources, are DECO [84] and Town Crier [83].
DECO is a three-party protocol between a prover P , verifier
V , and TLS server S. It allows P to convince V that a piece
of data—possibly private to P—retrieved from S satisfies
a predicate Pred. DECO relies on Multi-Party Computation
(MPC) to protect data privacy and authenticity, and zero-
knowledge proofs (ZKPs) to prove a predicate is satisfied.
Having multiple verifiers decentralizes the protocol.

Town Crier accomplishes a similar goal. It relies, though,
on Trusted Execution Environments (TEEs), Intel SGX in
particular, to attest to the authenticity of TLS sessions and
prove statements about TLS plaintexts.

In general, Town Crier is faster than DECO, and can effi-
ciently handle much more complicated predicates than DECO.
Town Crier proofs are also publicly verifiable, while DECO
proofs are designated-verifier. Town Crier does, however,
introduce trust assumptions around TEEs called into question
by recent attacks (see, e.g., [51] for a survey).

CanDID can use either DECO or Town Crier, depending on
the desired trust model.

III. CANDID SYSTEM OVERVIEW

CanDID is a framework for issuing and managing creden-
tials. It is composed of two sub-systems: an identity system
that supports credential issuance and a key recovery system to
recover lost keys associated with credentials.

The key recovery system can be used for storage of any
secret, but we integrate it into CanDID for two reasons:
(1) Good key recovery is critical to safe use of CanDID
credentials; and (2) The key recovery system architecture
leverages the same tools as the credential issuance system.

The system goals common to the two sub-systems are:
1) Use of legacy credentials: Allow users to leverage cre-

dentials from existing systems.
2) Decentralization: Expose no single point of failure.
3) Membership privacy: Provide membership privacy, mean-

ing concealment of users’ real-world identities.
CanDID relies on a decentralized set of nodes, called the

CanDID committee. We assume the same committee for both
subsystems for convenience, but they can be overlapping or
distinct if desired.

We now review each sub-system in turn, specifying its goals
and explaining how we meet them.

A. Identity System

Fig. 2 is a visual overview of the key components and
workflows of CanDID’s identity subsystem. We refer to it
throughout our discussion in this subsection.

Goal: The overarching goal of CanDID’s identity system is
to convert commonly used legacy data to application-ready
decentralized credentials. While different applications con-
suming CanDID credentials may have different requirements,
they usually share common requirements, including:
1) Uniqueness: Include provisions to deduplicate user iden-

tities useful for applications like voting.
2) Non-transferability: Include preventive measures discour-

aging users from transferring their credentials.
3) Accountability: Provide a mechanism to trace and revoke

user identities based on their known real-world identities.
4) Pairwise privacy: Allow users to generate pairwise

DIDs [72], i.e., a distinct DID for each application—to
prevent identity correlation across services.

To achieve these goals, CanDID relies on decentralized
oracle schemes like DECO and Town Crier to port data from
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Fig. 2: Identity System overview through the lifecycle of a credential. Green indicates Sybil-resistant credentials, the final state.

legacy web accounts to create credentials—e.g., on Alice’s
SSN, as in the example above. The CanDID committee nodes
act as verifiers in the porting protocol as needed. (For instance,
DECO relies on verifiers, but Town Crier doesn’t.)

a) Uniqueness and Non-Transferability: Even with se-
curely created credentials, meeting our goals of uniqueness
and non-transferability still presents a challenge. Achieving
uniqueness is difficult because, given that credential attributes
are private, and thus hidden from the CanDID committee, there
is no inherent obstacle to a user invoking the porting process
to generate an arbitrary number of credentials. Lack of per-
user credential uniqueness can be problematic in a number of
settings, e.g., in anonymous voting systems.

Non-transferability is challenging because there is no tech-
nical obstacle to a user revealing private keys to a colluding
party. This is already a serious problem, with credentials regu-
larly sold in underground online markets [36], yet current DID
proposals do not address it. Non-transferability is important for
a range of applications, e.g., for video-streaming services to
prevent sharing or gray-market sale of content among users.

CanDID addresses both challenges—uniqueness and non-
transferability—by making the system Sybil-resistant. Sybil-
resistance is achieved by deduplicating based on one or more
attributes. For example, Social Security Number (SSN)-based
deduplication would ensure the existence of at most one
pseudonym with associated SSN attribute “123-45-6789.”

To perform deduplication, committee nodes maintain a
secret-shared table of the target user attributes, e.g., SSNs.
A new user joining the system presents one or more pre-
credentials asserting various attributes. A pre-credential in
CanDID is any credential that has not yet been been dedu-
plicated. Given pre-credentials for the attributes over which
deduplication takes place (e.g., SSN), the committee performs
a privacy-preserving MPC deduplication protocol to check the
table for the existence of these attributes in an already-issued
credential. Only on confirming a user’s asserted attributes are
unique does the system issue her a fresh Sybil-resistant cre-
dential called a master credential. Fig. 2 depicts this process.

Making the system Sybil-resistant helps discourage creden-
tial transfer. Each user can obtain only one master credential
CanDID, disincentivizing sale or transfer. Other deterrents
such as temporary revocation of misused credentials can be
effective for the same reason.

A key design question is which attributes to deduplicate
over. Our main focus here is on truly unique identifiers, like
Social Security Numbers (SSN) in the United States, for dedu-
plication. The use of unique identifiers allows efficient MPC
deduplication protocols, making this approach very practical.

Most, but not all of the world’s population, has such
identifiers. The MPC techniques we introduce in Sec. VI can in
principle be adapted instead for deduplication over commonly
used identifiers, like name and address, which are “fuzzy,” i.e.,
error prone. This approach is very computationally intensive,
though, making practicality a subject of future work.

The master credential issued after deduplication often does
not contain all the attributes a user will want to use in
interactions with application providers. For example, to vote,
an age credential is required. The CanDID committee can
subsequently issue context-based credentials for this purpose.
As shown in Fig. 2, a user presents pre-credentials (say, about
“age”) and her master credential to obtain this desired creden-
tial. The challenge in this step is to ensure that pre-credentials
belong to the same person holding the master credential.
Otherwise, users might buy cheap stolen accounts [52] to
prove arbitrary claims. The CanDID committee checks that a
common attribute like name is same across the pre-credentials
and the master credential. This linking operation is privacy-
preserving, so committee nodes never learn user attributes.

b) Accountability: CanDID enables identification of sus-
pect users or known malefactors based on their real-world
identities, and permits subsequent listing of such users on a
committee-maintained, public revocation list, as seen in Fig. 2.
Any verifying party can check this list to ensure that a shown
credential is not revoked.

One common way to identify misbehaving users in financial
systems, for example, is through sanctions lists. Sanctions lists
include individuals, e.g., terrorists and narcotics traffickers, as
well as organizations whose assets have been frozen or blocked
by government agencies. An example of such a list is the
Specially Designation Nationals and Blocked Person (SDN)
list published by the Office of Foreign Assets Control (OFAC)
within the U.S. Department of the Treasury. U.S. financial
institutions may not open accounts for individuals on the SDN
list, and regulators typically require that financial institutions
conduct periodic sanctions screening of their customers [32].

CanDID can support revocation of users identifies on a tar-



5

get sanctions list or otherwise with known real-world identities
in a privacy-preserving fashion. For example, in the case of
a sanctions list, users must prove that they are not on the
sanctions list in order to obtain a credential. But CanDID must
additionally determine if an existing CanDID credential was
issued to a person newly added to a sanctions list. CanDID can
enforce accountability of this kind using a privacy-preserving
MPC matching protocol discussed in Sec. VI.

CanDID can also support user-initiated revocation for lost
or stolen credentials and identity theft.

c) Privacy: CanDID aims at strong privacy notions. Not
only are users’ attributes hidden from committee nodes, but
CanDID achieves attribute-membership privacy. This means
that committee nodes cannot determine, for a particular at-
tribute value, whether the system contains a credential with
that attribute value. We formalize our privacy definitions
in Sec. IV.

Supporting revocation based on real-world identities while
maintaining attribute privacy is one of the major technical
challenges in the design of CanDID. The reason is that in
many cases, e.g., with sanctions lists, misbehaving individuals
are typically identified by means of attributes like names and
addresses, and not always by unique identifiers like Social
Security numbers (particularly as these lists may include for-
eign nationals). Matching is an inexact process, as names may
be misspelled, inconsistently transliterated, etc. Consequently,
CanDID stores target attributes in secret-shared form and does
sanctions-screening searches by means of privacy-preserving
string matching. Specifically, CanDID uses a newly developed
MPC-based fuzzy matching technique optimized to scale in a
practical way. We give details in Sec. VI.

Credential issuance in CanDID provides pseudonymity by
means of pairwise DIDs, as is common in DID proposals; see,
e.g., [72]. Users can use different pseudonyms with different
applications. Even collusion among all application providers
is insufficient to link different user pseudonyms.

B. Key Recovery System

Goal: The goal of the key recovery system in CanDID is
simply to prevent identity loss. Since identities are controlled
through keys, CanDID aims to provide a secure, user-friendly
key recovery solution. (CanDID does not address key theft.)

Like many other systems, CanDID envisages users storing
their private keys securely on personal devices, such as mobile
phones. Key backup / recovery is the Achilles’ heel of these
systems. Cryptocurrency wallets require secure physical stor-
age of printed word lists, an unfamiliar and onerous process
for most users. CanDID, in contrast, allows users to recover
their keys using existing legacy web authentication schemes.
CanDID thus provides users with a familiar and convenient
user experience during key recovery.

As shown in Fig. 3, a user enrolls in the key recovery
service in CanDID by providing their keys along with a
recovery policy. The CanDID committee stores a user’s key
in a secret-shared fashion, releasing it only upon the user
meeting the criteria specified in her policy. CanDID supports
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DID key
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Policy and Proofs

Authentication 
Proofs
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Committee

User

DID key

Fig. 3: CanDID Key Recovery System overview in terms of
the lifecycle of a DID key.

flexible authentication policies that can combine several ex-
isting authentication schemes. An example policy is 2-out-of-
3 threshold authentication involving Facebook, Google, and
Twitter accounts. Users can plug in any provider they like.
To authenticate, a user provides committee nodes with corre-
sopnding privacy-preserving proofs of account ownership. We
give details on CanDID’s key recovery system in Sec. VII.

While the CanDID key recovery system is meant for Can-
DID private keys—DID keys—it can in principle be used to
back up any desired secrets.

IV. SYSTEM AND SECURITY MODELS

We formalize our presentation of CanDID by presenting
our system and security models, along with notation and
discussion of key security properties.

A. System Model

The CanDID system involves three types of parties: users,
credential issuers, and credential verifiers.

Let U denote a user. Each user creates a public / private
key pair (pkU , skU ). For simplicity of exposition, and by
analogy with practice in cryptocurrencies, we use and refer
to the public key itself as a user identifier or pseudonym in
CanDID. CanDID supports the use of decentralized identifiers
(DID) by relying on a PKI-like infrastructure that stores the
mapping between DIDs and public keys. We will therefore
also use the terms DIDs and public keys interchangeably.

The committee in CanDID acts as the credential issuer.2

We assume a permissioned model for selecting committee
nodes. Let C denote the committee, which consists of n
nodes, {Ci}ni=1. The committee nodes store a secret key skC

jointly, used to issue credentials. The corresponding public
key pkC serves to verify credentials. Any party (e.g., CanDID
applications, committee nodes) can act as a credential verifier.

Credential: We adopt the definition of a credential from the
W3C Verifiable Credentials specification [78]. A credential is
defined as a set of claims made by an issuer, where each claim
is a statement about the user whose form is explained below.

2Note that in the traditional view of DIDs, the role of an issuer is fulfilled
by legacy providers themselves. In contrast, CanDID uses DECO and Town
Crier to port data and issue credentials in a legacy-provider-oblivious way.



6

Notation Description

U User
C Committee
P Legacy provider

pkU User identifier
ctx Context
claim Claim
cred Credential

TABLE I: Notation

Each credential also contains a context, used to indicate the
circumstances of its use.

Concretely, in CanDID, a credential contains a user iden-
tifier, context, one or more claims and a signature over the
credential body, as follows.
1) User identifier (pkU ): The pseudonymous identifier of the

subject of the credential. Also referred to as a pseudonym.
2) Context (ctx): A string denoting the circumstances for

credential use, e.g., “Voting at Company A.”
3) Claims ({claimi}): Each claimi = {ai, vi, Pi} contains an

attribute, value, and provider, as follows:
a) Attribute (a): A string denoting what the claim is about,

e.g., “Name.”
b) Value (v): The value of the attribute. A value is either

a plaintext string (e.g., “Alice”) or a commitment to it.
(The need for a commitment is explained later.)

c) Provider (P ): A string denoting the legacy web provider
used to source the claim, e.g., “ssa.gov.” This field is
optional.

We denote a set of claims by CS = {claimi}.
4) Signature (σ): The signature by the issuer over the user

identifier, context and claims.
We tabulate our notation in Table I. If there are k claims

in total, i.e., CS = {claimi}ki=1 then the signature of the
committee is, σ = SigskC ({pkU , ctx, CS}). A credential looks
like cred = {pkU , ctx, CS, σ}. See Fig. 4 for an example
credential. (CanDID credentials are represented using JSON
format in our figures.) Note that CanDID achieves pairwise
pseudonymity by allowing users to choose different identifiers
for their different credentials.

Our notation largely follows the W3C spec. The main
difference is the introduction of an optional “Provider” field
in each claim, necessitated by our approach of sourcing
claims from existing providers. Additional metadata such as
credential expiry dates and porting protocol (e.g., DECO /
Town Crier) can also easily be supported.

To reflect CanDID’s deduplication process over a set of
attributes Attr, all CanDID credentials contain a claim with
attribute “dedupOver” and value Attr, amongst other claims.

B. Security Model

We define the security properties of CanDID in terms of
a set of game-based security definitions. We defer the formal
definitions to App. A due to lack of space. First we define our
model.
Adversarial model: We allow the adversary to statically and
actively corrupt up to t of the n committee nodes, for t < n/3.

In addition, the adversary can corrupt any number of external
entities, such as users and applications.

We assume that CanDID committee nodes hold a (t, n)-
Shamir secret sharing [62] of a private key skC , with corre-
sponding public key pkC .
Communication model: We assume that communication
channels are asynchronous. We note, however, that the dis-
tributed key generation protocol [40] used upon system ini-
tialization to generate (skC , pkC) requires weak synchrony for
liveness, although not for safety.
Security Properties: CanDID aims to satisfy the follow-
ing properties in the adversarial model described above. We
present the properties informally here and more formally in
their respective sections in the paper.
• Sybil-resistance (Def. 1): An adversary cannot obtain cre-

dentials associated with a larger number of distinct identities
than the number of users the adversary controls.

• Unforgeability (Def. 2): An adversary cannot forge the
credentials of honest users or otherwise impersonate them.

• Privacy: Credential-issuance and key-recovery (Def. 3
and Def. 4): It is infeasible for an adversary to learn user
attributes from observation of the credential-issuance and
key-recovery protocols respectively.

• Credential validity (Def. 6): An adversary can obtain
credentials only for real-world identities it controls.

• Unlinkability (Def. 7): The entities administering CanDID-
reliant applications cannot collude and link the respective
transactions of any given user. This definition applies only
in a weakened adversarial model that rules out malicious
committee nodes.

• Privacy: Credential-verification (Def. 8): An adversary
can learn about a user no more than the information the
user explicitly presents while using her credentials.

V. IDENTITY SYSTEM

We now present the details of CanDID’s identity system.
The overarching goal of this sub-system is to convert com-
monly used legacy data to Sybil-resistant, privacy-preserving
decentralized credentials. This goal is achieved in two steps.
First, CanDID converts a set of pre-credentials (Sec. V-A) to
a master credential with a privacy-preserving deduplication
protocol (Sec. V-B). Master credentials are Sybil-resistant
in that each user can only get one master credential, but
they are not intended to be used in interactions with ap-
plications. Rather, CanDID allows users to create context-
based credentials (Sec. V-C) by linking application-specific
attributes (attested to by pre-credentials) to the master creden-
tial. E.g., For a voting application, an “age > 18” credential
can be issued. Context-based credentials also achieve cross-
applications unlinkability. Finally, in Sec. V-D, we discuss
credential verification. We discuss accountability measures in
a subsequent section (Sec. VI).

A. From legacy data to pre-credentials

Recall from Sec. IV-A that a claim is a tuple claim =
{a, v, P } where a is an attribute, v the value (or a com-
mitment to it), and P the source provider. A pre-credential
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PC = (claim, π) is a verifiable claim in that π proves that
claim is authentic, i.e., the value associated with a is indeed
v, according to data from P . Pre-credentials are used to create
master credentials (in Sec. V-B), as well as to link additional
attributes to create context-based credentials (in Sec. V-C).

CanDID uses either DECO [84] or Town Crier [83], as
discussed in Sec. II, as an oracle to construct pre-credentials3.
We now explain pre-credential construction for both options.

a) With DECO: When realized by DECO, π is a sig-
nature over claim signed by the CanDID committee in a
distributed fashion. Specifically, suppose committee nodes
{Ci} have signing keys {ski} for a threshold signature
scheme. The user U picks at least t committee nodes, e.g.,
(C1, . . . , Ct), and executes the DECO protocol to prove claim
with committee node Ci (as the verifier) for all i ∈ [t]. At the
end of each execution, Ci verifies DECO proofs (and hence
is convinced that claim is authentic) and generates partial
signature πi = Sigski

(claim). U obtains π by combining {πi}.
b) With Town Crier: Town Crier uses a TEE to output

a proof π = SigskTEE
(claim) only if claim is authentic. Thus

Town Crier proofs are pre-credentials per se.
To prevent replay attacks, we straightforwardly extend the

above protocol to allow users to associate an public key pk
to a pre-credential. Namely, PC = (claim, pk, π) with π a
signature over (claim, pk).

B. Phase 1: Master credential issuance

Recall that master credentials in CanDID are made
Sybil-resistant—i.e., each user can only obtain one master
credential—through conversion of pre-credentials to master
credentials in a deduplication protocol.

The high level idea of deduplication is simple. The CanDID
committee stores registered users’ attributes in a table, denoted
IDTable. To register, U presents a set of pre-credentials
PCSU to the committee. The committee then checks if PCSU
matches any entry in IDTable. If not, the committee issues a
master credential to U and adds her information to the table.
Fig. 2 depicts this process.

1) Deduplication policies: A key design question in Can-
DID is which attribute(s) to deduplicate over. We adopt the
approach of using unique identifiers, such as Social Se-
curity Numbers (SSN)4 issued by the US government for
US residents, Aadhaar for Indian residents, etc. This policy
provides strong Sybil-resistance within a given population.
It also admits efficient privacy-preserving deduplication. The
basic idea each committee node stores locally IDTable ={

PRF(skC , vU )
}

where vU is U ’s unique identifier (e.g., her

SSN) and skC is a secret key distributed across committee
members. When a new user attempts to register with a pre-
credential containing an identifier vU , the committee evaluates
ṽ = PRF(skC , vU ) and check if ṽ ∈ IDTable. If not, a

3OAuth and OpenID Connect are alternatives. But we do not use them
as they are not privacy-friendly and more crucially, require explicit provider
support, thus very limited credentials are possible today.

4SSNs can be re-issued under some very limited circumstances [65]. A
2015 estimate suggests that 1% (5 million) of total SSNs are re-issued [64].
The consequent impact on Sybil-resistance though is limited, as in most cases
users cannot use the old SSN after re-issue.

master credential is issued to U and ṽ is added to IDTable.
To prevent committee members from learning vU , PRF is
evaluated using multi-party computation (MPC), as we will
detail in Sec. V-B2.

A limitation of our approach is that the vast majority,
but not all people or nations [77], have access to unique
identifiers. An important line of future work is instead using
commonly used identifiers, such as name and address. As
noted above, this approach can in principle use techniques
described in Sec. VI, but the problem of duplicating is harder
than sanctions screening. Thus practical realization is an open
research problem.

App. D discusses the practical considerations arising in the
implementation of our Sybil-resistance approach.

2) Protocol details: We now describe the credential is-
suance protocol assuming unique-identifier policy. Let a de-
note the attribute over which CanDID deduplicate users.

a) System setup: Recall that the committee C consists
of n nodes (C1, . . . , Cn). A threshold signature scheme [16]
T S = (KGen,Sig,Comb,Vf) is used by the committee to
issue credentials. To set up, the committee members exe-
cute a distributed key generation protocol [40] to generate
skC = (skCsig, skCprf). At the end, Ci receives skCsig,i and
skCprf,i, secret shares of skCsig and skCprf respectively. Public keys
pkC = (pkCsig, pkCprf) are publicly known. Each committee node
initializes a local table IDTable := φ.

We adopt the standard notation [v] to denote a sharing of
v by committee nodes {Ci}ni=1, i.e., Ci has vi such that v =∑
i λivi where λ′s are Lagrange coefficients. We use notation

y ← f([x]) to denote a MPC evaluation of a function f over
secret-shared input x.

We use a standard malicious-secure MPC protocol based
on Beaver triples to evaluate PRF([skCprf], ·). As part of the
system setup, the committee executes a pre-processing phase
to generate secret-shared random blinding factors and commit-
ments

{
[bi], g

bi
}
i
, enough for each user. Our prototype im-

plementation uses the MP-SPDZ [41] framework, which does
not guarantee robustness—availability relies on all committee
members being online. Since in our setting at most t < n/3
committee members may be corrupted, robustness is possible
as well [48], though we leave such integration for future work.

Each user U generates a key pair (skU , pkU ). We refer to
pkU as U ’s pseudonym.

b) Pre-credential generation: Let v denote the ideal
value associated with attribute a for U . Let claim = (a,Cv)
where where Cv = com(v, r) is a cryptographic commitment
to v with a witness r. As described in Sec. V-A, U generates
a pre-credential PC = (claim, pkU , πoracle). Note that we bind
pkU to PC to prevent replay attacks. For simplicity, we use
the same public key that will later be used to obtain the master
credential.

c) Deduplication: Once the user U has generated a pre-
credential for her identifier v, the next step is to evaluate ṽ =
PRF(skC , v) via the following interactive protocol among U
and committee nodes C1, . . . , Cn.
• U sends [v] to committee members. To this end, the com-

mittee nodes send shares of a fresh random blinding factor
([b], B = gb) to U , from which U reconstructs b. ([b] can be
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1 {issuer: did:candid:committee,
2 context: "Master",
3 credentialSubject: {
4 id: did:candid:user123,
5 ssn: {
6 value: 123-45-6789 ,
7 provider: "SSA account",
8 },
9 name: {

10 value: Alice ,
11 provider: "SSA account"
12 },
13 deduplicatedOver: [ssn]
14 },
15 proof:{...}}

Fig. 4: A CanDID credential deduplicated over SSNs. Name
is used as a linking attribute to attach new claims. Gray boxes
indicate commitments to hide private information.

pre-generated during system setup for online efficiency or
generated on the fly.) U blinds v by computing v′ = b+ v
and a proof of correct blinding πblind

i = ZK-PoK{b, v, r :
v′ = b + v ∧ (gb = B) ∧ (com(v, r) = Cv)}. U sends
(pkU , v′, πblind, claim, πoracle) to all committee nodes.

• Each committee node Ci verifies the received proofs and
computes vi = v′/nλi − bi. It follows that Σni=1λivi = v.

• Committee nodes execute an MPC protocol to compute
ṽ = PRF([skCprf], [v]). Each committee node Ci asserts ṽ 6∈
IDTable and aborts if not. Ci adds (pkU , ṽ) to IDTable. The
pseudonym is stored to enable revocation later (See Sec. VI).

d) Credential issuance: The committee issues a master
credential by signing the claims in the pre-credential with a
“dedupOver” statement attached.

Specifically, each committee node Ci computes m =
{pkU , “master”, claim, {“dedupOver”,{a}} and generates a
partial signature σCi = T S.Sig(skCsig,i,m). Ci sends
EncpkU (σCi ) to U . After decrypting t valid partial signatures{
σCi
}

, U combines them to get a full signature σC =
T S.Comb(

{
σCi
}

) and constructs the master credmaster =

{pkU , “master”, claim, {“dedupOver”,{a}}, σC}.
See Fig. 4 for an example credential.

C. Phase 2: Context-based credential issuance
Master credentials are not intended for use in interactions

with applications because of the resulting linkability—and
their limited sets of claims. We now show how a user can
create usable-credentials, using the master credential as an
anchor.

We assume each application specifies a unique context ctx
(e.g., “Voting at company A”). In order to get a credential for
context ctx, U submits her master credential to the committee,
along with a set of claims {claimi} required by ctx (e.g., age
over 18 for the voting application.) The committee verifies the
claims and issues a credential for ctx in a similar process as
that for master credential issuance.

Two new challenges arise. First, we must ensure that
the newly added claims are valid (Def. 6), i.e., belong
to the user holding the master credential. Otherwise, ma-
licious users could rent or buy cheap stolen accounts to

add false claims [52]. Second, it’s desirable to support pair-
wise DIDs [72], i.e., make credentials for different contexts
independent (formally captured as unlinkability in Def. 7.)
But unlinkability poses a challenge for Sybil-resistance. If
two credentials are unlinkable, what prevents a user from
generating multiple unlinkable credentials? Below we discuss
how CanDID addresses the two challenges.
Claim validity: We enforce claim validity by matching at-
tributes in the new claim with those in the master credential.
Ideally, matching all the deduplication attributes in the set
Attr present in the master credential seems desirable. But in
practice it is often hard to find a source provider providing all
the desired attributes, e.g., SSNs are often not easily accessible
on websites.

To overcome this problem, we include one or more addi-
tional linking attributes in the master credential. New claims
can be attached through these attributes. The linking attributes
need to be easily accessible and hard to alter on websites,
and reasonably unique. In our prototype system, we use name
as the sole linking attribute, denoted alink. See Fig. 4 for an
example credential.

Users attach a ZKP proving that the name attribute is same
across the master credential and the new claim; thus credential
privacy is respected. Since names are “fuzzy,” we develop a
fuzzy matching circuit for this purpose.
Sybil-resistance within a context: To ensure Sybil-resistance,
CanDID credentials come with the field “context”. CanDID
ensures Sybil-resistance within a given context, i.e., enforces
the property that each user can get at most one credential per
context (Def. 1). This property does not interfere with issuance
of pairwise, i.e., unlinkable DIDs.
Context-based credential issuance protocol: We
assume each application specifies a unique context
string ctx (e.g., “Voting at company A”). Suppose
user U has a master credential credmaster =
{pkU , “master”, claim, {“dedupOver”, {a}}, σC}. To get
a new credential for context ctx, U submits to the
committee (pkUnew, credmaster, {PCnew}), a new identifier
to be used in context ctx, her master credential, and a
set of pre-credentials with new claims required by ctx.
The committee maintains a set of identifiers Issuedctx

that have already received a credential with this context.
If pkU is not present in this set; if absent, a credential
(pkUnew, ctx, {claimnew}, {“attachedUsing”, alink}) is issued.
The issuance is similar to that of master credentials, so we
relegate details to App. C. (pkU , pkUnew) is added to Issuedctx.
We add the new pseudonym as well to support revocation.

Contexts can be shared across applications, e.g., an “age-
Above18” context (for voting, entry to a bar, etc.) avoiding
the need for individual issuance for each application. The
downside is that applications can collude and link users’ usage
patterns. CanDID can in principle be extended with suitable
anonymous credentials, e.g., [66], to meet this concern.

D. Credential verification

Any relying party can verify a user U ’s CanDID context-
based credential cred with associated identifier pk and asso-
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ciated opened commitments. The relying party (denoted V)
checks that: (1) cred is properly signed by the committee; and
(2) pk does not appear in a public revocation list; and (3)
any commitment openings are valid. The verification protocol
(verifyCred) is discussed and specified in Fig. 16.

E. Security arguments

We now briefly argue the security of CanDID identity sub-
system. Proofs sketches can be found in App. B.
• Sybil-resistance (Def. 1): This follows from the integrity

properties of oracle protocols [84], [83]. In particular, as-
suming unique-identifier policy with a single identifier, an
adversary controlling N users can get at most N pre-
credentials, thus, at most N entries in IDTable (or Issuedctx).

• Unforgeability (Def. 2): This follows from the unforgeabil-
ity of signatures.

• Credential issuance privacy (Def. 3): From the pri-
vacy of oracle protocols, generating a pre-credential for
claim = (a,Cv) doesn’t leak information about v. Sec-
ond, since commitment is hiding, and MPC evaluation of
ṽ = PRF([skCprf], [v]) guarantees privacy, A doesn’t learn v
during issuance.

• Credential validity (Def. 6): This follows from the integrity
properties of oracle protocols.

• Unlinkability across applications (Def. 7): Observe that
the only linkage between master credentials and context-
based ones are Issuedctx. As noted in Def. 7, for this property
we assume the adversary can not corrupt the committee
members, hence unlinkability follows.

• Credential verification privacy (Def. 8): First, unopened
commitments leak no information due to the hiding property.
Second, commitments hide the result of a zero-knowledge
proof (e.g., whether age is over 18), therefore opening it
doesn’t reveal more than what U indents to prove.

VI. ACCOUNTABILITY

As discussed in III, CanDID helps enforce accountability,
i.e., identification of misbehaving individuals, in a privacy-
preserving way. For concreteness, we use sanctions lists here
as an example of the how CanDID can enforce accountability
in this sense. Two related problems arise: (1) Registration
time compliance: When generating the master credential, the
client must show that their name (or other string field like
address) is not among those mentioned in the sanctions list.
In brief, we solve registration-time compliance by having the
client produce a SNARK proof. Secret-shares of users’ name,
address are stored in IDTable. (2) Periodic screening: If the
sanctions list is updated with new names, we must identify
and revoke any previously-issued credentials. This means
searching IDTable and context-specific sets Issuedctx to obtain
all pseudonyms issued to a matched user. The pseudonyms are
added to a public revocation list RL.

For both of these tasks, we must accommodate potential al-
ternate spellings of names. There is vast literature on searching
for fuzzy matches for a string in a database [82], [81]. In fact,
the US OFAC Sanctions list [70] provides a search tool that
given a name, queries the sanctions list for fuzzy matches

using a combination of Soundex codes [37] and the Jaro-
Winkler [73], [80] similarity measure.5 However, the challenge
for CanDID lies in the fact that this fuzzy string matching
needs to be performed in a secure computation framework.

To address these challenges, we implemented a fuzzy
matching algorithm, based on edit distance and c-shingles,
described below. We discuss other potential alternatives only
in the full paper.

Edit distance is an appropriate choice for transcription
errors, as discussed in [30], which surveys a series of studies
on transcriptions errors to find that a large percentage of them
are accounted for by less than 3 character typos. For example,
a study by Pollock and Zamora [54] cited by [30], finds that
more than 90% of transcription errors contain a single error.

Computing edit distance between a pair of points requires a
dynamic programming approach that has a large constant fac-
tor due the size of the alphabet. Hence to reduce cost, we use
an approximation of edit distance known as c-shingles [29],
[20]. The c-shingles of a word w is the set of length c
consecutive substrings of w (ignoring order, repetition). Let
shc(w) denote the set of c-shingles of w ∈ Cn. As discussed
in [29], |shc(w)| ≤ n − c + 1 and if u = edit(w,w′), is
the edit distance between w,w′ ∈ Cn, then the distance be-
tween shc(w) and shc(w

′), denoted dist(shc(w), shc(w
′)) :=

|shc(w) \ shc(w
′)|+ |shc(w

′) \ shc(w)| ≤ (2c− 1)u.
Our approach is thus to use c-shingling as a filtering step:

we first compute the c-shingle intersection with every element
in the dataset to generate a set of matches, and compute
the edit distance just on these. Note that given shc(w) and
shc(w

′), computing dist is a simple set intersection problem.
As a result, we can benefit from precomputation by storing
the c-shingling of each name in the dataset and sanctions
list. To carry this out in secure computation, we must ensure
that the dataset is accessed in a query-independent way,
otherwise the access pattern leaks information. To address this
we use an oblivious sorting network to sort the dataset by
shingle distance, compute edit distances on a fixed number of
candidates.

We pad the lengths of full names in our prototype to a max-
imum length of 30, and set the edit distance threshold t = 3,
i.e. 10% of that. This also corresponds to the observations
from [30] above. We used the OFAC sanctions list as a source
of full name data, consisting of 20, 511 names, to determine
reasonable parameters. Since c-shingles are used as a filter
to winnow out values which are definitely not matches, the
smaller the number of candidates remaining after the filteration
step, the better. In particular, we found that the smallest
number of candidates remained, when the parameter c was set
to 2. In the case where c = 2, we considered the size of the
set {y | dist(shc(x), shc(y)) < (2c − 1)t, y ∈ the OFAC list}
over 1000 randomly chosen points in the OFAC list. The 90th
percentile for the size of this set was 16. Hence, we decided
to truncate the set of candidates to 15 after the filtering step.

We use the below producedure in both SNARK and MPC:

5Although we could use DECO to generate a credential by querying this
online tool, this would require transmitting the user’s name in plaintext to the
service — an unnecessary privacy leakage we aim to avoid.
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Parameters: To run this procedure to search for matches, we
need to fix threshold t, for x, y such that Edit(x, y) < t
to be considered matches, a parameter c for the c-shingles,
a parameter numCandidates, to fix the number of final
candidates we compare, so as to remain data and query
oblivious.

Pre-computation: Pre-compute shingles = [shc(y)|y ∈ D].

Online computation:
1) For a client input string x compute the shc(x) and provide

a SNARK proof for it (to ensure correct computation).
2) Compute a boolean list candidates = [(y << 1|1) ∗

(dist(shc(x), shc(y)) < (2c− 1)) for y ∈ D].
3) Using Bitonic sort [11], sort candidates in place, using the

comparator comp(a, b) = a == 0 ? a : b, i.e. push all
zero values to the back (these represent values that could
not possibly have edit distance less than t from x).

4) Retrieve the first numCandidates elements of
candidates to get a list finalCandidates = [y >>
1 for first numCandidates elements of candidates].

5) Finally, compute the set of matches by checking if
Edit(x, y) < t for y ∈ finalCandidates.

In the end, return the set of matched values. If this set is
empty, then nothing needs to be done. Else, it depends on
whether this procedure was run as part of the registration time
compliance in a SNARK or periodic screening for the updated
sanctions list in MPC, an action is taken. For the former, a
prover is unable to generate a valid proof and hence, can’t
register without some out-of-band mechanism or extra checks.
In the latter case, the server expels matched values.

Note that this procedure will never return false positive
values such that their edit distance from the query was greater
than the chosen threshold t. However, false negatives may
occur, due truncating candidates based on a fixed parameter.

The procedure described above can be implemented as an
arithmetic circuit, which can then be compiled into either a
Rank-1 Constraint system for use with a SNARK (for the
registration-time screening) and as an MPC program (for the
periodic screening). In general, each multiplication gate in the
circuit translates to one constraint in the SNARK, and into
one Beaver multiplication for MPC. There are, however, some
optimizations that are possible in the SNARK setting but not
in MPC. In particular, to prove that a value s is non-zero
in a SNARK requires only a single constraint, s · m = 1,
where the client (who knows s) can compute m the reciprocal
of s iff s 6= 0. In MPC, this must be performed using bit
decomposition intsead.

VII. KEY RECOVERY SYSTEM

Existing DID systems, e.g., [10], [50], [71], require users
to store private keys securely and reliably. They burden
users and create exactly the same pitfalls that have affected
cryptocurrencies—namely re-centralization via exchanges like
Coinbase or the onus of the “mnemonic seed” backup
method [57]. Loss of private keys in DID systems equates
with a loss of credentials—and, at best, the time-consuming
process of having all credentials re-issued.

The key-recovery subsystem in CanDID aims to remedy
this situation by providing a user-friendly solution. It leverages
workflows that closely resemble those in the identity subsys-
tem. CanDID allows users to back up their DID keys with the
CanDID committee, which stores users’ keys securely using
secret sharing. The most appealing feature of key recovery in
CanDID is that users can employ legacy web authentication
schemes to retrieve their backed-up keys. Two benefits result:
(1) CanDID offers a familiar authentication experience to
users and (2) CanDID can leverage the existing infrastructure
and often sophisticated authentication policies of popular web
service providers.

CanDID allows users to choose arbitrarily flexible au-
thentication policies for recovery. Upon enrollment, a user
can specify a set of authentication providers and an access
structure over them, e.g., a user’s policy might require proving
successful login to any 2-out-of-3 predetermined accounts on
Facebook, Google and Amazon. The committee enforces the
specified policy for key release.

In principle, all of this would be possible straightforwardly
using OAuth [35], [2], but OAuth has a serious privacy
limitation: OAuth would leak real-world identities of users to
the CanDID committee and use of CanDID to authentication
providers.

Instead, CanDID uses privacy-preserving proofs of account
ownership, similar in style to those in Sec. V-B2. We now
describe enrollment and recovery processes for a simplified,
single-provider policy. Extension to policies with multiple
authentication providers is straightforward.

Enrollment: To enroll, i.e., back up her key, a user U picks
a random ephemeral identifier pkUeph and generates a pre-
credential PC = ((“account id”,CidUP

), pkUeph, π) containing
an commitment to U ’s account identifier associated with the
authentication provider (idUP ). A difference from the protocol
in Sec. V-B2 is that the pre-credential is now bound to an
ephemeral user identifier pkUeph different from that in the
identity system, to prevent correlation across the two systems.

Pre-credentials are verified through a verification protocol
(verifyCred), where user proves knowledge of skUeph. Similar
to Sec. V-B2, the committee nodes run MPC to compute
pidUP = PRF([skCprf], [id

U
P ]). The user then secret-shares her

private key skU across the committee. Ci stores (pidUP , skUi ).

Recovery: To retrieve a lost key, the enrollment process
is replicated to compute pidUP . Given pidUP , Ci fetches
(pidUP , skUi ) and returns share skUi to the user.
Security Arguments: We now briefly argue the security of
CanDID key recovery. Proofs sketches can be found in App. B.
• Unforgeability (Def. 2): This follows because the commit-

tee nodes never learn the backed-up key. Moreover, the key
is released only to the real owner, guaranteed by the integrity
of oracle systems.

• Key recovery privacy (Def. 4): This follows the same
argument as credential issuance privacy before.

Extensions: In Sec. X, we compare CanDID with existing
key management approaches, such as physical access-control
(a.k.a., cold storage) and password protection for keys. These
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approaches can be composed with CanDID to construct rich
hybrid policies. These are just examples meant to illustrate
how access-control policies in CanDID can be enriched. Other
access-control mechanisms that we don’t discuss here, e.g.,
social or fourth-factor authentication [19], biometrics, two-
factor authentication, etc., can be considered in a similar way.

VIII. IMPLEMENTATION AND EVALUATION

We implemented the key components of CanDID’s iden-
tity system and evaluated their performance. To generate
pre-credentials, we built on top of DECO [84] and Town
Crier [83], and compared their performance. We implemented
the master credential issuance protocol in Sec. V using SSN as
the deduplication attribute. Finally, we implemented our MPC-
based protocol for accountability in Sec. VI, with sanctions
screening as the example target application.

We used the MP-SPDZ [41] framework for MPC. We in-
stantiated zero-knowledge proofs with a standard a proof sys-
tem [14] implemented in libsnark [46]. We used jsnark [43] to
build circuits for our zero-knowledge proofs. CanDID creden-
tials contain commitments; we used a circuit-friendly scheme,
Pedersen commitments over the Baby jubjub curve [75].
Environment: We conducted experiments on machines that
we believe representative of typical users and workloads for
CanDID. The machine modeling an “end-user” runs on a
Lenovo ThinkPad x270 Laptop, with 16 GB of RAM, an
Intel i7-7600U CPU, and an SSD for storage. For the oracle
verifier, we use a desktop server running an Intel i7-6700K
CPU with 32 GB of RAM and an SSD for storage. The end-
user is located in a residential network with a bandwidth of
33Mbps/4.7Mbps (down/uplink). For MPC, we use a commit-
tee of four nodes running on AWS t2.2xlarge instances with 8
vCPU, 32 GB of RAM and EBS-backed SSD storage. In all
experiments, the user and the committee nodes communicate
via WAN.
Experiment scenarios: To demonstrate the capabilities of
CanDID, our experiment simulates the process of creating
a master credential for user U after deduplication over U ’s
SSN and verification that her name and address pair do not
appear in a public sanctions list L. In practice it is hard
to find a single data source with all three attributes, but
CanDID allows flexible combination from multiple sources.
Our experiment showcases a combination of two: SSN and
name from the Social Security Administration (SSA) website;
name and address from a popular rent portal (RENTCafe),
where name serves an the linking attribute (Sec. V-C). We
evaluate the performance of the following three procedures:
1) U generates pre-credentials for (SSN, name) and

(name, address) from SSA and RENTCafe respectively.
(Sec. VIII-A)

2) U proves that two pre-credentials are linked via name and
that her (name, address) pair does not appear in L. The
committee verifies the proofs, deduplicates over SSN, and
issues a master credential. (Sec. VIII-B)

3) In order to maintain compliance with various sanctions
lists, CanDID supports periodic checks for newly sanc-
tioned names. (Sec. VIII-C)

DECO Town Crier
Offline

(4.7Mbps)
Offline
(1Gbps) Online

Generate SSA pre-cred. 475.69s 4.27s 8.61s 0.39s
Generate RentCafe pre-cred. 475.69s 4.27s 10.10s 1.01s

Linking name via ZKP - - 0.94s 0.94s
Sanctions-list check (optional) - - 1501.54s 1501.54s

Deduplication via PRF - - 0.01s 0.01s

Total time 475.69s 4.27s 18.76s 2.35s
Including sanc. list check 475.69s 4.27s 1520.3s 1503.89s

TABLE II: Estimated time taken to get a master credential.
DECO offline time is measured in two networks with differing
uplink bandwidth. DECO online time is similar for both
networks thus measured just with 4.7Mbps uplink.

A. Pre-credential generation

We used the SSA website as a trusted source for SSNs, legal
names whereas the RENTCafe website for name, addresses.

The SSA website does not directly expose users’ SSNs. We
instead use an equivalent attribute for deduplication: SSA user-
names. Each username is mapped uniquely and permanently
to an SSN upon registration for an SSA account. The specific
endpoint we used is https://secure.ssa.gov/myssa/myhub-api/
getAccesses. It returns a JSON response with a user’s SSA
website username and the legal name (including middle name
and suffix, e.g., jr).

For users’ addresses, we used the profile page on
the rent portal (https://XXX.securecafe.com/resident-services/
XXX/profile.aspx) [URL modified for anonymity]. It returns
an HTML page containing the utility user’s name and address.

The runtime for generating pre-credentials is reported in the
first row of Table II for both DECO and Town Crier options.

1) DECO: To generate pre-credentials, we extended DECO
with ZKP circuits to prove that: (1) requests sent to the data
sources are well-formed; and (2) (Pedersen) commitments of
responses are correctly computed. The ZKP circuits used to
generate SSA and RENTCafe pre-credentials contain 218,677
and 266,030 constraints respectively.

We used DECO in CBC-HMAC mode, i.e., the underlying
ciphersuite is CBC-HMAC. The total runtime of the DECO
option includes the DECO handshake, 2PC-encryption of the
request, and the generation of aforementioned ZKPs. DECO
uses offline preprocessing which can be run before the user
input is known. We report the runtime of offline and online
phases separately. Each benchmark was taken over 100 runs.
Means are reported in Table II.

The offline preprocessing involves uploading a lot of data.
Therefore, offline runtime depends heavily on end-user’s up-
link bandwidth. For instance, using an AWS instance capable
of 1 Gbps uplink resulted in an offline runtime of just 4.27s.

2) Town Crier: We instrumented Town Crier with web
scrapers for SSA and Con Edison websites, and added SGX
code for generating Pedersen commitments over the Baby
Jubjub curve. To generate pre-credentials, a user logs into the
data source from a browser. A Chrome extension we created
for CanDID users transfers the resulting session cookies to
Town Crier. Town Crier then scrapes the data sources for
the desired information (using the cookies to authenticate)

https://secure.ssa.gov/myssa/myhub-api/getAccesses
https://secure.ssa.gov/myssa/myhub-api/getAccesses
https://XXX.securecafe.com/resident-services/XXX/profile.aspx
https://XXX.securecafe.com/resident-services/XXX/profile.aspx
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Fig. 5: Size of the circuit for proving that a particular string
of length 30 is not in a sanctions list using jsnark. The x-axis
is the number of points in the sanctions list and the y-axis
is the number of gates in the compiled circuit. Edit distance
is calculated on the first 15 words that constituted c-shingle
matches.

and outputs an attested commitment. We measured the total
runtime for 100 runs and report the mean in Table II.

B. Master credential generation

To get a master credential, the user submits previously
generated pre-credentials to the committee and proves: (1)
the same name appears across pre-credentials; and (2) the
pair (name, address) is not present on the system’s sanctions
list L. After verifying these proofs, the committee performs
deduplication and issues a master credential. Table II breaks
down the time taken for each step in the issuance process.

1) Proof of name matching across pre-credentials: To allow
for differences in naming conventions across websites (e.g.
differing transliteration of names, or use / lack of use of middle
names and initials), the user constructs a ZK proof that shows
that the name commitments in the two pre-credentials are
within a Levenshtein distance threshold. This links the pre-
credentials together. The circuit we generated for this purpose
has 18,139 constraints. Over 100 runs, the proof generation
step took 1.2 seconds, while verification took 0.006 seconds
on average.

2) Proof of non-existence in the sanctions list: We follow
a similar strategy to prove non-existence as the OFAC search
tool (See Sec. VI)—namely, we use fuzzy matching techniques
to search for names and perfect matching6 to search for
addresses. Thus the latter can employ fast distributed PRF
techniques. In this section, we only focus on the former, i.e.,
fuzzy matching of U ’s name.

We implemented the SNARK technique in Sec. VI for
registration time compliance, in particular, for proving non-
membership of any fuzzy matches for a client’s “name” string

6Addresses in many countries, e.g., the U.S., are typically checked against
a master database and standardized e.g., [76].

s in a sanctions list dataset L. We used the parameters
discussed there. In our circuits, we hard-code the list L, since
this is presumably public. We padded the input string and all
dataset entries to a length of 30 characters and designed the
circuits such that the circuit execution is independent of the
client’s input string s. Hence, the circuit size depends only on
the size of L.

Fig. 5 shows how the cost of computing proof of non-
membership in the sanctions list L of a name string s scales
as the size of L increases. We present these costs in terms
of the number of multiplication gates (same as the number
of R1CS constraints) in the circuit generating the proof, as
they represent the dominant computational cost in the proof
execution. Due to limitations in jsnark’s ability to compile
large circuits, we partitioned the circuit into components that
could be individually analyzed. These include the Base circuit
which calculates the c-shingles for the input string, SetDiff
which is called to compute the set difference between the set
of c-shingles for the input and each of the strings in L, Sort
for sorting the dataset strings by c-shingles threshold, and
calculating final Edit Distances. The sum of the sizes
of these components is the size of the full circuit to prove that
a dataset L has no fuzzy match for s, allowing us to estimate
its size.

As the OFAC sanctions list contained 25, 511 name strings
at the time of writing, we wanted to evaluate the size of the
complete circuit for dataset L sizes up to 215 ≈ 32, 000 strings.
However, due to limitations of the compiler, were only able
to compile and evaluate the full circuit for dataset sizes up
to 16, 000. To circumvent this limitation and understand the
performance for a dataset as large as we wanted, we used
the sum of component costs, as described above, to estimate
the cost of the full circuit. We validated our estimation method
using the circuits we were able to compile. As shown in Fig. 5,
our estimates matched the compiled circuit sizes exactly.
In particular, we estimated 2.8 × 107 multiplication gates
would be required to compute the circuit for a dataset size
of 25, 511 strings by summing the costs of its components.
We confirmed that the prover time depends linearly on the
number of multiplication gates by running benchmarks with
up to 10 million repeated multiplications. Using these micro-
benchmarks, we estimate that the prover time for a user to
prove non-membership in a list of size 25, 511 is 25.03
minutes.

As seen in Table II, when included as part of credential
issuance, proving non-existence in a sanctions list L takes
≈ 25 minutes and is the dominant component of the total
issuance time. We argue this is reasonable for a few reasons:
1) sanctions list screening is one-time and is much faster than
what a background check takes—often several days [6]; 2)
the step where the c-shingles of the input are compared with
the c-shingles of strings in L is embarrassingly parallelizable,
and is the dominant cost in the proof of non-existence in
L—providing opportunity for major speedup. Moreover, there
are faster options. One is using TEEs. Another is using an
oracle to prove absence from a sanctions list according to an
authoritative online search tool, e.g., [9]. A drawback of the
oracle approach is leakage of queries to the website hosting
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Fig. 6: Number of multiplication gates in the circuit for
searching for a particular string of length 30 in a dataset. The
x-axis is the number of points in the dataset and the y-axis is
the number of multiplication gates in the compiled circuit.

the search, although “chaff” queries can help minimize such
leakage [21].

3) Distributed PRF: We instantiate a PRF using
MiMC [12], which is widely conjectured to be a PRF
and runs very efficiently in arithmetic circuits. The main
parameter for MiMC is the number of rounds. [12] prescribe
using dlog3(p)e rounds, where the circuit being computed
is over a prime field Fp. Since we are using a 255-bit prime
p, we set the number of rounds to be 161. This resulted in a
circuit with 322 multiplication gates, which takes 38 ± 1ms
of CPU-time across four nodes in MP-SPDZ, as averaged
over 10 trials of 10 runs each.

Additionally, users need to prove correct blinding of MPC
inputs (Sec. V-B2) which can be done very efficiently with
Generalized Schnorr Proofs [25].

C. Privacy-preserving screening via MPC

As discussed in Sec. VI, in addition to having users prove
that they are not on a target list L, such as a sanctions list,
CanDID permits the committee to check periodically for newly
sanctioned names, searching for them in the stored dataset D.
More concretely, recall from Sec. VI, that the target list, L,
is a public, dynamic list of strings and D is a private secret-
shared dataset. We use lookup interchangeably with searching
for a string in D. Periodically, a lookup is performed on D, for
each string s newly added to L. We implemented this feature
and ran experiments using MP-SPDZ. As in the experiments
with jsnark, unfortunately, the compiler for MP-SPDZ does
not support very large circuits. Due to this limitation, we were
unable to compile experiments to simulate very large datasets
stored in D. While we leave optimizations to the MP-SPDZ
compiler as future work, we compiled and ran circuits for
lookups, simulating as large sizes of datasets as compiled on
our server machine, without running out of memory. We also
compiled and ran experiments to get circuit sizes for the sub-
components of a lookup operation up to the circuit size that
compiled. For larger dataset sizes, we theoretically estimated
the circuit sizes for each of the component operations of
a single lookup and correspondingly estimated the cost of

searching for a single string. To verify our findings, we also
estimated the cost at smaller dataset sizes. As the graph
in Fig. 6 shows, the circuits that did compile match and thus
validate the accuracy of our theoretical estimates.

Given a dataset D of n strings to be searched, a single
lookup requires computation of: (1) n set differences between
sets of size 30 − 2 + 1 = 29, (2) n “less than” comparisons
of 6-bit integers, (3) n multiplications, (4) running bitonic
sort on an array of length n, where the comparator is an
equality test on a single bit, (5) running 15 edit-distance
computations on 30-character strings and where each character
is 5 bits in length. We use these components to estimate the
cost of the full search circuit. See Fig. 6 for the estimated and
observed circuit sizes (measured in terms of multiplication
gates) in the experiment for the full search. Our estimates
also match up with the observed circuit size for the smaller
sub-components. We omit the estimates for sub-components
from our graphs for clarity. Given the estimated number of
multiplication gates, we can now estimate the time taken for
the circuit to run. On our server machine, averaged over 10
trials of 10, 000 multiplications each, a single multiplication
runs in 41.8± 0.4µs CPU time across 4 nodes. For a dataset
of size 1 million, the circuit would contain 13.2 billion gates
and require a total of 155± 2h of compute time. At the time
of this writing, our server instance cost US $0.376 per hour of
compute time. Thus, searching for a single string in a dataset
of 1 million names, accross 4 nodes, would cost approximately
$58.2 ± 0.6. In terms of actual time taken for the operation,
this computation can be significantly faster than ≈ 155 hours,
since our reported experiments do not include parallelization
and our c-shingles approach in fact renders a large part of this
computation “embarrassingly” parallel. .

IX. APPLICATIONS

Many of today’s processes for proving and validating user
identities online rely on multiple forms of documentation that
are shared among parties, often in non-standard ways across
siloed systems. Several challenges result:
1) Document and information authentication: Traditional au-

thentication of physical documents involves in-person no-
tarization and/or inspection of original document seals
or watermarks—neither of which is possible online.
Knowledge-based approaches to user authentication have
proven to be exploitable by hackers [15].

2) Data Accuracy: Personal information needs frequent up-
dating, as people change addresses, jobs, and even names
(e.g., upon marrying). Keeping information up-to-date yet
protected against unauthorized modification requires con-
siderable curatorial effort [15].

3) Securing PII: In a landscape of online interaction, en-
terprises that interact with consumers are responsible for
securing personally identifiable information (PII) against
compromise, a major technical challenge, as shown by
frequent breaches [38]. They assume a large liability risk
in storing customer PII [68].

In principle, identity federation can help address these chal-
lenges by standardizing identity management processes and
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enabling external entities to serve as identity providers [47].
In practice, though, coalescing a critical mass of government
agencies and industry enterprises around a digital identity
framework requires funding, prioritization, coordination, and
harmonization at the state, federal, and international lev-
els [15].

Decentralized identity management of the type supported in
CanDID offers a compelling alternative, as we now illustrate
with three examples.

A. Validating financial securities investor qualifications

Most jurisdictions prescribe strict rules for the offer, sale,
and distribution of securities to investors. These rules may
include investor validation through Know Your Customer
(KYC) and Anti-Money Laundering (AML) protocols, as well
as investor accreditation. For example, in the U.S., the Secu-
rities and Exchange Commission requires that most investors
participating in private securities offerings under Regulation D
be “Accredited,” typically by means of an asset, net worth, or
income threshold [1]. Accreditation today is an onerous, time-
consuming and largely manual process. Regulatory violations
resulting from inadequate diligence can lead to cease-and-
desist orders, monetary penalties, litigation, and prosecution
at both the business and employee level [60], [59].
Current solutions: Validation of investors’ identity attributes
for KYC, AML, and investor accreditation and sophistication
typically involves teams of personnel reviewing copies of
multiple documents, such as tax returns, credit reports, national
identification, etc.—and annually updating records. Average
financial institution annual spend on global KYC alone is $48
million; average onboarding times are 30 days [55]. Moreover,
the highly sensitive information involved in accreditation is
exposed to multiple employees and organizations.
CanDID approach: Using CanDID, an investor can prove
accreditation to a broker-dealer using suitable context-based
credentials generated, e.g., from data on the website of the
user’s brokerage firm. For instance, a credential can include the
claim that the investor’s assets exceed $1,000,000 (sufficient
for accreditation in the U.S.). The process can offer strong
privacy—and reduce the liability of PII storage assumed by
validating financial institutions—by disclosing no additional
information about the investor’s asset holdings. KYC / AML
compliance can be achieved using a context-based credential
showing that an investor has an active account with a financial
institution that performs such checks, as well as using Can-
DID sanctions screening. Users can periodically provide fresh
credentials as required by a broker-dealer.

B. Business-to-Business (B2B) Services

Businesses offering web-based services require client infor-
mation in order to identify legitimate users. For example, an
Asset Management Company A may subscribe to a Research
Company R’s service on behalf of its employees. R lacks a
direct relationship with A’s employees and thus cannot directly
authenticate them: a classic identity federation problem.
Current solutions: A common approach today is for A to send
R a list of A’s employees, along with their e-mail addresses.

Employee rosters, however, quickly go out of date, resulting
in stale records and incorrect user authentication. An alterna-
tive is creation of a federated identity relationship, typically
requiring a legal contract and manual systems integration—for
every customer of R’s service.

CanDID approach: CanDID enables A’s employees in this
scenario to generate context-based credentials proving that
they are employees, e.g., via online Human Resources records
with a provider used by A. R can then accept such credentials
as proof of eligibility for access to its services, and can impose
its own freshness requirements, e.g., requiring that a credential
be issued within a month of use. R need only maintain locally
a register of the classes of CanDID credentials it accepts.

C. Online Banking

It is challenging today for financial institutions to authen-
ticate new users conveniently and securely when they seek
to open accounts online. Fraudulent account openings create
significant losses for unwitting consumers [44].

Current solutions: Many financial institutions rely on physical
identity documents (e.g., driver’s licenses) presented digitally,
via photographs or video. Graphic design software, however,
enables creation of sophisticated falsified identity artifacts,
especially since physically embedded or hidden watermarks
cannot be digitally verified. Video is also subject to manipu-
lation in real time using, e.g., photo filter features developed
for image-sharing in social media [63].

CanDID approach: Using CanDID, a user can gather and
present credentials digitally in a secure manner, without cum-
bersome visual interactions and with considerable flexibility.
For example, a financial institution can require CanDID cre-
dentials for a subset of the following as prerequisites to autho-
rizing a bank account opening, and can risk-weight credential
types to achieve a balance between identity authentication
strength and flexibility: (1) Proof of address from an online
utility company statement, (2) Proof of identity through an
employer-issued W-2 form, (3) Proof of identity via academic-
institution enrollment, (4) Proof of account holding with an
acceptable financial institution (bank, credit card issuer, auto
loan lender, etc). Given the risks of forgery, some of these
proofs simply cannot be presented securely today using exist-
ing techniques, e.g., proof of address from a utility company.

X. RELATED WORK

Anonymous credentials: A long line of works, e.g., [26],
[27], [33], [66], construct anonymous credential schemes that
allow a user to prove she has a credential without revealing
additional information. Even if a verifier and issuer collude
in such schemes, they cannot learn the identity of the user to
whom a credential was issued or how and where it was used.

Most of these works assume but do not show how to
achieve Sybil-resistant credential issuance. Limited exceptions
include Proof-of-personhood [18], which proposes periodic in-
person meetings to ensure Sybil-resistance. To the best of
our knowledge, CanDID is the first practical system to issue
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generic Sybil-resistant credentials without explicit provider-
support—which it does using DECO/ Town Crier to port
arbitrary legacy data.

As presented, CanDID offers a credential issuance protocol
based on pseudonyms, an approach that is standard in proposed
DID schemes, but has privacy limitations. Adaptation of Can-
DID to a blockchain-friendly anonymous credential scheme
like Coconut [66] is a direction for future work.
Decentralized Identity (DID): There are several standards /
specifications for [78], [71], [28] and implementations of [7],
[10], [50] decentralized identity systems today. All suffer from
a basic bootstrapping problem: they presume the existence of
an ecosystem of credential issuers, but specify no path to its
realization. A second issue with existing DID specs is their
lack of user-friendly key management solutions [31], [50].
These two issues form the main focus in CanDID, which is
compatible with existing approaches.
Accountable privacy: Screening users for, e.g., sanctions, in
CanDID is a form of accountable privacy, that is, enforce-
ment of anonymity with provisions for conditional revoca-
tion. Previous works have explored accountable privacy as
a general goal [22], [74], for cryptocurrency [34], and for
surveillance [61], but not specifically user screening of the
type we address in CanDID.
Key recovery: Mnemonic seeds [53] written on a physically
secured piece of paper are a common way to back up private
keys today. This approach offers strong security against remote
adversaries, but offers poor usability and is unfamiliar to
many users. In contrast, CanDID offers users a familiar user
experience by relying only on legacy providers.

Password-Protected Secret Sharing (PPSS) [13], [39] uses a
committee like CanDID, but incorporates password-protection
as an additional layer to protect users’ keys even if all commit-
tee nodes collude. The downside is again limited usability. If a
user forgets and hasn’t appropriately backed up her password,
she can forever lose access to her key. In contrast, CanDID
makes it relatively hard to lose keys, as it leverages the
recovery policies offered by legacy providers.

Calypso [42] presents a policy-based, decentralized frame-
work for recovery of encrypted documents that could be
adapted to recovery of keys and in principle be extended to
support privacy-preserving proofs of account ownership as in
the CanDID key-recovery subsystem.

XI. CONCLUSION

We have presented CanDID, a practical, user-friendly real-
ization of self-sovereign identity built with legacy compatibil-
ity as a first-class property. CanDID’s Identity System allows
privacy-preserving conversion of arbitrary legacy data into cre-
dentials, thereby supporting bootstraping of a DID ecosystem.
CanDID’s Key Recovery System allows users to manage DIDs
using existing identity providers as a means to protect against
key / identity loss. CanDID additionally provides functionality
such as Sybil-resistance and accountability, that is critical for
many applications. Finally, we describe example use cases, and
demonstrate CanDID’s practicality through a fully functional
implementation of the CanDID Identity System.

While many interesting directions for future work present
themselves, we highlight two. A natural next step for CanDID
is to use anonymous credential schemes [66] to achieve
anonymity (instead of pseudonymity). Doing so in a way
that achieves regulatory compliance, e.g., supports efficient
sanctions screening, presents a significant challenge. Another
important line of exploration is stronger mobile / dynamic
adversarial models [49]. These models raise challenges such as
how to manage large MPC state during changes in committee
composition. We discuss more directions in App. E.
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Identity System and Key Recovery System

• setup(): Choose deduplication attributes Attr = {a1, . . . , ak}.
Initialize a public revocation list RL.

• keyGen(1λ) → (pk, sk): Key generation. Could be instantiated by
the user locally or by the committee nodes in a distributed fashion.
We assume pkC is public in below API.

• issuePreCred(pkU , Stmt) → π: Pre-credential generation. The
protocol used could be either DECO or Town Crier.

• issueMasterCred(skC , skU , pkU , {claimi, πi}ki=1) → credmaster:
Master credential issuance. Instantiated in a distributed fashion be-
tween the committee nodes. The credential has an identifier pkU , k
input claims and a special dedupOver claim.

• issueCtxCred(skC , skU , credmaster, {pkUnew, ctx, {claimi, πi}mi=1})→
cred: Context-based credential issuance. Instantiated in a distributed
fashion between the committee nodes. The credential has an identifier
pkUnew , context ctx and the m claims.

• verifyCred(skU , cred, c) → true/false: Verification protocol for
both master, context-based credentials. Instantiated by a two-party
protocol between the verifying party and user.

• sanctionsScreening(v,RL): Screening protocol. A joint protocol
between the committee nodes to revoke a user identity v present in a
sanctions list.

• keyEnroll(skC , skU , policy, {claimi, πi}ni=1): Key enrollment pro-
tocol. User provides key, authentication policy with n legacy providers
and corresponding identifiers in the claims. (Authentication with
DECO or Town Crier.)

• keyRecover(skC , {claimi, πi}mi=1)→ skU : Key recovery protocol.
User proves ownership of enough legacy provider accounts. (Authen-
tication with DECO or Town Crier.)

Fig. 7: CanDID system API.
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An authenticated data feed for smart contracts. In ACM Conference
on Computer and Communications Security, CCS ’16, pages 270–282,
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APPENDIX A
SYSTEM API AND SECURITY DEFINITIONS

We formalize our presentation of security definitions now.
Adversary classes: Our security definitions involve two
classes of adversary. The first, denoted by A1, can statically
and actively corrupt up to t of the n committee nodes, for
t < n/3. The second class of adversary, denoted by A2, cannot
corrupt any committee nodes. Both classes of adversary can
corrupt any number of users and applications in the system.
We use A1 in our security definitions to model privacy with
respect to committee nodes and A2 to model privacy with
respect to external entities.
System API: Fig. 7 specifies the CanDID API. For the
purposes of our security definitions, we use the term C-DID to
denote a DID system with this API (CanDID or an alternative
embodiment). In some of our security definitions, the adver-
sary has unlimited access to the entire CanDID API, which
we model for conciseness as an oracle O∗. In our security
definitions, the adversary may also have access to an external
account oracle O∗ext that models the legacy providers called by
CanDID.

Our games contain interactive protocols between adversary
and the challenger, where the adversary can see protocol
transcripts.

Definition 1 (Sybil-resistance). A C-DID system is
Sybil-resistant with respect to a set of attributes
Attr if, for any stateful PPT adversary A1,
Pr
[
Gsybil(λ,A1,O∗ext,Attr) =⇒ 1

]
≤ negl(λ).

Informally, this definition captures the infeasibility of an
adversary to obtain more credentials than the number of
users it controls. The definition is parametrized by the set
of deduplication attributes Attr. Fig. 14 specifies the game,
in which the adversary initializes x identities, and can then
create as many credentials as needed. The adversary wins by
generating > x valid credentials such that all of them have
(i) the same context; and (ii) the claim {“dedupOver”,Attr}.
The latter ensures that the deduplication process happens over
the right set of attributes.

Definition 2 (Unforgeability). A C-DID system offers
unforgeability if, for any stateful PPT adversary A1,
Pr
[
Gunforge(λ,A1,O∗ext,O∗sk) =⇒ 1

]
≤ negl(λ).

This definition captures that it must be infeasible for an ad-
versary to impersonate users, i.e., forge signatures with users’
DID keys. Fig. 13 specifies the game, in which the challenger
first creates a key pair (pkU , skU ), and the adversary gets
access to skU through a special oracle O∗

skU
that allows calling

any CanDID API with the user key parameter set to skU . The
adversary wins by producing a valid signature over a fresh
message.

Definition 3 (Credential issuance privacy). A C-DID system
offers credential issue privacy if, for any stateful PPT adver-
sary A1, and any X ∈ {issueMasterCred, issueCtxCred},∣∣∣Pr

[
Gprivacy
X (λ,A1,O∗ext) =⇒ 1

]
− 1

2

∣∣∣ ≤ negl(λ).

Definition 4 (Key recovery privacy). A C-DID system offers
key recovery privacy if, for any stateful PPT adversary A1,∣∣∣Pr
[
Gprivacy

keyRecovery(λ,A1,O∗ext) =⇒ 1
]
− 1

2

∣∣∣ ≤ negl(λ).

We provide three games, one for each of
issueMasterCred, issueCtxCred and keyRecovery

(Fig. 9, Fig. 10 and Fig. 11).
All our privacy games are similar and capture the following:

the adversary learns a pseudonym of the user who initiates
each query and which legacy providers are used, but otherwise
learns nothing else about users’ real identities or attributes
during the credential issue, key recovery protocols. This should
hold regardless of the state of the external world or the actions
of other users. To model this, our games allow the adversary
to explicitly configure the state of the external world (through
O∗ext), and to control the actions of all the users except for
two, which are assumed both to have accounts at the same
service providers. The challenger picks one of the two users
at random, calls a CanDID API (specified below), and reveals
resulting outcome (if any) to the adversary. The adversary
tries to guess which of the two users was picked. The API
is issueMasterCred in Fig. 9, issueCtxCred in Fig. 10,
keyEnroll and keyRecover in Fig. 11.

We now present definitions expressing what it means for
a credential to be valid. Recall that a credential is a set of
claims. We first define what it means for an individual claim
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to be valid. We adopt the model assumption that for any given
attribute in a claim, there exists an ideal value associated with
the holder of a given pseudonym. For example, for the attribute
“address”, the ideal value for Alice is “Wonderland.” We also
assume that values of each attribute a lie in a metric space. Let
∆a denote the distance operator used by CanDID to compare
two values for attribute a. Our definitions are as follows.

Definition 5 (Claim validity). A claim about an attribute a is
said to be δa-valid if it asserts a value v′ that differs from the
ideal value v by at most δa, i.e., ∆a(v, v′) ≤ δa.

Definition 6 (Credential validity). A credential is valid if any
given claim in the credential about an attribute a is δa-valid.

We allow some fuzziness in our definitions to model errors
expected to arise in practice. The fuzziness bound δa denotes
the quantum of error we expect for an attribute a, which
typically depends on the existence of a standard convention
to represent the attribute. For attributes like Date of Birth
and SSN containing numbers in well-accepted conventions,
we set δa = 0. For other attributes like name and address, we
expect some fuzziness due to typographical errors, inconsistent
punctuaction, etc., so typically δa > 0.

Definition 7 (Unlinkability across applications). A C-DID
system offers unlinkability if, for any stateful PPT adversary
A2,

∣∣Pr
[
Gunlink(λ,A2,O∗ext) =⇒ 1

]
− 1

2

∣∣ ≤ negl(λ).

This definition expresses the infeasibility of adversarial
applications to collude and link the transactions of any given
user. In this game, we are concerned about privacy from ex-
ternal entities only, i.e., we use A2. We exclude any auxiliary
information (e.g., IP address, time of use) that A2 learns in the
real world in our modelling that allows an adversary to trivially
break unlinkability. Fig. 12 specifies the game, in which the
adversary presents two master credentials of her choice. A
random one is picked to generate a context-based credential,
and the adversary must guess which one was picked.

Definition 8 (Credential verification privacy (informal)).
Given a function F that maps user data to credential at-
tributes, an adversary A1 learns negligibly more about any
given user than the output of F .

This captures that it must be infeasible for an adversarial
verifying party to glean more information about users than
what is presented. We only provide an informal definition since
this property comes from the zero-knowledge property in the
two oracle systems we use, DECO and Town Crier. DECO
uses zero-knowledge arguments to guarantee that negligible
information other than the output of F is leaked to the
adversary. And, Town Crier relies on a TEE to provide a
similar guarantee. Readers can refer to [67] for ZK-formalism
for TEE.

APPENDIX B
SECURITY PROOFS

In this appendix, we sketch the security proofs of our
constructions.

External account oracle OPext

1 :
State: L is a set of tuples of the form (id, a, v) where id is an user identifier,
a an attribute, and v the corresponding value.

2 : init(Linit): L = Linit. Can only be called once.

3 : update(id, a, v′): If ∃(id, a, v) ∈ L, replace it with (id, a, v′).

4 : delete(id): Remove all (id, , ) from L if exist.

5 :
getProof(id, a)→ v, π: If ∃(id, a, v) ∈ L, return v with a proof π. Return
⊥ otherwise. (We omit the construction of π. See Sec. V-A.)

6 :
getOwnershipProof(id)→ π: If ∃(id, , ) ∈ L, return a proof of account
ownership. Return ⊥ otherwise. (We omit the construction of π. See Sec. V-A.)

Fig. 8: Modelling a legacy provider P through an oracle.

Gprivacy
issueMasterCred(λ,A1,O∗ext)

1 : pkC, skC ← keyGen(1λ)

2 : A1 calls OPext.init(L) such that (id0, a, v0), (id1, a, v1) ∈ L

3 :
(pk, sk),

{
a, id0, id1, P

}
← AO

∗,O∗ext
1 (pkC) where O∗ does not allow

calling issueMasterCred with {a, v0/1} as one of the claim; and OPext does
not allow calling delete or update with id0/1

4 : b←$ {0, 1}
5 : vb, π = OPext.getProof(id

b, a)

6 : cred← issueMasterCred(skC, sk, pk, {a, vb, P, π})

7 : b′ ← AO
∗,O∗ext

1 (cred) where O∗ is same as on line 3.
8 : return b = b′

Fig. 9: Credential privacy game for issueMasterCred assum-
ing unique-identifier deduplication policy over an attribute a.

Sybil-resistance Gsybil: On line 3, the adversary provides a
context ctx. Two possibilities ensue:

1) ctx = “master”: The adversary gets credentials with this
context only through issueMasterCred API of CanDID.

2) ctx 6= “master”: The adversary gets credentials with this
context only through issueCtxCred API of CanDID.

We argue that the adversary cannot win the game in either
case now. Recall that we assume each user holds an ideal
value corresponding to each attribute in Attr. Say, the adver-
sary control x users. Then in the master credential issuance
protocol, the use of IDTable ensures that the adversary gets
x master credentials. Note that this definition crucially relies
on credential validity (Def. 6), as otherwise, adversary can get
arbitrary credentials. Similarly, in the context-based credential
issuance protocol, the use of a per-context set Issuedctx ensures
that each master credential gets one credential with ctx.

Unforgeability Gunforge: In the identity subsystem, users’
key never leaves their device. During the protocols, they use
it only to sign challenges issued as part of verifyCred. Thus,
unforgeability for this subsystem follows in a straightforward
way. In the key recovery subsystem, users’ key is backed-
up with the committee in a secret-shared form. But an A1

adversary cannot access it since it controls < t nodes. The
unforegability guarantee here follows from the security against
existential forgery attacks provided by the signature scheme.
Further, the key is revealed only to the owner that proves their
identity, i.e., unforgeability relies on the integrity of underlying
oracle systems.

Credential issue privacy Gprivacy
issueMasterCred: We argue that

the the adversary cannot win the game as it does not learn
any information allowing it to distinguish the two execution
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Gprivacy
issueCtxCred(λ,A1,O∗ext)

1 : pkC, skC ← keyGen(1λ)

2 : For each i ∈ [m], A1 calls OPiext .init(L) such that
(id0i , ai, ), (id1i , ai, ), (id0i , alink, v), (id1i , alink, v) ∈ L

3 : pk, sk, cred, ctx, {ai, id0i , id
1
i , Pi}

m
i=1 ← A

O∗,O∗ext
1 (pkC) where OPiext

cannot call delete or update with id0/1i , ∀i ∈ [m]

4 : b←$ {0, 1}
5 : For each i ∈ [m], (vi, πi) = OPiext .getProof(id

b
i , ai)

6 : For each i ∈ [m], (v, π′i) = OPiext .getProof(id
b
i , alink)

7 : cred← issueCtxCred(skC, sk, cred,
{
pk, ctx,{ai, vi, πi}mi=1 ,

{
alink, v, π

′
i

}m
i=1

}
)

8 : b′ ← AO
∗,O∗ext

1 (cred)

9 : return b = b′

Fig. 10: Credential privacy game for issueCtxCred.

Gprivacy
keyRecovery(λ,A1,O∗ext)

1 : pkC, skC ← keyGen(1λ)

2 : For each i ∈ [m], A1 calls OPiext .init(L) such that (id0i , , ), (id1i , , ) ∈
L

3 : sk, policy,
{
id0i , id

1
i , Pi

}m
i=1
← AO

∗,O∗ext
1 (pkC) where OPiext does not

allow calling delete or getOwnershipProof with id0/1i , ∀i ∈ [m]

4 : b←$ {0, 1}
5 : For each i ∈ [m], πi = OPiext .getOwnershipProof(id

b
i )

6 : keyEnroll(skC, sk, policy,
{
Pi, id

b
i , πi

}m
i=1

)

7 : AO
∗,O∗ext

1 (pkC) where O∗ext is same as in line 3

8 : For each i ∈ [m], π′i = OPiext .getOwnershipProof(id
b
i )

9 : sk← keyRecover(skC,
{
Pi, id

b
i , π
′
i

}m
i=1

)

10 : b′ ← AO
∗,O∗ext

1 where O∗ext is same as in line 3
11 : return b = b′

Fig. 11: Key recovery privacy game when using DECO/ Town
Crier as the means of authentication.

paths. We will be assuming unique-identifier policy. We give
a series of hybrids. The game G0 is same as above. We
unroll issueMasterCred now and analyze what the adversary
learns. In lines 6, 7 the adversary learns value commitments
Cvb and any outputs of DECO and Town Crier. In line 9, the
adversary learns a blinded value and a blinding proof. In lines
13, 14 the adversary learns a output of a MPC computation
PRF([skCprf], [v

b]). In line 7 of the game, the adversary learns
the credential signature revealed on line 7 (note that all
other information in the credential is already known to the
adversary).

The first hybrid G1 is same as G0 except the value
commitments are replaced with a random value from the
group (output group of the commitment scheme). As the
Pedersen’s commitment scheme we are using provides secrecy,
the adversary will be unable to distinguish the two hybrids. In
addition, we are relying on the secrecy provided by DECO,
Town Crier schemes in this step.

In the second hybrid G2, the blinded values are replaced
with a random value from the group. Moreover, the zero-
knowledge proof (πblind) is also replaced with random values.
As the blinding factor is unknown to the adversary, it will be
unable to distinguish the two games.

Gunlink(λ,A2,O∗ext)

1 : pkC, skC ← keyGen(1λ)

2 :
cred0master, cred

1
master, pk, sk, ctx, {ai, vi, πi}

m
i=1 ← AO

∗,O∗ext
2 (pkC)

where O∗ does not allow calling issueCtxCred with cred
0/1
master and context

ctx

3 :
Check if ∀cred ∈

{
cred0master, cred

1
master

}
,

VfpkC ({cred.pk, “master”, cred.CS} , cred.σ) = true. Otherwise,
return 0

4 : cred← issueCtxCred(skC, sk, credbmaster,
{
pk, ctx,{ai, vi, πi}mi=1

}
)

5 : b′ ← AO
∗,O∗ext

2 (cred)

6 : return b = b′

Fig. 12: Unlinkability game.

Gunforge(λ,A1,O∗ext,O
∗
sk)

1 : pkC, skC ← keyGen(1λ)

2 : pkU , skU ← keyGen(1λ)

3 : c∗, σ∗ ← A
O∗,O∗

skU
,O∗ext

1 (pkC, pk), let chals denote the set of all challenges
produced by A1 in calls to verifyCred(skU , , c)

4 : return Vfpk(c
∗, σ∗) ∧ (c∗ /∈ chals)

Fig. 13: Unforgeability game. A special oracle O∗sk is provided
that gives access to any CanDID API with the user key set to
sk.

In the third hybrid G3, the PRF is replaced with a random
oracle and the adversary will be unable to distinguish the
two games. Note that the adversary is not allowed to call
issueMasterCred with v0/1 on lines 3 and 7 for two reasons:
(i) to ensure that line 6 does not abort as the values are
already used; and (ii) to ensure that the PRF output is not
revealed through a committee node. The latter is problematic
as it acts as a pseudonym, allowing the adversary (through
a committee node) to learn if v0/1 is being called on line
6. In addition, the adversary is not allowed to call external
account oracle to delete / update the values, as that might
cause issueMasterCred to abort.

In the fourth hybrid G4, the signature is replaced with a
signature over a random group element. Since the adversary
does not know the commitment openings, the adversary cannot
distinguish the two signatures.

The proof sketches for the rest two privacy games follow
very similar ideas.

Credential issue privacy Gprivacy
issueCtxCred: The information

revealed to the adversary in this game is same as in the game
for issueMasterCred, minus the PRF outputs. (The lesser
information allows calling O∗ unrestrictively on lines 3, 8.)

Key recovery privacy Gprivacy
keyManage: We discuss differences

w.r.t the game for issueMasterCred and argue security.
In this game, the adversary learns PRF outputs of all the

m provider user identifiers. We also similarly restrict the
adversary from learning the pseudonyms and win the game
by restricting calls to getOwnershipProof, thus disallowing
calls to key recovery functions with id0/1.

Credential validity: Under an assumption that each user
holds only one ideal value, credential validity follows directly
from the integrity guarantee offered by the oracle protocols—
DECO and Town Crier.
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Gsybil(λ,A1,O∗ext,Attr)

1 : pkC, skC ← keyGen(1λ)

2 : A1 calls O∗ext.init(L) where |L| = x

3 : ctx, creds← AO
∗,O∗ext

1 (pkC)

4 :
Check if ∀cred ∈ creds,VfpkC ({cred.pk, ctx, cred.CS}, cred.σ) = true ∧
{“dedupOver”,Attr} ∈ cred.CS. Otherwise, return 0

5 : return |creds| > x

Fig. 14: Sybil-resistance game. Note that O∗ext.init can only
be called once.

Unlinkability Gunlink: Recall that A2 does not control com-
mittee nodes. An A2 adversary learns negligible information
about the protocol execution issueCtxCred on line 4. This is
because, first, we ensure failure cannot act as a distinguisher
through the checks, restrictions on lines 2, 3. Second, if the
protocol succeeds in both execution paths, then final credential
cred is made up of inputs provided by the adversary. (Observe
that in this game, the adversary provides the oracle proofs
himself unlike our previous games.) Thus the adversary learns
negligible information in this process.

Credential verification privacy: We enumerate the different
information learned by an A1 adversary about user attributes
throughout CanDID.

Say a user intends to reveal the output of function F over
their data (e.g., reveal age>18). Then, during the issuance
process, the adversary learns commitments to the output of
F through committee nodes. As commitments are hiding, this
does not reveal anything. Further, the zero-knowledge property
of the oracle system ensures that nothing else is revealed to
the adversary.

During the verification process, the adversary learns the
outputs of F through a verifier. But, this process does not
leak more information than that.

APPENDIX C
CONTEXT-BASED CREDENTIAL ISSUANCE PROTOCOL

We now describe the protocol to obtain a context-based
credential for an application. Say, the application requires
users to obtain a new claim claim0 (we only consider one
claim for simplicity). Let alink denote the linking attribute
(e.g., “name”). While it is possible to have a set of linking
attributes, we assume the set contains just one attribute for
ease of explanation.

The changes to the master credential issuance phase before
are as follows. With unique-identifier policy, users additionally
prove a claim about the linking attribute by using the same
provider used to source the unique identifier. The restriction
to use the same provider is to ensure that the claim belongs
to the same user. Rest of the protocol remains same.

We describe the protocol for one claim in Fig. 15. Extending
it to support multiple claims is straightforward. A credential
ready to be used in a voting application generated can be
using the master credential in Fig. 4. We also include the
deduplication claim “dedupOver” in the final credential for
completeness.

Creating context-specific credentials

1 :
Input: User U holding credmaster with a claim about attribute alink. U also
inputs a pairwise id pkUnew, context ctx. Committee C comprising n servers jointly
holding skC . Each node also maintains a context-specific set Issuedctx.

2 : Output: C outputs success and U holds a credential with context ctx (or) fail.

3 : Offline: For each i ∈ [k], nodes in C have secret-shared blinds [bi].

4 : Pre-credential generation:

5 :
Generate PC0 = (claim0, pkUnew, π

oracle) and PC0link =
(claim0

link, pk
U
new, π

oracle
link ).

6 : User U :

7 :

Let v and v′ denote the value of attribute alink in credmaster and claim0
link

respectively (r, r′ denote corresp. commitment witness). Generate ZKP πlink =
ZK-PoK{r, v, r′, v′ : com(v, r) = Cv ∧ com(v′, r′) = Cv′ ∧
∆(v, v′) <= δalink} where δalink is public.

8 : Send
{
PC0,PC0link, π

link, credmaster, pk
U
new

}
to all committee nodes.

9 : Node Ci:

10 :
Verify the signatures on credmaster,PC0,PC0link using pkUnew. Check that the

same (allowed) provider appears in claim0 and claim0
link.

11 : Verify ZKP πlink using Cv from credmaster and Cv′ from claim0
link.

12 : If (pkUmaster, ) ∈ Issuedctx, abort and return fail.

13 :

Add (pkUmaster, pk
U
new) to Issuedctx. Compute m =

{pkUnew, “ctx”, claim
0, {“attachedUsing”, alink} and a partial signature

σCi = T S.Sig(skCsig,i,m). Send EncpkUnew
(σCi ) to U .

14 : User U :

15 :

Decrypt t valid partial signatures
{
σCi

}
and combine them with

σC = T S.Comb(
{
σCi

}
) and constructs a credential cred =

(pkUnew, “ctx”, claim
0, {“attachedUsing”, [alink]}, σC).

Fig. 15: Context-specific credential issuance protocol over a
context ctx and fresh pairwise user identifier.

Credential verification (verifyCred)

1 : Input: User U inputs cred and skU . Verifying party V inputs a challenge c.
The public key to check credentials pk is a public input.

2 : Output: V outputs success or fail.

3 : User U :

4 : Send (cred, σ) to V where σ = SigskU (c).

5 : Verifying party V :

6 : Check if Vfcred.pkU (c, σ) ∧Vfpk(cred.body, cred.σ) .

Fig. 16: Verification for master credentials, context-based
credentials and pre-credentials.

APPENDIX D
PRACTICAL CONSIDERATIONS

a) Selecting web providers: The providers usable in
CanDID are those that allow the desired attributes Attr to
be accessed online. It is critical, however, that users not be
able to alter these attribute values. Nationally assigned unique
identifiers (e.g., SSNs), as used in our unique-identifier policy,
are typically not user modifiable. Attributes used in a string-
matching policy, e.g., name and address, may be user-alterable,
however. So care is required in choosing providers that prohibit
or limit such alteration.

b) Catastrophic breaches: Our unique-identifier policy
leverages data that may be sensitive. For example, SSNs in the
United States are often used as secrets for user authentication.
Our MPC-based approach to identity deduplication conceals
these values by secret-sharing them.

What happens, though, if the committee C is completely
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compromised (i.e., t + 1 nodes are corrupted)? In this case,
an adversary can reconstruct IDTable, thereby learning the
identifiers of registered users.

To facilitate revocation, IDTable may include bindings be-
tween each user identifier and a pseudonym associated with
that user’s CanDID credentials. IDTable, however, does not
link users’ numerical identifiers with any other identifying
information. For example, if SSNs are used for deduplication,
then a breach will reveal the SSNs of registered users, but
not the names associated with these SSNs. Consequently, an
adversary would be unable to exploit IDTable to perform
identity theft or otherwise jeopardize users.

c) Fake accounts and identity theft: It is fairly easy to
buy fake or stolen accounts online [52]. The impact of such
compromised accounts on CanDID depends on the precise
deduplication policy in force. For example, it is possible to
require a user to present a set of m > 1 pre-credentials / proofs
in support of claimed attributes Attr, forcing an adversary to
compromise multiple accounts of the same user in order to
steal her identity. The higher m, the harder identity theft in
CanDID becomes, but at the cost of usability / convenience.

An important mitigation is the ability of users in CanDID
to revoke credentials. A user that can recover access to online
accounts associated with the compromised identifier v—a re-
quirement to deal with the root problem of identity theft—can
revoke her CanDID credentials. The requirements for reissuing
revoked credentials are choice subject to flexible per-user
and/or systemwide policy setting. For example, re-issuance of
a revoked master credential might require presentation of a
larger set of pre-credentials than initial issuance.

APPENDIX E
LIMITATIONS AND FUTURE DIRECTIONS

a) Providing unlinkability from committee nodes: The
use of pairwise DIDs provides unlikablity across verifiers from
all parties, except the committee nodes. To overcome this, we
would need to use blind signatures like in [66] when issuing
context-based credentials so that committee nodes never learn
pairwise DIDs. The integration is trickier, as naively done,
revocation could be hampered since DIDs are now anonymous.
One way to balance the two seemingly conflicting goals is to
store pairwise DIDs in a secret-shared form. Designing such
a protocol is a direction of future work.

b) Stronger non-transferability: Creating a Sybil-
resistant system prevents uncontrolled transfer/sale of
CanDID credentials. But a user can still share the limited
credentials they have. Now we discuss ways to extend
CanDID to discourage all transfer.

One way to detect transfer is anomaly detection. By mon-
itoring the use of credentials, applications can detect transfer
and then take some action. For example if a video-streaming
credential is being used more than once simultaneously, then it
must have been shared. The actions can be varied: a credential
could be temporarily revoked, or the user could be forced to
re-issue a new credential. More serious actions can be taken
too: as real-world identities are tied to CanDID credentials,
legal remedies can be availed.

Cold storage PPSS CanDID

Se
cu

ri
ty

Hack/theft resistance High Medium Medium
Reliance on

external entities Low Medium Medium

Committee collusion NA Secured by
password

Secure up
to threshold

U
sa

bi
lit

y

High startup cost Yes No No
Physical access req. Yes No No
Parallel construction Yes Yes No

Easy to lose Yes Yes No
Overall ease-of-use

TABLE III: Three key recovery mechanisms and their trade-
offs. They can be combined to support hybrid access-control
policies.

A direction of future work is to integrate prior cryptographic
techniques [26] into CanDID to get stronger all-or-nothing
non-transferability guarantee, i.e., sharing any one credential
means sharing all of them.

c) Revocation trade-offs: To facilitate sanctions screen-
ing, IDTable may store bindings between users’ personal data
(name, address) and their pseudonyms. On the other hand, to
facilitate user revocation, IDTable might also need to store
sensitive identifiers (SSN). Enabling both types of revocation
incurs a small risk, because, a catastrophic breach of > t
nodes will leak the link between sensitive identifiers and their
personal data. Thus it seems as though, either—only one of the
two kinds of revocation can be supported—or—extra risk will
be incurred. This undesirable trade-off might not be necessary
though, as for example in Sec. VIII, we use usernames instead
of SSNs, thus the risk of identity theft is lesser. But it is unclear
how much lower the risk is and further a less sensitive 1-to-1
identifier might not always be available; so better solutions are
desirable.


	Introduction
	CanDID
	Identity system
	Key-recovery system

	Contributions and Paper Organization

	Background: Oracles
	CanDID System Overview
	Identity System
	Key Recovery System

	System and Security Models
	System Model
	Security Model

	Identity System
	From legacy data to pre-credentials
	Phase 1: Master credential issuance
	Deduplication policies
	Protocol details

	Phase 2: Context-based credential issuance
	Credential verification
	Security arguments

	Accountability
	Key Recovery System
	Implementation and Evaluation
	Pre-credential generation
	DECO
	Town Crier

	Master credential generation
	Proof of name matching across pre-credentials
	Proof of non-existence in the sanctions list
	Distributed PRF

	Privacy-preserving screening via MPC

	Applications
	Validating financial securities investor qualifications
	Business-to-Business (B2B) Services
	Online Banking

	Related Work
	Conclusion
	References
	Appendix A: System API And Security definitions
	Appendix B: Security proofs
	Appendix C: Context-based credential issuance protocol
	Appendix D: Practical considerations
	Appendix E: Limitations and Future Directions

